NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Serial No. N5402



**Fisheries Organization** 

NAFO SCR Doc. 07/50

# **SCIENTIFIC COUNCIL MEETING – JUNE 2007**

The Canadian fishery for Greenland halibut in SA 2 + Div. 3KLMNO, with emphasis on 2006.

by

W. B. Brodie, D. Power, and B.P.HealeyScience Branch, Department of Fisheries and OceansP. O. Box 5667, St. John's, Newfoundland, Canada AIC 5X1

#### Abstract

The Canadian catch of Greenland halibut in 2006 in NAFO Subarea 2 and Divisions 3KLMNO was reported to be 6379 tons, about 250 t lower than in 2005. There was a small increase in otter trawl catches, which were taken primarily in Div. 3K. Catches in the shallow water gillnet sector were higher in 2006, but lower in the deep-water gillnet component. As in previous years, much (61%) of the catch in 2006 came from Division 3K, and about 63% of the catch was taken in May, June, and August. The catch at age in 2006 was dominated by the 1998-99 year classes, which accounted for 71% of the catch numbers and 67% of the catch weight in the Canadian fishery. Catches in the deepwater gillnet sector have trended toward younger fish since 2001, particularly with the permitted use of smaller mesh deeper zones in recent years. Mean weights at age in 2006 were similar to previous years. CPUE analysed from logbooks of Canadian trawlers increased by about 50% in 2006, and data collected by observers also indicated sharp increases in both otter trawl and gillnet CPUE.

### **Review of the Canadian fishery**

As reported in several previous documents, the Canadian fishery for Greenland halibut in Subareas 2 and 3 began in the early 1960s, using gillnets in the deepwater bays of eastern Newfoundland, particularly Trinity Bay. As catches declined here, the effort moved progressively northward in the other bays along the east and northeast coast of Newfoundland. In later years, vessels moved further offshore to the deep channels, such as the area in the central part of Div. 3K known as Funk Island Deep, and eventually to the continental slope. Canadian catches increased from fairly low levels in the early 1960s to almost 32,000 tons in 1980 then declined steadily to between 2900 and 6300 tons in each year from 1993-99 (Table 1). This declining trend was mainly a result of low catch rates and reduced effort, as fishers pursued other species such as snow crab which were more profitable. In 2000, the Canadian catches in NAFO Subarea 2 and Divisions 3KLMNO increased to about 10,600 tons, more than two and a half times the catches in 1998 and 1999. However, catches declined by more than 2000 tons from 2000 to 2001, then declined by a similar amount to about 6300 tons in 2002. Since then, catches have mainly been around 6500 tons per year, with the exception of about 4900 t in 2004. Reasons for fluctuations in catch and effort include a switch of some effort by fishers in Divs. 3KL between snow crab and G.halibut due to changes in quotas and product prices, combined with variable catch rates for Greenland halibut in some of the traditional fishing areas (Brodie and Power, 2000).

Canadian catches have been taken mainly by gillnet (Table 1), and most of these gillnet catches are from Div. 3K. This fishery has been conducted mainly by small vessels (<20 m) fishing in the deepwater channels near the Newfoundland and Labrador coast as well as in the deepwater bays, using an average mesh size of about 150 mm. However, Canadian gillnet catches taken during recent years also include those from a substantial fishery along the deep edge of the continental slope. In an attempt to reduce the catch of young Greenland halibut in this deepwater fishery, gillnet mesh size for Greenland halibut in the Canadian zone in depths > 731 m (400 fm) was regulated to be no less than 191 mm, with the exception of Div. 2J. Other restrictions on numbers of nets also exist,

as indicated in the table below, which show the 2006 conservation harvesting plan (CHP) regulations in the Canadian gillnet fishery for Greenland halibut. In 2005 and 2006, but not reflected in the table, fishers in Div. 3K were permitted to use some 152 mm mesh gillnets in waters deeper than 732 m, but these fishers were then not permitted to fish for G. halibut in depths less than 732 m.

| Area      | Depth       | # of Nets | Min. Mesh |
|-----------|-------------|-----------|-----------|
| 2GH + 3L  | 293 - 549 m | 125       | 152 mm    |
| 2GH + 3KL | 549 - 732 m | 200       | 152 mm    |
| 2GH + 3KL | > 732 m     | 500       | 191 mm    |
| 2J        | > 732 m     | 500       | 152 mm    |
| 3NO       | > 732 m     | 500       | 191 mm    |

Gillnet catches during the 1990's ranged from 2400 to 6700 tons, averaging about 4200 tons. Catches in 2000 from this sector then increased to 9300 tons, similar to the levels seen in the late 1980's, but since then have declined to 6400 tons in 2001, and between 2600 and 3900 tons since. Since early-2002, an area in the Funk Island Deep region of Div. 3K (see Fig. 1) was closed to gillnetting in order to reduce by-catch of snow crab, and was partly responsible for the decline in gillnet catch. An area of Hawke Channel has also been closed to fishing for some years, due to crab – shrimp fishing interactions. Both these areas have undergone modifications over time.

Canadian otter trawl catches peaked at about 8,000 tons in 1982, but from 1993 to 1999, catches by this fleet were less than 1050 tons annually. Otter trawl catches increased sharply from less than 90 tons in 1998 and 1999, to around 1800 tons in 2001-02 and 2004, but were double this level at just over 3700 tons in 2003, which is the highest level since 1985 (Table 1). OT catch in 2005 was about 2200 tons. Much of the otter trawl catch in the recent period occurred in the slope area around the boundary between Divs. 3K and 3L, although the increase in 2003 was due to an increase in effort in Div. 2H (Brodie and Power 2004). The 2005 OT catch was split mainly between 2J and 3KL (Table 3d) This fishery is conducted mostly by large vessels (>30 m in length), and minimum codend mesh size has been regulated to be 145 mm for several years.

Catches from Subarea 2 were very low prior to the mid 1970's, then increased to a peak around 9000 tons in 1982 (Table 2). From 1991 to 2001, catches from Subarea 2 have been in the range of 1000 to 2500 tons per year, and were stable around 1300 tons during 1999-2001. The catch in SA 2 increased to almost 3000 tons in 2003, due to higher catches in Div. 2GH, but has since declined. Most of the catch from Subarea 2 has come from Div. 2J, although catches in 1993-96 and 2003-04 were higher in Div. 2GH combined compared to Div. 2J. This was not the case in 2005, when the catch in 2J increased and was over 4 times higher than the 2GH catch. The catch of about 1700 t in 2J in 2005 was the highest from this Division since 1991. The catch in Divs. 2GH declined from the mid-1990's to about 125 tons in 2000, before increasing to near 2200 tons in 2003, which is the highest catch from 2GH since 1983. Catches have since declined again. In most years, Div. 3K has produced the largest Canadian catches, peaking around 18,000 tons in 1979-80. Catches in recent years from Div. 3K have fluctuated between 750 tons (1995) and 5800 tons (2000), with the 2005 value at 3000 tons. Peak catches of around 13,000 tons in Div 3L occurred in 1966-67 and 1980, and averaged about 1700 tons from 2000 to 2005. Catches in Div. 3M , 3N, and 3O combined have generally been in the range of 100 to 600 tons per year, mainly from Div. 3O (Table 2).

#### The Canadian fishery in 2006

There were some differences in the spatial and temporal patterns in the Canadian fishery for G.halibut in 2006 compared to those observed in 2002-05. The total reported catch was just under 6400 tons, about 250 t lower than in 2005, and similar to catches in 2002 and 2003 (Table 3). Catches by gillnet in 2006 were almost 500 t lower than in 2005, with the decrease occurring in the deep-water fleets (Tables 3e and 4). Catches in the shallow water gillnet fleet, and in the otter trawl fleet, both increased in 2006.

Breakdowns of the catch by gear, Division, depth range and month are shown in Tables 3 and 4. As in most years, gillnet was the dominant gear in 2006. In 2004 to 2006 the gillnet catches in the shallow zone (<400 fm) were lower than in the deep zone, contrasting to 2002 and 2003. These gillnet catches are referred to in Tables 3 and 4 as GN<400 and GN>400. Longline catches, which had not exceeded 130 tons per year since the early 1970's, were higher in 2002-2004, but have since declined. Catches in Div. 3K increased to 3900 t in 2006, about 30% higher than in 2005,

and similar to 2001. Catches in Div. 3L in 2006 were similar to 2005, above those of 2003-04. Most of the catches in 2006 occurred in August (mainly gillnet), and March (all otter trawl). The temporal pattern of catch in 2006 was unusual compared to 2005, with only a small amount of catch occurring in July. This was due to creation of a split season in management of the gillnet fishery in 2006, with a substantial portion of the quota not available to be fished until August 1, 2006. Much of the quota in the first season was taken by the end of June, resulting in very low catches in July.

Figs. 1-3 show the location of most of the Canadian catch of Greenland halibut in 2002, 2004, and 2006. These data were aggregated by 10-minute squares from logbook records. In all three years, the plotted data account for over 91% of the total Canadian catch. The spatial distributions of the 3 years were fairly similar (Figs 1-3), with the major difference being the gillnet catches in the north-central part of Div. 3L in 2006, which was also fished in 2005, but to a lesser extent in 2004, and not at all in 2002-03. A major difference from 2002 onward was the reduction in catch from the central 3K (Funk Island Deep) area, due to the area closed to gillnetting (Brodie and Power, 2002). This was noted in previous sections, and is shown in Fig. 1 in Power and Brodie (2006), where the closed area, which was not in the regulations in 2001, was overlaid on the 2001 catch. Fig. 4 shows the location of the 2005 catch by the 4 major gear types (2 gillnet categories, otter trawl, and longline). Most of the otter trawl fishery in 2006 (Figs 4, 7) was located in one main area: around the slope edge at from the border between Divs. 3K and 3L north to about 51 N, similar to the fishery in recent years.. The spatial distribution of the deepwater gillnet fishery in 2006 was similar to recent years, ie. widely distributed along the slope edge, with relatively more effort in Div. 3K. With the closure of the Funk Island Deep area, the shallow water gillnet catches were more concentrated towards the slope area in 3K in 2002-05 compared to 2001 and earlier (eg. Brodie and Power 2006, and earlier docs). In 2006, much of the shallow water GN catches came from northcentral 3L. As noted above, some smaller mesh gillnets have been allowed in Div. 2J and 3K in recent years. In 2006, about 35% of the catch occurred in May-June, although August was the peak month (28%). As noted above, the temporal pattern in 2006 was much different than in recent years, due to a split in the gillnet quotas before and after August 1. Almost no catch was taken in July, which contrasts totally with 2005 when peak catches occurred in July. Also, almost all of the otter trawl catch was taken in February to April in 2006, compared to May to July for the bulk of this fishery in 2005. The reasons for this may have been favorable ice conditions and lower by-catch of species under moratorium in the winter months of 2006.

As in previous years, by-catches were taken in the 2006 Greenland halibut fisheries within Canadian waters. These include rough-head grenadier (94 t), American plaice (68 t), witch flounder (52 t), redfish (49 t), and cod (20 t). Some by-catches of snow crab were also reported, but are not quantified here. By-catches of Greenland halibut in the Canadian shrimp fishery have been described previously (eg. Orr et al. 2002), but have not been updated for this paper. Of the 2886 tons of catch of Greenland halibut documented by fishery observers in 2006, 43 tons were discarded. – both are similar figures to those observed in 2005. A caveat with the set-by-set discard estimates of G. halibut recorded in the shrimp fishery is that any discards < 1 kg are recorded as 1 kg in the database.

## Catch at age

Details on the Canadian catch at age for previous years can be found in Bowering and Brodie (2000), and Brodie and Power (2006; and earlier docs by same authors). Ages 6-8 dominated the Canadian catch in most years, both in the otter trawl and shallow water gillnet fisheries. The catch in the GN>400 fleet has been tending towards smaller fish, as smaller mesh is permitted in deeper areas.

Sampling data collected in 2006 by observers at sea and by port samplers, were available from Divs. 2GJ, 3KL. The following table shows the number of length measurements by Division and gear, and the number of otoliths (in italics).

| 2006             | 2GH   | J   | 3K         |      | 3L   |     |  |
|------------------|-------|-----|------------|------|------|-----|--|
| Gill net < 400   | -     |     | 300        |      | 4070 |     |  |
| Gill net $> 400$ | 2060  | 350 | 4525       | 735  | 450  | 313 |  |
| Longline         | 363   |     | -          |      | -    |     |  |
| Otter/Twin trawl | 0/482 | 181 | 22565/1548 | 621  | -    |     |  |
| Totals           | 2905  | 531 | 28938      | 1356 | 4520 | 313 |  |

The otolith samples from the fixed gear sectors have been combined, as there is a mixture of mesh sizes in the deepwater fisheries in 2J and 3K. The high number of measurements from the otter trawl catch is due to the requirement for these large vessels to have a high percentage of observer coverage. The total number of length measurements in 2006 was 36,363, a decrease of almost 50% from 2005 levels. However all major fleet sectors appeared to be adequately sampled in 2006, and part of the reduction was due to the more concentrated spatial and temporal nature of the fishery in 2006 (eg fewer month/gear/Division cells with large catches). The number of otoliths (2200) was 19% lower than in 2005.

Age compositions are presented for both gillnet components (GN<400 and GN>400) as well as for otter trawl (Table 5). The predominant age in the otter trawl in all areas, and GN <400 sectors was 7 (1999 year class), while age 8 (1998 year class) was most abundant in the catches of deepwater gillnets. Ages 7 and 8 were also dominant in these fisheries in recent years. Overall, the catch at age in 2006 was dominated by the 1998 and 1999 year classes, which accounted for 71% of the catch numbers and 67% of the catch weight. In recent years, the catch at age is becoming dominated more by these 2 ages (7+8). As was the case in 2000 - 2005, age 8 was second highest in the catch numbers, followed by age 6. The catch in the GN>400 fleet has been tending towards smaller fish, as smaller mesh is permitted in deeper areas. For example, only 14% of the catch in numbers by this fleet in 2006 was estimated to be age 10 or older, compared to 80% in 2001 and 72% in 2002. Mean weights at age for all areas were calculated using the same length-weight relationship used for Greenland halibut catch at age in 1998-2005, which was the Divisions-combined, year = 1997 (from Gundersen and Brodie 1999). Weights at age in 2006 were slightly higher, but similar to those from 2005 (Brodie and Power 2006), and the sum of products was about 4.2% lower than the catch weight.

### CPUE

Catch and effort data from the Canadian otter trawl fishery directed for Greenland halibut during the period 1975 to 2002 were obtained from the NAFO STATLANT 21B database and were combined with data from 2003-2006 from Canada (N) logbook (ZIFF) records. The catch/effort data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index based on an hours-fished measure of effort. Ln (CPUE) was the dependent variable in the model. Independent variables (category types) were: (1) a combination country-gear-tonnage-class category type (CGT), (2) month, (3) NAFO Division and (4) Year. Consistent with previous catch rate standardizations (e.g. Power, 2004), individual observations with catch less than 10 tons or effort less than 10 hours were eliminated prior to analysis. Subsequently, within each dependent variable, categories with arbitrarily less than five observations were also eliminated, with the exception of the variable "year", which is the purpose of the standardization. In recent years, there was sufficient data available from the tonnage class 4 trawlers and the tonnage class 7 trawlers utilizing twin trawls for inclusion in the standardization. The twin trawls were introduced in 2003 but have accounted for less than 11% of the otter trawl catch with the exception of 2005 when they took 32%. The advantage of running the Gavaris model is that the derived index is retransformed into the original units of fishing effort and can be computed for any chosen combination of the main factors.

Residual plots did not indicate model misspecification. The model resulted in a significant regression (P < 0.05) explaining 59% of the variation in catch rates (Table 6). Based on the regression coefficients, over the entire time series, catch rates were better in late summer and higher in Div. 2H. The fishing power of the large trawlers is also much higher. The standardized catch rate index (Table 7, Fig. 8) shows much between-year variability. Initial CPUE increased rapidly to 1978, probably as a result of captains learning a relatively new fishery, then showed period of stability from to 1984, during which time the highest catch rates were realized. CPUE declined by about two-thirds from 1984 to 1992 although there were some sporadic increases over this period. The 1992 value was the lowest in the series (excluding the first point in 1976). Between 1992 and 2001 catch rates increased gradually, doubling over this period. Catch rate declined sharply

in 2002, remained stable to 2005 at a level which is marginally higher than the lowest CPUE observed over the 30 year series. CPUE then increased by over 50% in 2006, albeit with very wide confidence limits (Fig. 8). This increase is consistent with that observed in the Spanish fishery in the NRA. The percentage of otter trawl catch with reported hours fished effort utilized in the analysis, after the selection criteria were applied, ranged from 10% in 1976 to 99% in 2000-2002, and averaged 82% since 1995.

CPUE data was also collected by observers on Canadian vessels, independent of the logbook/ZIFF data described above. Otter trawl and gillnet catch rates (unstandardized, all fleets and areas combined) increased sharply in 2006. The data recorded by observers (almost 100% of OT catch of G. halibut) showed that otter trawl CPUE increased by more than double from 2005 to 2006, while gillnet CPUE (catch per net per day) increased by about 50%. It should be noted that there were substantial changes in the gillnet fishery regulations in 2006, which lead to a substantial change in the fishing pattern, and that possible effects on gillnet CPUE in 2006 are unknown.

#### References

Bowering, W. R., and W. B. Brodie. 2000. Calculation of catch-at-age for commercially caught Greenland halibut in NAFO Subarea 2 and Divisions 3KLMNO during 1975-99 with particular emphasis on construction of the catch-at-age matrix since 1989. NAFO SCR Doc. 00/24.

Brodie, W. B. and D. Power. 2001. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2000. NAFO SCR Doc. 01/65, Ser. No. N4443, 13 p.

Brodie, W. B. and D. Power. 2002. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2001. NAFO SCR Doc. 02/39, Ser. No. N4650, 12 p.

Brodie, W. B. and D. Power. 2003. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2002. NAFO SCR Doc. 03/36, Ser. No. N4854, 14 p.

Brodie, W. B. and D. Power. 2004. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2003. NAFO SCR Doc. 04/33, Ser. No. N4983, 14p.

Brodie, W. B. and D. Power. 2005. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2004. NAFO SCR Doc. 05/62, Ser. No. N5148, 16p.

Brodie, W. B. and D. Power. 2006. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2005. NAFO SCR Doc. 06/47, Ser. No. N5273, 19p.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.

Gundersen, A.C. and W.B.Brodie. 1999. Length-weight relationships of Greenland halibut in NAFO Divisions 2GHJ and 3KLMNO, 1990-97. NAFO SCR Doc. 99/31, Ser. No. N4087.

Orr, D.C., P. Veitch, and D. Sullivan. 2002. An update of information pertaining to northern shrimp (*Pandalus borealis* Kroyer) and groundfish in NAFO Divisions 3LNO. NAFO SCR Doc. 02/160, Ser. No. N4789, 55 p.



Fig. 1. Distribution of Can(N) Greenland halibut catch (tons) from the 2002 commercial fishery. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10-minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Also shown is the area in Div. 3K closed to GILLNETs since early 2002 due to snow crab bycatch

40002 21 cat 2030 ACN



Fig. 2. Distribution of Can(N) Greenland halibut catch (tons) from the 2004 commercial fishery. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10-minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Also shown is the area in Div. 3K closed to GILLNETs since early 2002 due to snow crab bycatch

50°

ЗN

48°

gh2004 zf cat 2g3o.ACN

46°

44°

42°

42°

38°

40°

30

52°

54°

42°

60°

58°

56°



Fig. 3. Distribution of Can(N) Greenland halibut catch (tons) from the 2006 commercial fishery. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10-minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Also shown is the area in Div. 3K closed to GILLNETs since early 2002 due to snow crab bycatch

gh2006 zf cat 2g3o.ACN



Fig. 4. Distribution of Can(N) Greenland halibut catch (tons) from the 2006 commercial fishery. Represented is LONGLINE, GILLNET (<400 fathoms and >400 fathoms) and OTTER TRAWL from both directed and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

ah2006 zi cat bygear.ACN

9



Fig. 5. Distribution of Can(N) Greenland halibut catch (tons) from the 2006 commercial fishery. Represented is GILLNET (<400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

ah2006 zf cat GNLE400.ACN

11



Fig. 6. Distribution of Can(N) Greenland halibut catch (tons) from the 2006 commercial fishery. Represented is GILLNET (>400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.



Fig. 7. Distribution of Can(N) Greenland halibut catch (tons) from the 2006 commercial fishery. Represented is OTTER TRAWL catch for various months from directed fisheries and by-catch from other fisheries. The data are aggregated by 10-minute square for Div. 2J3KL where position was recorded on the logbook.

oh200 zfcat OT.ACN



Fig. 8. Standardized Mean CPUE  $\pm$  2 standard errors for Greenland Halibut in Div. 2HJ3KL utilizing effort in HOURS fished from the CANADIAN OTTERTRAWL FLEET.

|      |         |          | GEAR |       |          | Canada |
|------|---------|----------|------|-------|----------|--------|
| YEAR | GILLNET | LONGLINE | MISC | UNSP  | OT TRAWL | TOTAL  |
| 1960 |         |          |      | 660   |          | 660    |
| 1961 |         |          |      | 741   |          | 741    |
| 1962 |         |          |      | 586   |          | 586    |
| 1963 |         | 5        |      | 771   |          | 776    |
| 1964 |         |          |      | 1757  |          | 1757   |
| 1965 |         |          |      | 8082  |          | 8082   |
| 1966 | 257     | 194      | 15   | 15640 | 120      | 16226  |
| 1967 | 93      | 144      | 95   | 15478 | 798      | 16608  |
| 1968 |         | 94       |      | 12766 | 493      | 13353  |
| 1969 | 9980    | 850      | 69   | 412   | 245      | 11556  |
| 1970 | 9818    | 371      | 119  | 318   | 85       | 10711  |
| 1971 | 8947    | 153      | 55   | 180   | 75       | 9410   |
| 1972 | 8775    | 34       | 22   | 50    | 71       | 8952   |
| 1973 | 6546    | 35       | 70   | 102   | 95       | 6848   |
| 1974 | 5500    | 49       | 16   | 8     | 184      | 5757   |
| 1975 | 7510    | 3        | 53   | 1     | 247      | 7814   |
| 1976 | 8500    | 6        | 41   |       | 767      | 9314   |
| 1977 | 15038   | 33       | 36   |       | 2866     | 17973  |
| 1978 | 20622   | 46       | 83   |       | 3951     | 24702  |
| 1979 | 24550   | 116      | 116  |       | 5183     | 29965  |
| 1980 | 27703   | 128      | 57   |       | 3946     | 31834  |
| 1981 | 17927   | 55       | 43   |       | 6155     | 24180  |
| 1982 | 11038   | 69       | 59   |       | 8143     | 19309  |
| 1983 | 9911    | 58       | 73   |       | 7085     | 17127  |
| 1984 | 11100   | 27       | 100  |       | 6070     | 17297  |
| 1985 | 7422    | 2        | 42   |       | 4847     | 12313  |
| 1986 | 6293    | 7        | 20   |       | 1896     | 8216   |
| 1987 | 10849   | 22       | 115  |       | 2465     | 13451  |
| 1988 | 7715    | 70       | 53   |       | 629      | 8467   |
| 1989 | 10956   | 16       | 35   |       | 988      | 11995  |
| 1990 | 6732    | 18       | 15   |       | 2402     | 9167   |
| 1991 | 3440    | 36       | 9    |       | 3254     | 6739   |
| 1992 | 4470    | 30       | 1    |       | 2502     | 7003   |
| 1993 | 3863    | 4        | 5    |       | 1034     | 4906   |
| 1994 | 2378    |          |      |       | 575      | 2953   |
| 1995 | 2602    | 1        |      |       | 632      | 3235   |
| 1996 | 5134    | 1        |      | 1     | 1043     | 6179   |
| 1997 | 5202    | 61       |      |       | 1017     | 6280   |
| 1998 | 3963    | 108      | 4    |       | 46       | 4121   |
| 1999 | 3870    | 65       |      |       | 81       | 4016   |
| 2000 | 9271    | 18       | 5    | 14    | 1285     | 10593  |
| 2001 | 6395    | 123      | 14   |       | 1833     | 8365   |
| 2002 | 3854    | 652      |      |       | 1784     | 6290   |
| 2003 | 2668    | 596      |      |       | 3710     | 6974   |
| 2004 | 2634    | 403      |      |       | 1832     | 4869   |
| 2005 | 4317    | 101      | 1    |       | 2218     | 6637   |
| 2006 | 3848    | 175      |      |       | 2356     | 6379   |
|      |         |          |      |       |          |        |

Table 1. Canadian catch of G.halibut, by gear type, from 1960-2006.

|      |      |      |      |      |       | DIVIS | ION |    |     | Canada |
|------|------|------|------|------|-------|-------|-----|----|-----|--------|
| YEAR | 2G   | 2H   | 2J   | SA 2 | 3K    | 3L    | 3M  | 3N | 30  | TOTAL  |
| 1960 |      |      |      |      | 610   | 50    |     |    |     | 660    |
| 1961 |      |      |      |      | 613   | 128   |     |    |     | 741    |
| 1962 |      |      |      |      | 479   | 107   |     |    |     | 586    |
| 1963 |      |      |      |      | 592   | 184   |     |    |     | 776    |
| 1964 |      |      |      |      | 870   | 887   |     |    |     | 1757   |
| 1965 |      |      |      |      | 2129  | 5953  |     |    |     | 8082   |
| 1966 |      |      |      |      | 3691  | 12518 |     | 17 |     | 16226  |
| 1967 |      |      | 7    | 7    | 2892  | 13705 |     | 1  | 3   | 16608  |
| 1968 |      |      | 53   | 53   | 3672  | 9597  |     | 31 |     | 13353  |
| 1969 |      |      |      | 0    | 7140  | 4413  |     | 1  | 2   | 11556  |
| 1970 |      |      |      | 0    | 5937  | 4769  |     | 5  |     | 10711  |
| 1971 |      |      |      | 0    | 4160  | 5248  |     | 2  |     | 9410   |
| 1972 |      |      |      | 0    | 4736  | 4216  |     |    |     | 8952   |
| 1973 |      |      | 5    | 5    | 3602  | 3233  |     | 1  | 7   | 6848   |
| 1974 |      |      | 19   | 19   | 2817  | 2909  |     | 9  | 3   | 5757   |
| 1975 |      |      | 22   | 22   | 3245  | 4540  |     | 7  |     | 7814   |
| 1976 | 62   | 168  | 153  | 383  | 4779  | 4144  | 1   | 7  |     | 9314   |
| 1977 |      | 72   | 419  | 491  | 10751 | 6725  | 1   | 2  | 3   | 17973  |
| 1978 |      | 14   | 1255 | 1269 | 15875 | 7548  | 1   | 5  | 4   | 24702  |
| 1979 |      | 34   | 3163 | 3197 | 18165 | 8578  | 2   | 17 | 6   | 29965  |
| 1980 |      | 217  | 1157 | 1374 | 17658 | 12742 | 14  | 43 | 3   | 31834  |
| 1981 | 10   | 41   | 862  | 913  | 14379 | 8833  |     | 49 | 6   | 24180  |
| 1982 | 15   | 5155 | 3942 | 9112 | 6031  | 4105  |     | 55 | 6   | 19309  |
| 1983 |      | 2578 | 2238 | 4816 | 7679  | 4618  |     | 12 | 2   | 17127  |
| 1984 |      | 1913 | 2796 | 4709 | 7496  | 5078  |     | 12 | 2   | 17297  |
| 1985 |      | 1758 | 3101 | 4859 | 4395  | 3023  |     | 35 | 1   | 12313  |
| 1986 |      | 82   | 2476 | 2558 | 2886  | 2769  |     | 2  | 1   | 8216   |
| 1987 |      | 6    | 4143 | 4149 | 4740  | 4561  |     | 1  |     | 13451  |
| 1988 | 45   | 27   | 1867 | 1939 | 4591  | 1921  | 2   | 12 | 2   | 8467   |
| 1989 |      | 190  | 2635 | 2825 | 6342  | 2809  | 6   | 10 | 3   | 11995  |
| 1990 | 57   | 171  | 2798 | 3026 | 4075  | 2020  | 38  | 4  | 4   | 9167   |
| 1991 |      | 50   | 3008 | 3058 | 2215  | 1291  | 157 | 11 | 7   | 6739   |
| 1992 | 428  | 230  | 476  | 1134 | 3882  | 1951  | 4   | 10 | 22  | 7003   |
| 1993 | 557  | 403  | 214  | 1174 | 2398  | 880   |     | 19 | 435 | 4906   |
| 1994 | 1045 | 210  | 203  | 1458 | 1032  | 258   |     | 1  | 204 | 2953   |
| 1995 | 1006 | 453  | 709  | 2168 | 754   | 197   |     |    | 116 | 3235   |
| 1996 | 688  | 639  | 1058 | 2385 | 2567  | 888   |     |    | 339 | 6179   |
| 1997 | 370  | 619  | 1513 | 2502 | 2659  | 935   |     |    | 184 | 6280   |
| 1998 | 358  | 418  | 1234 | 2010 | 1374  | 633   |     | 1  | 103 | 4121   |
| 1999 | 65   | 103  | 1094 | 1262 | 1940  | 683   |     |    | 131 | 4016   |
| 2000 | 45   | 81   | 1152 | 1278 | 5845  | 2901  | 1   | 1  | 567 | 10593  |
| 2001 | 63   | 251  | 1030 | 1344 | 3999  | 2666  |     | 9  | 347 | 8365   |
| 2002 | 374  | 360  | 1030 | 1764 | 2933  | 1466  | 15  |    | 112 | 6290   |
| 2003 | 258  | 1897 | 730  | 2885 | 2873  | 964   |     |    | 252 | 6974   |
| 2004 | 147  | 1050 | 891  | 2088 | 1844  | 794   |     | 1  | 142 | 4869   |
| 2005 | 39   | 378  | 1717 | 2134 | 3006  | 1379  |     | 3  | 115 | 6637   |
| 2006 | 102  | 402  | 499  | 1003 | 3904  | 1438  |     |    | 34  | 6379   |

Table 2. Canadian catch of G.halibut, by Division, from 1960-2006.

|       | GN <400 | GN >400 | Longline | Otter trawl | Can (N) |
|-------|---------|---------|----------|-------------|---------|
|       |         |         |          |             |         |
| 2GH   | 154     | 7       | 573      |             | 734     |
| 2J    | 389     | 597     | 9        | 35          | 1030    |
| 3K    | 1304    | 830     | 28       | 771         | 2933    |
| 3L    | 56      | 424     | 8        | 978         | 1466    |
| 3MO   | 93      |         | 34       |             | 127     |
| Total | 1996    | 1858    | 652      | 1784        | 6290    |

Table 3a. Summary of Canadian catches of G.halibut in 2002 by area and gear.

Table 3c. Summary of Canadian catches of G.halibut in 2004 by area and gear.

|       | GN <400 | GN >400 | Longline | Longline Otter trawl |      |
|-------|---------|---------|----------|----------------------|------|
|       |         |         |          |                      |      |
| 2G    |         |         | 144      | 3                    | 147  |
| 2H    | 52      |         | 131      | 867                  | 1050 |
| 2J    | 262     | 533     |          | 96                   | 891  |
| 3K    | 173     | 1231    | 38       | 402                  | 1844 |
| 3L    | 208     | 116     | 6        | 464                  | 794  |
| 3N    |         |         | 1        |                      | 1    |
| 30    |         | 59      | 83       |                      | 142  |
| Total | 695     | 1939    | 403      | 1832                 | 4869 |

Table 3e. Summary of Canadian catches of G.halibut in 2006 by area and gear.

|       | GN <400 | GN >400 | Longline | Otter trawl | Total Can |
|-------|---------|---------|----------|-------------|-----------|
|       |         |         |          |             |           |
| 2G    |         |         | 102      |             | 102       |
| 2H    | 200     | 134     | 51       | 17          | 402       |
| 2J    | 52      | 370     | 5        | 72          | 499       |
| 3K    | 292     | 1373    | 5        | 2234        | 3904      |
| 3L    | 1299    | 133     | 2        | 4           | 1438      |
| 30    |         | 24      | 10       |             | 34        |
| Total | 1843    | 2034    | 175      | 2327        | 6379      |

Table 3b. Summary of Canadian catches of G.halibut in 2003 by area and gear.

| J     | GN <400 | GN >400 | Longline | Otter trawl | Total Can |
|-------|---------|---------|----------|-------------|-----------|
|       |         |         |          |             |           |
| 2G    |         |         | 253      | 5           | 258       |
| 2H    |         | 52      | 160      | 1685        | 1897      |
| 2J    | 263     | 271     |          | 196         | 730       |
| 3K    | 1462    | 539     | 2        | 870         | 2873      |
| 3L    | 5       |         | 5        | 954         | 964       |
| 30    |         | 76      | 176      |             | 252       |
| Total | 1730    | 938     | 596      | 3710        | 6974      |
|       |         |         |          |             |           |

Table 3d. Summary of Canadian catches of G.halibut in 2005 by area and gear.

|       | GN <400 | GN >400 | Longline | Otter trawl | Total Can |
|-------|---------|---------|----------|-------------|-----------|
|       |         |         |          |             |           |
| 2G    |         |         | 39       |             | 39        |
| 2H    | 50      | 286     | 41       | 1           | 378       |
| 2J    | 10      | 767     |          | 940         | 1717      |
| 3K    | 446     | 1441    |          | 1119        | 3006      |
| 3L    | 1002    | 220     | 2        | 155         | 1379      |
| 3N    |         | 3       |          |             | 3         |
| 30    |         | 93      | 19       | 3           | 115       |
| Total | 1508    | 2810    | 101      | 2218        | 6637      |

|     |                                       | Jan | Feb | Mar  | Apr | May  | Jun       | Jul     | Aug        | Sep            | Oct | Nov | Dec | Total            |
|-----|---------------------------------------|-----|-----|------|-----|------|-----------|---------|------------|----------------|-----|-----|-----|------------------|
| 2GH | GN<400 fm<br>GN>400 fm<br>Otter trawl |     |     |      |     |      |           | 15<br>5 | 141<br>107 | 44<br>22<br>17 |     |     |     | 200<br>134<br>17 |
|     | Longline                              |     |     |      |     |      |           | 8       | 105        | 40             |     |     |     | 153              |
|     | Total                                 |     |     |      |     |      |           | 28      | 353        | 123            |     |     |     | 504              |
| 2J  | GN<400 fm<br>GN>400 fm                |     |     |      |     | 236  | 14<br>134 |         | 38         |                |     |     |     | 52<br>370        |
|     | Otter Trawl                           |     |     |      | 45  |      |           |         |            | 27             |     |     |     | 72               |
|     |                                       |     |     |      | 45  | 000  | 5         |         |            | 07             |     |     |     | 5                |
|     | lotal                                 |     |     |      | 45  | 236  | 153       |         | 38         | 27             |     |     |     | 499              |
|     | GN<400 fm                             |     |     |      |     | 95   | 135       | 8       | 52         | 2              |     |     |     | 292              |
| 3K  | GN>400 fm                             |     |     |      | 29  | 640  | 597       | 28      | 28         | 51             |     |     |     | 1373             |
|     | Otter Trawl                           |     | 156 | 1360 | 323 | 175  | 83        | 14      | 4          | 10             |     |     | 109 | 2234             |
|     | Longline                              |     |     |      |     |      | 5         |         |            |                |     |     |     | 5                |
|     | Total                                 |     | 156 | 1360 | 352 | 910  | 820       | 50      | 84         | 63             |     |     | 109 | 3904             |
|     |                                       |     |     |      |     |      |           |         |            |                |     |     |     |                  |
|     | GN<400 fm                             |     |     |      |     |      | 32        |         | 1266       | 1              |     |     |     | 1299             |
|     | GN>400 fm                             |     |     |      |     | 13   | 80        |         | 40         |                |     |     |     | 133              |
| 3L  | Otter Trawl                           |     | 4   |      |     |      |           |         |            |                |     |     |     | 4                |
|     | Longline                              |     |     |      |     | 1    | 1         |         |            |                |     |     |     | 2                |
|     | Total                                 |     | 4   |      |     | 14   | 113       |         | 1306       | 1              |     |     |     | 1438             |
|     |                                       |     |     |      |     |      |           |         |            |                |     |     |     |                  |
|     | Gillnet                               | 1   |     |      |     |      | 16        |         | 7          |                |     |     |     | 24               |
| 3NO | Longline                              | 6   | 3   |      |     |      |           | 1       |            |                |     |     |     | 10               |
|     | Iotal                                 | 7   | 3   |      |     |      | 16        | 1       | 7          |                |     |     |     | 34               |
|     | TOTAL                                 |     | 100 | 1000 |     |      | 1100      |         | (700       |                |     |     | 105 |                  |
|     | IUIAL                                 | 7   | 163 | 1360 | 397 | 1160 | 1102      | 79      | 1788       | 214            |     |     | 109 | 6379             |

Table 4. Breakdown of Canadian catches of G.halibut in SA 2 + Div 3KLMNO in 2006 by area, gear, and month.

Table 5. Catch at age for the Canadian catch of G.halibut in SA 2 + Div. 3KLMNO in 2006.

Catch at age in thousands of fish. See text for definition of GN gear types.

Asterisk represents catch of less than 500 fish. SOP is catch number x mean wgt

|     |          | Gear     |        |        | Mean   |         |          |          |          |
|-----|----------|----------|--------|--------|--------|---------|----------|----------|----------|
| Age | OT trawl | Longline | GN<400 | GN>400 | Total  | Pct     | Len (cm) | Wgt (kg) | S.O.P(t) |
| 3   | *        |          |        |        | 0.3    | 0.005%  | 25.4     | 0.125    | 0.0      |
| 4   | 23       |          |        |        | 23     | 0.37%   | 32.4     | 0.269    | 6.2      |
| 5   | 243      |          | 3      | 1      | 246    | 3.92%   | 37.0     | 0.414    | 101.8    |
| 6   | 802      | *        | 129    | 22     | 954    | 15.20%  | 42.0     | 0.613    | 584.8    |
| 7   | 1397     | 2        | 1013   | 489    | 2901   | 46.24%  | 46.6     | 0.853    | 2474.6   |
| 8   | 326      | 8        | 668    | 577    | 1578   | 25.15%  | 50.8     | 1.120    | 1767.4   |
| 9   | 63       | 11       | 54     | 179    | 307    | 4.89%   | 56.2     | 1.540    | 472.8    |
| 10  | 15       | 11       | 8      | 93     | 127    | 2.02%   | 60.7     | 1.959    | 248.8    |
| 11  | 5        | 8        |        | 49     | 62     | 0.99%   | 65.9     | 2.534    | 157.1    |
| 12  | 2        | 4        |        | 23     | 29     | 0.46%   | 70.7     | 3.170    | 91.9     |
| 13  | 1        | 5        |        | 14     | 20     | 0.32%   | 75.0     | 3.825    | 76.5     |
| 14  | 1        | 3        |        | 14     | 18     | 0.29%   | 78.1     | 4.341    | 78.1     |
| 15  |          | 1        |        | 3      | 5      | 0.08%   | 83.1     | 5.266    | 26.3     |
| 16  |          | 1        |        | 2      | 3      | 0.05%   | 87.7     | 6.242    | 18.7     |
| 17  |          | *        |        | 1      | 1      | 0.02%   | 89.6     | 6.712    | 6.7      |
| 18  |          | *        |        |        | 0.1    | 0.002%  | 91.0     | 6.977    | 0.7      |
| 19  |          |          |        |        |        |         |          |          |          |
| -   | 2878     | 54       | 1875   | 1467   | 6274.4 | 100.00% |          |          | 6112     |

Catch 6379

Table 6. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized CPUE index for Greenland halibut in NAFO Div. 2HJ3KL. Analysis is based on HOURS FISHED from the Canadian ottertrawl fleet (2006 based on preliminary data).

| REGRESSION<br>MULTIPLE R.<br>MULTIPLE R                                    | OF MUL                                                                         | TI PLI (<br><br>D                                                          | CATIVE I<br>0<br>0                                                                                                      | MODEL<br>. 771<br>. 594                                                                                            |                                                                                                                                            |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ANALYSIS OF                                                                | VARIA                                                                          | NCE                                                                        |                                                                                                                         |                                                                                                                    |                                                                                                                                            |
| SOURCE OF<br>VARI ATI ON                                                   | DF                                                                             | SUMS<br>SQUAR                                                              | DF<br>ES                                                                                                                | MEAN<br>SQUARE                                                                                                     | F-VALUE                                                                                                                                    |
| I NTERCEPT<br>REGRESSI ON<br>Cntry Gear TC<br>Month<br>Di vi si on<br>Year | 1<br>50<br>6<br>11<br>3<br>30                                                  | 2. 70<br>6. 70<br>7. 86<br>3. 01<br>2. 69<br>2. 91                         | E2<br>E1<br>E0<br>E0<br>E0<br>E1                                                                                        | 2. 70E2<br>1. 34E0<br>1. 31E0<br>2. 73E-1<br>8. 98E-1<br>9. 68E-1                                                  | 8. 091<br>7. 906<br>1. 651<br>5. 422<br>5. 848                                                                                             |
| RESI DUALS<br>TOTAL                                                        | 276<br>327                                                                     | 4. 57<br>3. 83                                                             | E1<br>E2                                                                                                                | 1. 66E-1                                                                                                           |                                                                                                                                            |
| REGRES                                                                     | SION C                                                                         | OEFFI                                                                      | CIENTS                                                                                                                  |                                                                                                                    |                                                                                                                                            |
| CATEGORY                                                                   | CODE                                                                           | VAR<br>#                                                                   | REG.<br>COEF                                                                                                            | STD.<br>ERR                                                                                                        | NO.<br>OBS                                                                                                                                 |
| Cntry Gear TC<br>Month                                                     | 3125<br>9                                                                      | INT                                                                        | -1. 209                                                                                                                 | 0. 305                                                                                                             | 327                                                                                                                                        |
| Di vi si on                                                                | 22                                                                             |                                                                            |                                                                                                                         |                                                                                                                    |                                                                                                                                            |
| Year                                                                       | 76                                                                             |                                                                            |                                                                                                                         |                                                                                                                    |                                                                                                                                            |
| 1                                                                          | 3123<br>3124<br>3126                                                           | 1<br>2<br>3                                                                | -0. 23<br>-0. 15<br>0. 01                                                                                               | 3 0. 14<br>8 0. 19<br>6 0. 13                                                                                      | 10 11<br>98 5<br>34 13                                                                                                                     |
| 2                                                                          | 3127<br>3857<br>27125<br>1<br>2<br>3<br>4<br>5<br>6                            | 4<br>5<br>7<br>8<br>9<br>10<br>11<br>12                                    | 0. 72<br>0. 74<br>0. 13<br>-0. 07<br>0. 04<br>-0. 24<br>-0. 14<br>0. 06<br>0. 06                                        | 2 0.13   8 0.15   8 0.09   2 0.15   0 0.14   0 0.12   4 0.11   3 0.10                                              | 30 23   58 11   29 25   50 11   46 13   29 19   15 29   13 28   04 36                                                                      |
| 3<br>4                                                                     | 7<br>8<br>10<br>11<br>12<br>23<br>31<br>32<br>77<br>78<br>79<br>80<br>81<br>82 | 13<br>14<br>15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>24<br>25 | -0. 02<br>0. 13<br>-0. 14<br>-0. 21<br>-0. 03<br>-0. 32<br>-0. 32<br>0. 28<br>0. 86<br>0. 89<br>1. 04<br>0. 92<br>0. 93 | 6 0.09   4 0.08   3 0.11   0 0.13   2 0.13   3 0.08   4 0.08   4 0.08   9 0.12   9 0.33   1 0.37   2 0.31   1 0.32 | 30   16     38   47     19   20     37   14     30   16     35   85     39   136     15   5     32   8     38   13     20   14     20   14 |
|                                                                            | 83<br>84<br>85<br>86                                                           | 20<br>27<br>28<br>29<br>30                                                 | 0.93<br>0.93<br>1.07<br>0.60<br>0.38                                                                                    | 7 0.32   3 0.31   6 0.31   3 0.31   6 0.31   6 0.33                                                                | 13 10<br>12 18<br>18 12<br>18 13<br>18 8                                                                                                   |

| CATEGORY | CODE | VAR<br># | REG.<br>COEF                                                                                                                | STI<br>ERI                                                                                                     | d. No.<br>R <u>obs</u>                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          |                                                                                                         |
|----------|------|----------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|          |      | 4        | 87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106 | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 | $\begin{array}{c} 0.\ 822\\ 0.\ 060\\ 0.\ 529\\ 0.\ 488\\ 0.\ 143\\ 0.\ 021\\ 0.\ 131\\ 0.\ 203\\ 0.\ 359\\ 0.\ 217\\ 0.\ 585\\ 0.\ 404\\ 0.\ 326\\ 0.\ 486\\ 0.\ 692\\ 0.\ 278\\ 0.\ 173\\ 0.\ 195\\ 0.\ 220\\ 0.\ 738\\ \end{array}$ | $\begin{array}{c} 0. \ 347\\ 0. \ 361\\ 0. \ 339\\ 0. \ 318\\ 0. \ 313\\ 0. \ 312\\ 0. \ 322\\ 0. \ 361\\ 0. \ 414\\ 0. \ 330\\ 0. \ 334\\ 0. \ 415\\ 0. \ 328\\ 0. \ 315\\ 0. \ 328\\ 0. \ 315\\ 0. \ 322\\ 0. \ 307\\ 0. \ 317\\ 0. \ 339 \end{array}$ | 5<br>46<br>12<br>16<br>200<br>15<br>4<br>2<br>8<br>7<br>2<br>2<br>9<br>17<br>11<br>28<br>20<br>23<br>10 |
|          |      |          |                                                                                                                             |                                                                                                                |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |                                                                                                         |

| LEGEND FOR ANOVA RESULTS:          |                  |      |  |  |  |  |  |  |
|------------------------------------|------------------|------|--|--|--|--|--|--|
| CGT CODES: All are Stern Trawlers  |                  |      |  |  |  |  |  |  |
| 3123 = Can(NFLD)                   | Otter Trawl      | TC 3 |  |  |  |  |  |  |
| 3124 = "                           |                  | TC 4 |  |  |  |  |  |  |
| 3125 = "                           |                  | TC 5 |  |  |  |  |  |  |
| 3126 = "                           | "                | TC 6 |  |  |  |  |  |  |
| 3127 = "                           | "                | TC 7 |  |  |  |  |  |  |
| 3857 = "                           | Twin Otter Trawl | TC 7 |  |  |  |  |  |  |
| 27125 = Can(M)                     | Otter Trawl      | TC 5 |  |  |  |  |  |  |
| DI VI SI ON CODES:                 |                  |      |  |  |  |  |  |  |
| 22 = 2H, 23 = 2J, 31 = 3K, 32 = 3L |                  |      |  |  |  |  |  |  |

Table 7. Standardized CPUE for Greenland halibut in NAFO 2HJ3KL based on a multiplicative model based utilizing HOURS FISHED as a measure of effort. Results are from the CANADIAN OTTERTRAWL fleet (2006 based on preliminary data).

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.186