NOT TO CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N5328 NAFO SCR Doc. 06/78

NAFO/ICES WG PANDALUS MEETING - OCTOBER/NOVEMBER 2006

An Assessment of the Shrimp Stock in Denmark Strait/off East Greenland - 2006

by

Helle Siegstad and Carsten Hvingel

Pinngortitaleriffik, Greenland Institute of Natural Resources P.O. Box 570, DK-3900 Nuuk, Greenland

Abstract

Northern shrimp (*Pandalus borealis*) occurs off East Greenland from Cape Farewell to about 70°N in depths down to about 800 m. North of 65°N the stock spans the adjacent Greenlandic and Icelandic economic zones. The stock is assessed as a single population by evaluation of fishery dependent data only. The stock is managed by catch quotas in the Greenlandic zone. There are no management related restrictions on the fishery in the Icelandic zone.

A multinational fleet of large factory trawlers exploits the stock taking annual catches close to 12 000 tons from 1994 to 2003. Catches decreased to 8 100 tons in 2005 and preliminary data indicate that catches will decrease further in 2006. A biomass index indicates that the stock decreased steadily from 1987 to 1993, but has show an increasing trend until beginning of the 2000s, and fluctuated at this level thereafter. Fishing mortality indices have decline since 1993 and recent levels are the lowest of the time series.

Sampling of the commercial fishery in recent years has been insufficient to obtain annual estimates of catch composition.

The status of the shrimp stock in Denmark Strait/off East Greenland indicates an increasing trend in the fishable biomass from 1993 to beginning of 2000s with stabilities thereafter. However, part of the fishing fleet has decreased their effort in recent years, which gives some uncertainty on whether recent values are a true reflection of the stock biomass.

Introduction

Northern shrimp (*Pandalus borealis*) occurs off East Greenland in ICES Divisions XIVb and Va. The stock is distributed from Cap Farewell, up through the Denmark Strait to about 70°N in depths down to around 800 meters. The highest concentrations occur from 150-600 m (Fig.1). There is no evidence of distinct sub-populations and the stock is assessed as a single population. The assessment is based on fishery dependent data only and is largely done by evaluation of trends in biomass indices and size distributions in response to catch levels.

The exploitation of this stock began in the late 1970s initiated by Icelandic trawlers. It soon became a multinational fishery with annual catches increasing rapidly to more than 15 000 tons during the following 10-year period. Total catches fluctuated around 12 000 tons from 1994 to 2003 (Table 1, Fig. 2A). Catches decreased to 8 100 in 2005 and preliminary data indicate that catches will decrease further in 2006. The fishery was originally conducted north of 65°N in the Dohrnbank-Stredebank area on both sides of the territorial midline between Greenland and Iceland and on the slopes of Storfjord Deep (Fig.1). However, in 1993 a fishery was also initiated in various smaller areas extending south to the Cap Farewell. At any time access to fishing grounds depends on ice conditions.

During the recent ten years fleets from Greenland, Denmark, the Faroe Islands and Norway have participated in the fishery in the Greenlandic zone. Annual catches in this area accounts for around 70-98% of the total and the fishery is managed by a Total Allowable Catch (TAC). Icelandic vessels operate exclusively in the Icelandic EEZ and the fishery is unrestricted by management initiatives. Vessels taking part in the fishery on both sides of the national midline are large factory trawlers

in the range of 1 000-4 000 GRT.

This paper presents and analyses data from the shrimp fishery in Denmark Strait/off East Greenland to provide a basis for the assessment of the shrimp stock in this area i.e. time series of catch, fishing effort, geographical distribution and catchper-unit-effort based biomass indices and indices of harvest rate.

Materials and Methods

Raw data

Logbooks from Greenland, Iceland, Faroe Islands and EU-Denmark since 1980, from Norway since 2000 and from EU-France for the years 1980 to 1991 supplied data on catch and effort (hours fished) on a by haul basis. Since 2004 more than 60% of all hauls were preformed with double trawl and the 2006 assessment both included single and double trawl in the standardized catch rates calculations. The catches in the Greenland EEZ were corrected "overpack" according to Hvingel 2003.

Catches and corresponding effort were compiled by year and by areas north and south of 65°N. Catch-Per-Unit-Effort (CPUE) was calculated and applied to the total catch of the year to estimate the total annual effort. The geographical distribution of the fishery are shown by plotting the unstandardized CPUE by statistical units of 7.5' latitude and 15' longitude.

Catch rate indices

Three standardised CPUE indices were constructed: one for each of the areas north and south of 65°N and a combined index series representing the total area. The indices were based on logbook data from Greenlandic, Faeroese, EU(Danish, Lithuania, Estonia), and Norwegian vessels, operating exclusively in the Greenlandic zone and from the Icelandic fleet fishing exclusively in the Icelandic zone (north of 65°N). Until 2005 Norwegian fishery data was considered to have too sparse information on different area fished and data was therefore not include in the standardized catch rates calculations. In 2006 Norwegian fishery data was included in the catch rates calculations after a positive evaluation of new logbooks data from Greenland License Office, where Norwegian fishery data has been recorded in standard format since 2000.

For the indices of the northern areas and the total areas this involved a two-step process. In the first step multiplicative General Linear Modelling (GLM) techniques were used to standardise the CPUE data from the Greenlandic and Icelandic zones separately. There is no area overlap between the vessels fishing in the two zones. Therefore annual CPUE indices cannot be derived from a single GLM-run as such a model will not be able to estimate the relative fishing power of the vessels. The "first step" was performed following the method described in Hvingel *et al.* (2000). The multiplicative models, included the following variables: (1) individual vessel fishing power, (2) seasonal availability of shrimp, (3) spatial availability of shrimp, (4) annual mean CPUE and (5) single and double trawl. Input data were mean CPUE by vessel, area, month and year. The calculations were done using the SAS statistical software (Anon., 1988). The main effects model was represented in logarithmic form:

$$\ln(CPUE_{miki}) = \ln(u) + \ln(A_m) + \ln(S_i) + \ln(V_k) + \ln(Y_i) + e_{miki}$$

where $CPUE_{ijki}$ is the mean CPUE for vessel k, fishing in area min month j during year i (k = 1,...,n; m = 1,...,a; j = 1,...,s; i = 1,...,y); ln(u) is overall mean ln(CPUE); A_m is effect of the m^{th} area; S_j is the effect of the j^{th} month; V_k is the effect of the k^{th} vessel; Y_i is the effect of the i^{th} year; e_{mjki} is the error term assumed to be normally distributed N(0, σ^2 /n) where n is the number of observations in the cell. The standardised CPUE indices are the antilog of the year coefficient.

Parameter estimates of the vessel, month and area variable from a first run of the model were compared. Levels within each variable were combined in subsequent analyses if the parameter estimates did not differ by more than 5%. This was done to reduce the number of empty cells in the models.

For the model pertaining to the Greenlandic zone 53 of 72 vessels met the criteria for inclusion in the analysis (at least three years of fishing in the area) i.e. 41 Greenlandic, 14 Faeroese, 5 Danish, 12 Norwegian vessels. Based on an exploratory run of the main effects model the vessel effect was collapsed into 14 groups consisting of 4-8 vessels with similar fishing power. The month effect was reduced to 5 levels by grouping months with similar indices of relative shrimp availability. The area effect had two levels - one for each of the fishing areas north and south of 65°N. The year*area

cross-effect was calculated to give separate indices for the northern and southern areas.

In the Icelandic zone 126 different Icelandic vessels had been registered in the area since 1987. Almost no fishery has been conducted in 2005 (21 tons) and 2006 (0 tons). The 61 vessels qualifying for the index were collapsed into 18 groups consisting of 1-8 vessels of equal fishing power. The month effect was reduced to 6 levels. No area effect was included. A two level trawl effect was introduced to account for the effect of twin trawling.

Results and diagnostically output from the GLM run show that data from 2006 in the northern area (uncorrected data) and from the Icelandic zone (catches was very small in 2005) was unsuitable to further analyses and data from that area was therefore not included.

The index of the area south of 65°N

From this first step of calculations the biomass index for the areas south of 65°N came directly as the 'year-area south' cross effect of the Greenlandic zone model (see Appendix 1).

The combined index of the area north of 65°N

In the second calculation step the biomass index for the areas north of 65°N was derived by combining the year coefficients of the Icelandic zone model (Appendix 2) and the year effects for the northern areas in the Greenlandic zone model (i.e. the 'year-area north' cross effect, see Appendix 1). A Monte Carlo Markov Chain (MCMC) sampling process was used to construct distributions of likelihoods of possible values of the combined index. This was done within the programming framework WinBUGS v.1.4, (www.mrc-bsu.cam.ac.uk/bugs; Gilks *et al.*, 1994; Spiegelhalter *et al.*, 2000). The individual CPUE series for the p^{th} fleet, μ_{pi} , was assumed to reflect an overall biomass series, Y_i , and a constant fleet coefficient, v_p , so that:

$$\mu_{pi} = v_p Y_i \exp(e_{pi})$$

The error, e_{pi} , were considered to be distributed with mean zero and variance σ_{pi}^2 . The error term was assumed that e_{pi} , have variances inversely proportional to the area of fishing ground, a_p , covered by fleet p. The factor, a_p , was taken to be the area of sea bottom between 150-600 m. Hence, σ_{pi}^2 was calculated by:

$$\sigma_{pi}^2 = \frac{cv_{pi}^2}{a_p}$$

where cv_{pi} is the annual fleet specific coefficient of variation as calculated in the GLM-run. The area weighting factors, a_p , for the Greenlandic area north of 65 and the Icelandic zone were estimated to 0.8 and 0.2, respectively.

The combined index of the total area

In a similar second calculation step a single combined index of the development of the population biomass in the whole area was derived by aggregating the overall year coefficients from the Greenlandic zone model and the year coefficients from the Icelandic zone model. This was also done by the method described above using an area-weighting factor of 0.875 for the Greenlandic zone data and thus 0.125 for the Icelandic zone data.

Harvest rate indices

Indices of harvest rate were calculated by dividing total annual catch of the area by the respective standardised CPUE indices.

Results and Discussion

Geographical distribution of the fishery

The fishery was originally conducted north of 65°N in the Dohrnbank-Stredebank area on both sides of the territorial midline between Greenland and Iceland and on the slopes of Storfjord Deep (Fig. 1). In 1993 a fishery was also initiated in various smaller areas extending south to the Cap Farewell. From 1996 to 2003 catches in the area south of 65°N accounted for more than 60% of the total catch. Since 2004 catches and effort in the area south of 65°N now appears to be decreasing (Fig. 5a, b, c).

Catch

As the fishery developed, catches increased rapidly to more than 15 000 tons in 1987-88, but declined thereafter to about 9 000 tons in 1992-93 (Fig. 2A, Table 1 and 2). Following the area expansion of the fishery south of 65°N catches increased again reaching 13 700 tons in 1997. Catches from 1998 to 2004 have been between 10-14 000 tons (Fig. 2A). The 2005 catch decreased to 8 000 tons and catches in 2006 are projected to be lower than the 2005 level (projected from October)

In the northern area the amount caught has declined by about 75%, i.e. from 15 000 tons in 1988 to about 2 000 tons in 2002 (Fig. 2A). According to Greenlandic skippers the reduced effort spent was due to reduced catch rates of large shrimp, which was the primary target of the Greenlandic fishery. However increasing effort has been spent in the northern areas has since 2004.

Catches in the southern area increased from 1900 tons in 1993 - the first year of fishery in this area - to about 9 300 tons in 1997 (Fig. 2A). They then decreased somewhat to about 6-7 000 tons in 1998-2000. In 2001 catches reached 11 700 tons declined to 9 000 tons in 2002-2003. In 2004 and 2005 catches from the southern area was reported to less than 4 000 tons. 2006 figures are expected to lower than the 2005 level.

Fishing effort

The high increase in catches during the first ten-year period was mainly driven by increased fishing effort (Fig. 2B, Table 2). Between 1981 and 1989, total effort increased from about 20 000 hr's to a peak of more than 119 000 hr's and then declined again to a low of less than 20 000 hr's in 2002. Since then total effort had been less than 25 000 hr's - the 2006-value is expected to be at lower than the 2005-value (Fig. 2B).

The historic development of fishing effort spent in the northern areas follow closely the one described for the total area – except for 2001, when a lot of effort shifted to the south. In the southern areas, effort increased from about 10 000 hours in 1993 to 21 000 hours in 1997. In 1999 it reached a low of 7 500 hr's but increased again to 27 000 hr's in 2001. For 2002-2003 effort in the southern areas was down to approx. 11 000 hrs. The 2004 value declined to a historic low at 4 500 hr's. In 2005 effort increased again to 6 000 hr's, but the 2006 level is expected to decrease again (Fig. 2B, Table 2).

Catch rate

Catch rates (total area) decreased from 278 kg/hr to 109 kg/hr in the period 1980-1989, but has shown an increasing trend since then reaching about 586 kg/hr in 2003 (Fig. 2C, Table 2). The catch rates for 2004 are and 2005 is down at 400 kg/hr and preliminary data from 2006 indicate a further decrease to 280 kg/hr

In the southern areas CPUE increased from 204 kg/hr in 1993 to 950 kg per hour in 1999. During the following two years the mean CPUE obtained in this area was halved reaching 432 kg/hr in 2001. However CPUE was back at 780 kg/hr in 2002 and 2003. For 2004 and 2005 CPUE is on 600 kg/hr, and preliminary data from 2006 CPUE indicate a decrease to 400 kg/hr.

Catch rates in the northern area follow the same trend as the overall figures until 1993 as the fishery in the southern areas had not yet been initiated. From 1994-2001 CPUE's have fluctuated around 225 kg/hr except for an extreme of 146 kg/hr in 1996. Since 2002 annual mean CPUE was above 300 kg/hr, with 270 kg/hr estimated for 2006.

Standardised catch rate indices

Results of the two multiple regression analysis to standardise catch rates showed that all main effects were highly significant (p<0.01). The r-squared of the models were 66% and 78%, respectively. The model-diagnostical outputs (see appendix) indicate that the model and error structures were correct. All first-order interactions between the effects of YEAR, MONTH and VESSEL were also highly significant, suggesting that the effect of YEAR on CPUE differ frommonth to month and from vessel to vessel. The contributions of these interactions to the variability within the data set however were small compared to that of the main effects. Thus, the basic model without interactions was considered a good description of the data.

The CPUE index series of the northern areas (Fig. 3) declined from 1987 to 1993 thereafter an increasing trend was observed and by the turn of the century the index values had reached the level seen at the offset of the time series. For the recent three years the mean index values have stabilized at a level a little above that of 1987. The CPUE index series of the

southern area (Fig. 3) increased until 1999, with stability thereafter.

The combined index for the total area (Fig. 3) indicated that the stock was more than halved during the period 1987-1993. After that it has been rebuilding at a corresponding rate reaching the level of 1987 in the late 1990s. The index values indicate that the stock biomass have stayed at or around this level since then.

The standardisation method used accounts for the increase in efficiency from renewal of the fleet but does not account for the technological improvements, which results from the upgrading of older vessels. The standardised effort may therefore be underestimated in which case the standardised CPUE time series interpreted as a biomass index is expected to give a slightly optimistic view of the stock development (for further discussion of the CPUE index as a stock indicator see Hvingel *et al.*, 2000).

Indices of harvest rate

The standardised effort, i.e. the index of harvest rate, showed a decreasing trend since 1993 for the total area (Fig. 4). The separate indices for the northern and southern areas are also shown in Fig. 4. As mentioned in the previous section the development in the harvest rate indices might be to optimistic. Furthermore, the index of 2006 also depends on the precision with which the catch is projected to the end of the year.

Conclusions

Total catches fluctuated around 12 000 tons from 1994 to 2003 (Table 1, Fig. 2A). Catches decreased to 8 100 in 2005 and preliminary data indicate that catches will decrease further in 2006.

There is no recent information on stock size composition.

A combined standardized catch-rate index for the total area decreased steadily from 1987 to 1993 (Fig. 3C), showed an increasing trend until 2000, and fluctuated at this level thereafter.

Indices of harvest rate have shown a decreasing trend since 1993.

State of the stock: Standardized CPUE data for all the areas combined indicate an increasing trend in the fishable biomass from 1993 to beginning of 2000s and fluctuated at this level after. However, part of the fishing fleet has decreased their effort in recent years, which gives some uncertainty on whether recent values are a true reflection of the stock biomass.

References

Anon. 1988. SAS/STAT User's Guide, Release 6.03 Edition. Cary, NC: SAS Institute Inc., 1988, 1028 p.

Hvingel, C., H. Lassen, and D. G. Parsons. 2000. A biomass index for northern shrimp (*Pandalus borealis*) in Davis Strait based on multiplicative modelling of commercial catch-per-unit-effort data (1976 - 1997). *J. Northw. Atl. Fish. Sci.*, **26**: 25-36.

Hvingel, C. 2002. Data for the assessment of the shrimp (*Pandalus borealis*) stock in Denmark Strait/off East Greenland, 2002. *NAFO SCR Doc.*, No. 147, Serial No. N4776.

Table 1. Catch (tons) of shrimp by the fishery in Denmark Strait/off East Greenland 1981 to October 2006. Values for the fishery in the Greenland EEZ by EU-Denmark, Faeroe Islands, France, Greenland and Norway are corrected according to Hvingel 2003.

Area/Nation	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998¹	1999¹	20001	20011	2002^{1}	20031	20041,5	20051,2	20061,2
North of 65°N																										
EU (DK,EST,LTU)	727	926	255	554	442	626	703	554	454	476	450	199	138	250	302	26	85	401	793	459	72	238	538	812	304	729
Faroe Islands	892	922	554	836	843	910	754	847	738	1029	1265	1355	689	462	931	995	635	1268	867	956	214	309	744	1115	639	586
France	442	518	364	626	803	976	1305	616	472	62	148	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Greenland	1256	1395	1835	2815	3248	7232	8396	9304	7408	7580	5283	2496	1771	1326	2390	359	105	646	614	115	650	152	292	2299	733	0
Iceland	125	0	43	742	1794	1150	1330	1431	1326	281	465	1750	2553	1514	1151	566	2856	1421	769	132	10	1144	635	380	21	0
Norway	2522	2372	2161	2662	2566	2535	2586	2561	2601	3052	3146	3102	1831	2180	2402	1544	797	1628	1783	2759	1291	645	2569	2511	2611	2683
Total	5964	6133	5212	8235	9696	13428	15073	15313	12999	12480	10757	8901	6982	5731	7176	3490	4478	5364	4827	4420	2237	2488	4778	7116	4307	3999
South of 65°N																										
Denmark (EU)	-	-	-	-	-	-	-	-	-	-	-	-	60	613	731	1167	1657	1300	1095	1900	2473	2309	2151	692	645	313
Faroe Island	-	-	-	-	-	-	-	-	-	-	-	-	280	974	295	402	656	138	453	340	2402	1013	621	34	567	129
Greenland	-	-	-	-	-	-	-	-	-	-	-	-	1141	3603	2667	5295	4701	3950	4966	5235	4943	4333	4597	1767	2400	253
Norway	-	-	-	-	-	-	-	-	-	-	-	-	424	1011	720	1590	2261	670	378	157	1855	1098	489	375	194	0
Total	-	-	-	-	-	-	-	-	-	-	-	-	1904	6201	4412	8453	9276	6057	6893	7632	11674	8753	7858	2869	3807	694
Total area																										
EU (DK,EST,LTU)	727	926	255	554	442	626	703	554	454	476	450	199	198	863	1033	1193	1742	1701	1888	2358	2545	2548	2688	1504	949	1042
Faroe Islands	892	922	554	836	843	910	754	847	738	1029	1265	1355	968	1436	1225	1397	1292	1406	1321	1296	2616	1322	1365	1149	1206	715
France	442	518	364	626	803	976	1305	616	472	62	148	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Greenland	1256	1395	1835	2815	3248	7232	8396	9304	7408	7580	5283	2496	2912	4929	5057	5655	4806	4595	5581	5349	5593	4484	4890	4066	3133	253
Iceland	125	0	43	742	1794	1150	1330	1431	1326	281	465	1750	2553	1514	1151	566	2856	1421	769	132	10	1144	635	380	21	0
Norway	2522	2372	2161	2662	2566	2535	2586	2561	2601	3052	3146	3102	2255	3190	3122	3133	3059	2298	2160	2917	3147	1743	3059	2886	2805	2683
Total	5964	6133	5212	8235	9696	13428	15073	15313	12999	12480	10757	8901	8886	11932	11588	11944	13754	11422	11719	12053	13911	11242	12637	9985	8114	4693
Total all areas	5964	6133	5212	8235	9696	13428	15073	15313	12999	12480	10757	8901	8886	11932	11588	11944	13754	11422	11719	12053	13911	11242	12637	9985	8114	4693
Advised TAC	-	4200	4200	4200	5000	-	-	-	10000^{3}	10000^{3}	10000^{3}	8000	5000	5000	5000	5000	5000	5000	9600	9600	9600	9600	9600	12400	12400	12400
Effective TAC ⁴	8000	4500	5725	5245	6090	7525 ⁵	7525 ⁵	8725 ⁵	9025 ⁵	14100	14500	13000	9563	9563	9563	9563	9563	9563	10600	12600	10600	10600	10600	15043	12400	12400

¹Provisional

²Catch in 2006 per Oct. 11.

³Advised for a few years as a precautionary measure

⁴For Greenland zone only; no restrictions in Iceland zone

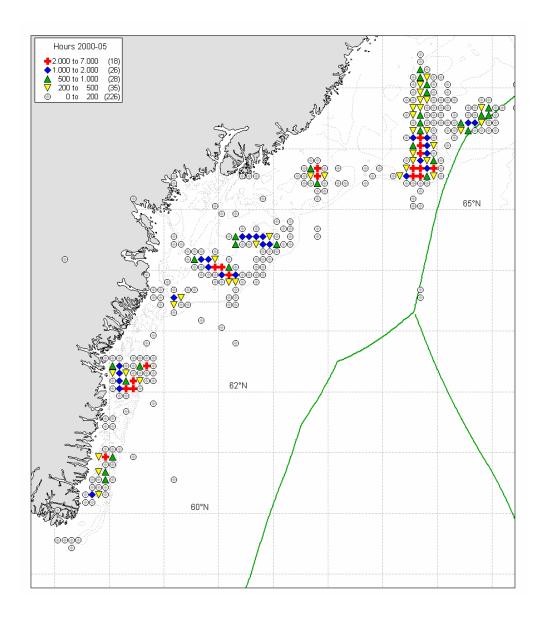

 $^{^5}Not$ including Greenland fishery north of 66°30'N

Table 2. Catch (tons), effort (hr's) and Catch-Per-Unit-Effort (kg/hr) by trawlers fishing in Denmark Strait/off East Greenland in areas north and south of 65°N.

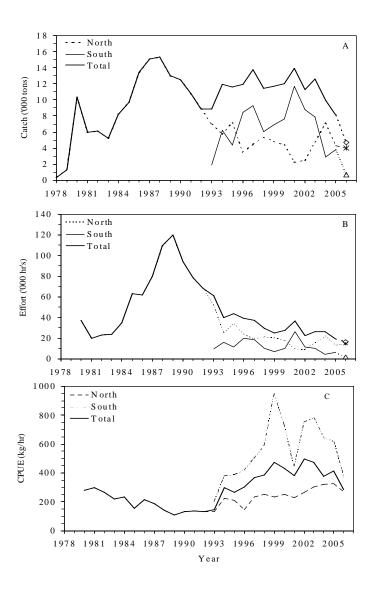
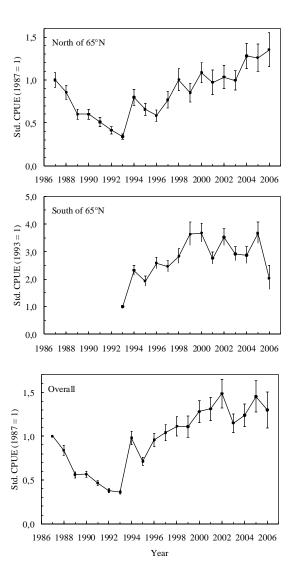
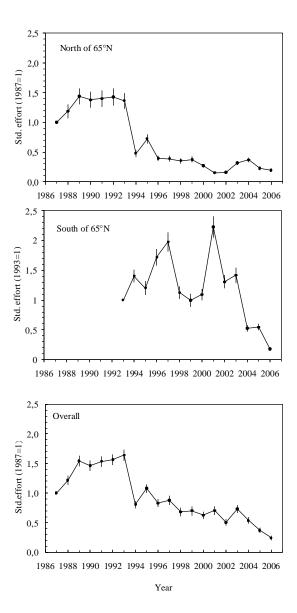
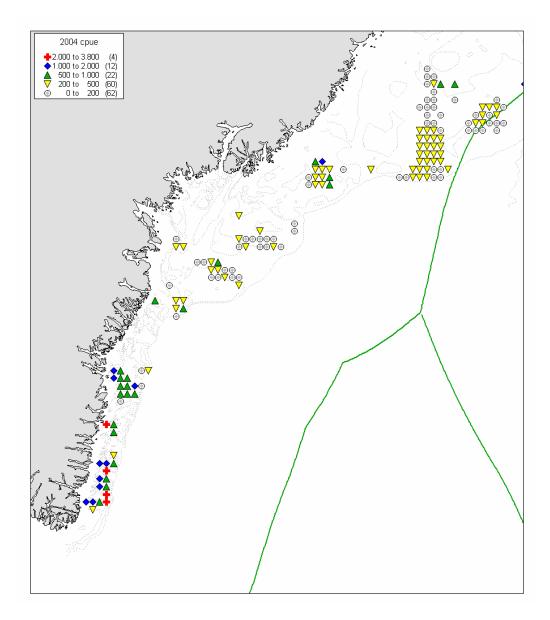
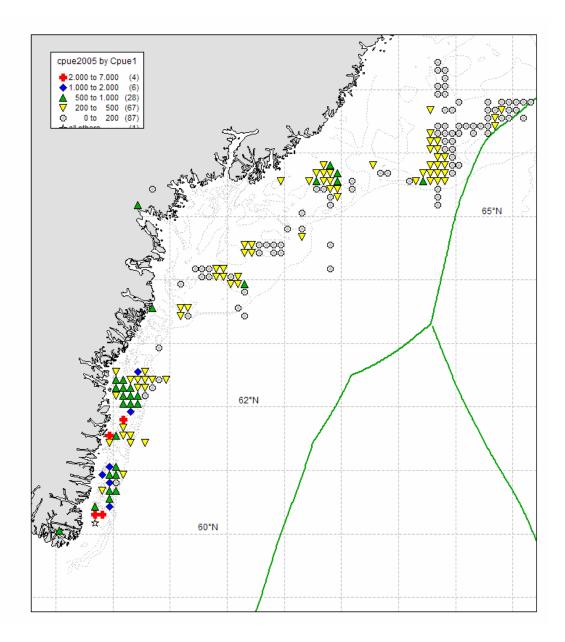

	A	rea nortl	ı	A	rea sout	h	Total area			
Year	Catch	Effort	CPUE	Catch	Effort	CPUE	Catch	Effort	CPUE	
1980	10325	37198	278				10325	37198	278	
1981	5964	19986	298				5964	19986	298	
1982	6133	23081	266				6133	23081	266	
1983	5212	23855	219				5212	23855	219	
1984	8235	34983	235				8235	34983	235	
1985	9696	62911	154				9696	62911	154	
1986	13428	61863	217				13428	61863	217	
1987	15073	79881	189				15073	79881	189	
1988	15313	109455	140				15313	109455	140	
1989	12999	119629	109				12999	119629	109	
1990	12480	94044	133				12480	94044	133	
1991	10757	78714	137				10757	78714	137	
1992	8901	68349	130				8901	68349	130	
1993	6982	52381	133	1904	9335	204	8886	61003	146	
1994	5731	25444	225	6201	16361	379	11932	39725	300	
1995	7176	34021	211	4412	11328	389	11588	43574	266	
1996	3490	23966	146	8453	20136	420	11944	39480	303	
1997	4478	19273	232	9276	18481	502	13754	37498	367	
1998	5364	21379	251	6057	10231	592	11422	29524	387	
1999	4827	20736	233	6893	7256	950	11719	24809	472	
2000	4420	17474	253	7632	10385	735	12053	27955	431	
2001	2237	9822	228	11674	26241	445	13911	36407	382	
2002	2488	9337	267	8753	11638	752	11242	22587	498	
2003	4778	15887	301	7858	10057	781	12637	26611	475	
2004	7116	22020	323	2869	4454	644	9985	26612	375	
2005	4307	13179	327	3807	6170	617	8114	19617	414	
2006*	3999	14824	270	694	1894	367	4693	16532	284	
*until O	ct.									

Table 3. Means and standard errors (se) of standardized CPUE and effort index values based on logbook information from trawlers fishing in Denmark Strait/off East Greenland in areas north and south of 65°N and total area until October 2006.


		Are	a north			Are	a south		Total				
	Std.CPUE		Std.	Std. Effort		Std.CPUE		Effort	Std.C	PUE	Std. E	Std. Effort	
Year	mean	se	mean	se	mean	se	mean	se	mean	se	mean	se	
1987	1,00	-	1,00	-					1,00	-	1,00	-	
1988	0,86	0,08	1,19	0,11					0,84	0,06	1,21	0,08	
1989	0,60	0,06	1,44	0,14					0,56	0,03	1,54	0,09	
1990	0,60	0,06	1,38	0,14					0,57	0,03	1,46	0,09	
1991	0,51	0,05	1,40	0,14					0,47	0,03	1,53	0,09	
1992	0,41	0,04	1,43	0,14					0,38	0,02	1,57	0,09	
1993	0,34	0,03	1,36	0,14	1,00	-	1,00	-	0,36	0,02	1,64	0,09	
1994	0,80	0,09	0,48	0,05	2,32	0,19	1,40	0,11	0,98	0,08	0,81	0,06	
1995	0,66	0,07	0,72	0,08	1,93	0,19	1,20	0,11	0,71	0,05	1,08	0,07	
1996	0,59	0,07	0,39	0,05	2,59	0,21	1,72	0,14	0,96	0,08	0,83	0,07	
1997	0,77	0,10	0,39	0,05	2,47	0,21	1,97	0,16	1,04	0,09	0,88	0,08	
1998	1,00	0,13	0,36	0,04	2,83	0,28	1,13	0,11	1,11	0,11	0,68	0,07	
1999	0,85	0,11	0,38	0,05	3,63	0,44	1,00	0,11	1,11	0,12	0,70	0,08	
2000	1,09	0,12	0,27	0,03	3,67	0,35	1,09	0,10	1,28	0,13	0,62	0,06	
2001	0,97	0,14	0,15	0,02	2,75	0,22	2,23	0,17	1,31	0,13	0,70	0,07	
2002	1,04	0,13	0,16	0,02	3,52	0,32	1,31	0,11	1,49	0,17	0,50	0,06	
2003	1,00	0,11	0,32	0,04	2,91	0,27	1,42	0,13	1,15	0,11	0,73	0,07	
2004	1,28	0,15	0,37	0,04	2,86	0,32	0,53	0,06	1,24	0,13	0,54	0,05	
2005	1,26	0,16	0,23	0,03	3,66	0,40	0,55	0,06	1,45	0,18	0,37	0,05	
2006	1,35	0,20	0,20	0,03	2,03	0,48	0,18	0,04	1,30	0,21	0,24	0,04	


Fig. 1. Thematic mapping of different value of effort (in hours) in the shrimp fishery in Denmark Strait/off East Greenland by Greenlandic, Faeroese and Danish trawlers 2000-2005.


Fig. 2. Catch (A), fishing effort (B) and catch-per-unit-effort (C) by shrimp trawlers fishing in Denmark Strait/off East Greenland. Series are given for the areas north and south of 65°N and overall.


Fig. 3. Standardized Catch-Per-Unit-Effort indices of the shrimp fishery in Denmark Strait and off East Greenland in the areas south of 65°N, in Iceland EZZ, overall fishery north of 65°N (both in Greenland and Iceland EEZ), and overall standardized CPUE for the stock. Estimates are based on data until October 2006.

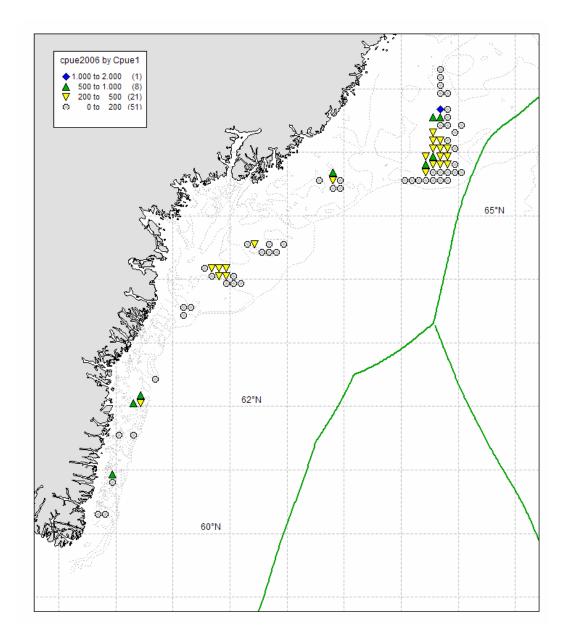

Fig. 4. Standardized effort indices of the shrimp fishery in Denmark Strait and off East Greenland in the areas north of 65°N, south of 65°N and overall. Estimates are based on data until October 2006.

Fig. 5a. Thematic mapping of different levels of CPUE in the shrimp fishery in Denmark Strait/off East Greenland by Greenlandic, Faeroese and Danish trawlers 2004.

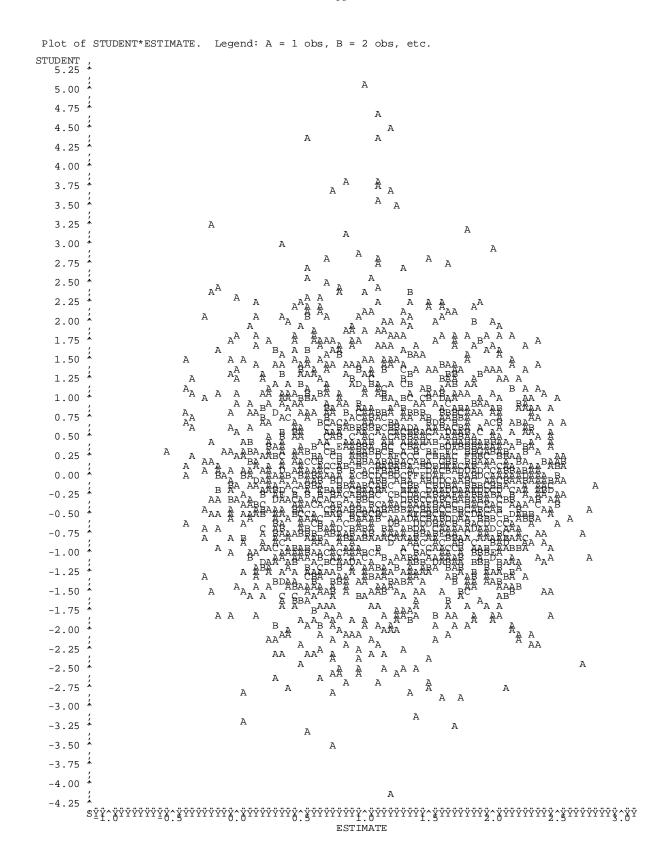
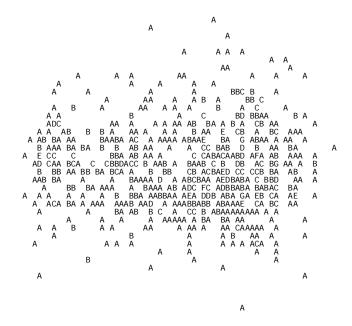

Fig. 5b. Thematic mapping of different levels of CPUE in the shrimp fishery in Denmark Strait/off East Greenland by Greenlandic, Faeroese and Danish trawlers 2005.

Fig. 5c. Thematic mapping of different levels of CPUE in the shrimp fishery in Denmark Strait/off East Greenland by Greenlandic, Faeroese and Danish trawlers 2006 (until October).

Appendix 1. Results and diagnostical outputs from GLM run of model for standardising CPUE in Greenlandic zone. Data from Greenlandic, Faeroese, Norway and EUvessels.


VESSEL 14 YEAR 19 MONTH 5 AREA 2			GGGG НННН IIII JJ3 98 99 101 102 103	J KKKK LLLL MMMM XXXX 104 105 106 111
	Number of Ob	bservations Readbservations Used		
	DF 49 2597 2646 puare Coeff			
Source VESSEL YEAR*AREA MONTH AREA HOLD	DF 13 31 4 0	.4414 2.84 Type I SS 17196.14859 20981.74384 3527.88489 0.00000 40.70726	Mean Square 1322.78066 676.83045 881.97122 40.70726	F Value Pr > F 163.05 <.0001 83.43 <.0001 108.71 <.0001 5.02 0.0252
Source VESSEL YEAR*AREA MONTH AREA HOLD	DF 13 30 4 1	Type III SS 8774.42587 11742.59905 3508.87779 2819.14819 40.70726	Mean Square 674.95584 391.41997 877.21945 2819.14819 40.70726 tandard	F Value Pr > F 83.20 <.0001 48.25 <.0001 108.13 <.0001 347.50 <.0001 5.02 0.0252
Parameter Intercept VESSEL VES	0.490333 0.089641 0.089631 0.11128 0.31576 0.349333 0.838596 0.166666 0.0650566 0.046799 0.94040 0.343538 0.71721 0.71721 0.57697 1.276768 1	mate 2581 B 0.2 27728 B 0.2 27713 B 0.2 255577 B 0.2 35551 B 0.2 7875 B 0.2 7	tandard Error t Value 2875823	Color Colo

Appendix 2. Results and diagnostical outputs from GLM run of model for standardising CPUE in Islandic Zone zone. Data from Icelandic vessel only.

2003 2004 2010 6 1 3 5 8 10 12	1991 1992 1993 1994 3400 3500 3600 3700		98 1999 2000 2001 2002
	of Observations Re of Observations Us		
el or 8	Sum of Squares 30 2464912.001 08 687281.482 3152193.482	Mean Square 82163.733 850.596	F Value Pr > F 96.60 <.0001
R-Square 0. 781967		ot MSE LNCPUE Mea 16498 0.70633	
TH P	DF Type I SS 5 1876847.067 7 264825.858 17 320504.417 1 2734.659	Mean Square 375369. 413 37832. 265 18853. 201 2734. 659	F Value Pr > F 441.30 <.0001 44.48 <.0001 22.16 <.0001 3.21 0.0733
TH P	DF Type III SS 5 213264. 7800 7 206529. 8841 17 321650. 1454 1 2734. 6593	Mean Square 42652.9560 29504.2692 18920.5968 2734.6593	F Value Pr > F 50.14 <.0001 34.69 <.0001 22.24 <.0001 3.21 0.0733
Parameter Intercept	M14 B 0. 17677189 M260 B 0. 34899235 M2729 B 0. 14642095 M28232 B 0. 14508139 M29232 B 0. 14775544 M2000 B 0. 14775544 M2000 B 0. 13011552 M2759 B 0. 08330996 M276 B 0. 08262698 M276 B 0. 08400094 M2782 B 0. 08400094 M2782 B 0. 0840094 M2782 B 0. 07407438 M2782 B 0. 08088950 M2782 B 0. 08088950 M2783 B 0. 08088950 M2784 B 0. 11045958 M2783 B 0. 08403304 M2782 B 0. 08403304 M2782 B 0. 08403304 M2782 B 0. 08403304 M2782 B 0. 17514782 M2782 B 0. 43162545 M2782 B 0. 10446284 M2782 B 0. 12127255 M2782 B 0. 08643273 M2782 B	t Value	1 1 4 9 3 2 1 1 1 1 1 1 1 1 1 1 1 1 7 9 0 6 6 6 6 1 2 7 3 3 4 1 1 9 9 6 6 1 1 9 9 9 9 9 9 9 9 9 9 9 9

Plot of STUDENT*ESTIMATE. Legend: A = 1 obs, B = 2 obs, etc.

