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Abstract 
Non-parametric bootstrap is applied to XSA (Extended Survivors Analysis) estimates from the 2006 NAFO 
assessment of the 2+3KLMNO Greenland halibut stock.  Analyses are carried out within the FLR (Fisheries 
Libraries in R) environment.  We found that XSA estimates using FLR are identical to those using the standard 
Lowestoft Assessment Suite, but that the standard errors and scaled weights of indices are different.  This may 
indicate that further work is required with regard to the XSA code within FLR.  The means and the medians from 
the bootstrap distributions are close to the XSA point estimates for ages up to age 7.  For ages 8 to 10, the XSA 
point estimates are lower than the bootstrap means and medians, but this is reversed for ages 11 to 14.  The degree 
of shrinkage has a major effect on the point estimates, whereas the bootstrap estimates are relatively robust.  With 
less shrinkage, the point estimates for ages 8-10 decrease whereas those for ages 11 to 14 increase.  This sensitivity 
to shrinkage is of concern and needs to be investigated further.  The internal standard errors from the XSA greatly 
underestimate CV for the older ages (>10) relative to the bootstrap estimates, most likely due to shrinkage applied in 
the formulation of the model.  Bootstrap estimates indicate that XSA bias is low up to and including age 7, but ages 
8-10 have large positive bias and ages 11-14 have large negative bias.  This distinct pattern of bias by age needs to 
be examined more closely to determine causes.  Trying to correct such large biases using the bootstrap bias 
correction percentile technique would not seem to be appropriate.  Efforts should rather be focused on improving the 
efficiency of the XSA estimator with respect to the application to Greenland halibut.      
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Introduction 
 

Greenland halibut in NAFO Subarea 2 + Divisions 3KLMNO is one of the last significant commercial 
groundfish stocks on the Grand Banks and it is important that the NAFO Fisheries Commission consider the risk 
associated with alternative management strategies.  One of the major sources of uncertainty in the provision of 
scientific advice is the uncertainty associated with the estimates of survivors in year t, based on data up to year t-1, 
used to provide TAC advice for year t+1.  For a number of years the annual assessment has been based on Extended 
Survivors Analysis (XSA; Shepherd, 1999) fitted within the Lowestoft assessment suite (Darby and Flatman, 1994).  
In the 2003 assessment Darby et al. (2003) applied a nonparametric bootstrap procedure to generate 1 000 fits of the 
model to the survey data in order to estimate uncertainty in the XSA parameter estimates and computed time series.  
The residuals of log catchability from the fitted model were sampled independently for each age, with replacement, 
and new survey indices were computed for each year and age. The XSA model was re-fitted to the new survey 
indices and new population and exploitation parameters estimated. Bias corrected percentiles were generated for 
each parameter and the population time series.  The nonparametric bootstrap seems a reasonable approach for 
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quantifying the uncertainty, particularly in the case of XSA which is a non-statistical approach to model fitting.  It is 
also useful for examining the bias in estimates and, where necessary, applying bias-correction.   

 
Although nonparametric bootstrap estimates were used in the 2003 and 2004 assessments, this approach 

was dropped for 2005 and 2006 in favor of internal standard errors computed within XSA by the Lowestoft 
assessment suite (e.g. Healey and Mahé, 2006).  Since XSA does not formally involve a statistical fitting procedure, 
it is not immediately clear to most fisheries scientists how the internal standard errors are computed and whether or 
not they represent a valid estimate of uncertainty in the estimates.  Further, no covariance in the estimates is 
provided.  We support a return to the nonparametric bootstrap approach to provide bias corrected estimates of 
survivors as well as confidence intervals for the Greenland halibut stock assessment.  We also support the use of 
bootstrap samples for stochastic projections of the stock under alternative management options once bias correction 
problems are resolved.   

 
A new stock assessment environment, Fisheries Libraries in R, or  FLR (http://flr-project.org ), has been 

developed in order to provide an integrated suite of software that allows data exploration, conditioning of models 
(the estimation of parameters consistent with the data and hypotheses about how these were generated), 
implementation of stock assessments  (e.g. methods for stock assessments and forecasts) and the testing of 
management strategies and economic impact assessments, all within a common environment.  FLR allows XSA to 
be carried out with enhanced features useful in management strategy evaluation (MSE).  However, at the present 
time no bootstrap component has been written for XSA within FLR.  In this paper we provide the R-code and results 
for a bootstrap application to the 2006 Greenland halibut assessment data.  We compare our results with those 
obtained in the 2006 assessment.  To support the use of the nonparametric bootstrap procedure, we provide a 
description of how the method is applied and the interpretation of results.  This was lacking in the previous 
application to the Greenland halibut stock.  Our approach also differs somewhat from Darby et al. (2003) in that 
they resampled residuals within age whereas we examine the effect of different methods of resampling residuals: 
across ages and years under the assumption that the residuals are independent and identically distributed (i.i.d.), 
standardizing residuals and then resampling across ages and years, and resampling within age and year.   
 
 

Methods 
 

Extended Survivors Analysis 
 
The inputs for the XSA-bootstrap analysis were identical to those used in the 2006 assessment by Healey and Mahé, 
(2006).  Catch numbers at age obtained from Canadian age-length keys for 1975-2005 were used.  Catch weights-at-
age are computed as weighted means of the values from national sampling (in Healey and Mahé, 2006; Tables 2 and 
3 respectively). 
 
Data from three surveys were available as age disaggregated indices of population abundance (mean numbers per 
tow, MNPT): 

1. EU 3M - a European Union summer survey in Div. 3M from 1995-2005, ages 1-12 (González Troncoso et 
al., 2006). 

2. Can 2J+3K autumn survey, true Campelen data from 1996-2005, ages 1 to 14 (Healey et al., 2006). 
3. Can 3LNO spring survey, true Campelen data from 1996-2005, ages 1 to 8 (Healey et al., 2006). 

 
The XSA model was fitted using the FLXSA component of FLR.  The XSA settings (FLXSA control group) are 
presented in Table 1.  Survivors on 1 January 2006 (i.e. in the terminal year), 5+ (exploitable biomass), 10+ (as a 
proxy for spawner biomass), recruitment (numbers at age 1) and the mean fishing mortality (F) for ages 5-10 were 
calculated from the XSA results. 
 
XSA Residuals 
 
The residuals in XSA are calculated as follows: 
 
For each index I, at age a, and year y: 
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 , , , , , ,log( ) log( )i a y i a y XSA a yr N N= −  (1) 

  
Where: 

, ,i a yr = the residual for index i in year y at age a, 

, ,i a yN = observed numbers at age a at the beginning of year y for index I, 

, ,XSA a yN = XSA predicted numbers at age a at the beginning of year y.  
 
Also: 
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and the XSA predicted index (the XSA predicted numbers at age in terms of MNPT for index i) is: 
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Where; 

, ,i a yI = observed MNPT for index i in year y at age a, 

, ,î a yI = XSA predicted MNPT for index i in year y at age a, 

,ˆi aq = the XSA predicted catchability for index i at age a, common across all years. 
 
It follows from (1) that: 
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 (4) 

 
Hence residuals are independent of the catchability at age.  This is important given that the three indices have 
notably different catchabilities at age (Healey and Mahé, 2006).   
 
The distribution of residuals for each of the three indices and the distribution of residuals by age are shown in Figs. 
1 and 2, respectively.  It appears that the residuals are very similarly distributed across age and index and therefore, 
for the purposes of the nonparametric bootstrap, they could be considered to be independent and identically 
distributed (i.i.d.).  Standardizing the residuals is likely to result in distributions that more completely satisfy the 
i.i.d. assumptions by making standard deviations between age and index groups comparable. 
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Non-parametric bootstrapping of the XSA model 
 
A nonparametric bootstrapping procedure was written in R (see Appendix for the R code) to generate 1000 fits 
(‘bootstrap replicates’) of the XSA model to the survey data.  This was done in order to estimate the uncertainty in 
the XSA parameter estimates.  The nonparametric bootstrap only accounts for observation error.  Patterson et al. 
(2000) noted that variance in other parameters such as maturity, natural mortality and catch-at-age will also 
contribute to the uncertainty.  We have not accounted for these additional sources of uncertainty in the current 
analysis.   Although not accounting for all uncertainty, the short-term projections based on nonparametric bootstrap 
projections under different management options do provide reasonable relative measures of the risks associated with 
harvesting practices and should lead to better informed management decisions (Darby et al. 2004).  They also allow 
for the construction of risk profiles by creating cumulative frequency distributions of the estimated fisheries 
management quantities of interest (Gavaris, 1999). 
 
The nonparametric bootstrap was implemented as follows.  By taking the exponent of both sides of equation (4) we 
get: 
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Therefore: 
 
 , , , , , ,

ˆ exp( )i a y i a y i a yI r I=  (5) 
 
The residual , ,i a yr  can be replaced by bsr , a residual randomly resampled, with replacement, from a given set of 
residuals.  The residuals were resampled in three ways: 

1. Across all indices and ages, assuming residuals are i.i.d. 
2. By standardizing residuals and then resampling across all ages and indices. 
3. By only resampling residuals within each age and index. 

 
Sampling residuals randomly across all indices in the bootstrap is the most straightforward approach and appears a 
priori to be consistent with the i.i.d. assumption.  Resampling within each age and index often results in only a 
limited number of residuals being available for resampling and may give inaccurate estimates of uncertainty.  
However, because XSA weights indices in the estimation, residuals for heavier weighted indices should be smaller 
than those from indices with a lesser weighting.  Therefore, residuals will not be i.i.d. across indices.  Also, 
difficulty in accurately aging older fish (Treble and Dwyer, 2006), and differences in the ability of surveys to sample 
fish of different ages, means that residuals may not be i.i.d. across ages either.  Standardizing residuals, by dividing 
by the standard deviation for residuals from each age for each index, should make residuals comply with the 
assumptions of i.i.d. 

 
The residuals were standardized as follows: 
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Where: , ,i a yr′ = The standardized residuals for index i, age a and year y, 

 ,ˆi aσ  = The standard deviation of residuals for index i and age a. 
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The new pseudo-index values I ′ for each index type, age and year can be computed by adding these randomly 
selected residuals to each XSA predicted index value , ,î a yI  
 
 , , , ,

ˆ exp( )i a y bs i a yI r I′ =  (7) 
 
Or, in the case of the standardized residuals: 
 

  , , , , ,
ˆˆ exp( )i a y bs i a i a yI r Iσ′ ′= ×      (8)  

 
Where: bsr′  is a randomly resampled residual. 
 
The XSA model can then be re-fitted to the new survey pseudo-indices and the population size and fishing mortality 
parameters re-estimated.   
 
Measures of uncertainty 
 
Bootstrap standard error and percentile distributions of parameter estimates can be calculated for parameters from 
the set of new bootstrap XSAs and bias correction can be considered.  Efron (1981) noted that a bootstrap sample 
size of 512 was more than sufficient for routine error analyses.   
 
For a given parameter θ, let B be a set of n bootstrap replicate estimates θBS.  The standard error of a sample of 
bootstrap estimates is equivalent to the standard deviation of the sample (Efron and Tibshirani, 1993): 
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Where: 

BSθ
r

 = the mean of the bootstrap replicates, BSθ . 
 
The bootstrap co-efficient of variation (CVB) is calculated as follows: 
 

 B
B BS

SECV
θ

= r  (10) 

 
The bootstrap co-efficient of variation (CVB) was calculated for the survivors at age in the terminal year and 
compared to the internal standard error from the original XSA, used as an estimate for CV in the stochastic 
projection done by Healey and Mahé (2006).   
 
Detecting bias using bootstrap replicates 
 
Ideally, estimators will be unbiased.  However, estimators of fisheries management quantities from stock assessment 
models may be biased as a result of the non-linearity in the models (Gavaris, 1999). When the bias is large this may 
indicate serious problems with the model formulation.  Bootstrap techniques (Efron and Tibshirani, 1993) provide a 
method for examining bias in estimates.  For a given parameter θ, let B be a set of n bootstrap replicate estimates 
θBS.  Then the bias of B, biasB, can be calculated as follows: 
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In other words, the bias of B is the mean of the differences between each bootstrap estimate, θBS, and θ̂ , the best 
estimate of θ.  Given that bootstrap distributions are skewed, due to fitting indices on a logarithmic scale in the 
XSA, one might think it best to compare the best estimate to the median rather than mean of the distribution.  
However computationally, comparing the best estimate with each bootstrap replicate individually and taking the 
mean of that difference as the bias (equation 10), a reasonable approach, is equivalent to comparing the mean of the 
distribution with the best estimate. 
 
Bootstrap bias correction 
 
When bias is detected in an estimated parameter, bias-correction is an issue for consideration. Efron and Tibshirani 
(1993) suggest that bias correction is not necessary if the bias is less than 25% of the bootstrap sample standard 
error, BSE .  When the bias is large, it is not clear to us whether or not bias correction is appropriate since a large bias 
may indicate serious problems with the model formulation and bias correction would just cover up the problem.  In 
such a case it may be more beneficial to reassess the original model for possible sources of error rather than 
correcting the substantial bias.  However, in cases where bias is large but not too severe, it is assumed that bias 
correction will provide more accurate parameter estimates.  We explored bias-correction methods for XSA point 
estimates and distributions of bootstrap replicates. 
 
The idea behind using the bootstrap replicates to correct for bias is that for any given parameter, on average, the 
mean bootstrapped XSA will over- or underestimate the original XSA by the same amount that the original XSA 
over- or under-estimates reality.  The formulation of the XSA model may result in the distribution of bootstrap 
replicates of a given parameter θ being centered either to the low or high side of θ̂ , the best estimate of θ (i.e. θ̂  is 
the estimate of θ derived by XSA from the original index values).  The bootstrap replicates can therefore be used to 
calculate the bias of the XSA point estimates (equation 10), which can then be used to bias-correct them.  The bias 
corrected estimate of θ, θ , is calculated as follows: 
 
 ˆ

Bbiasθ θ= −  (12) 

 
The ratio of bias to standard error ( B Bbias /SE ) can then be calculated for all the estimated parameters and 
compared with the 25% criterion of Efron and Tibshirani (1993).   
 
If a bias in the point estimate of a parameter is detected, then it implies that the bootstrap distribution is also biased.  
Given that the bootstrap mean over- or underestimates the best estimate by the same amount that the best estimate 
over- or underestimates reality, the bootstrap mean is twice as biased as the best estimate.  Gavaris (1999) found that 
the most suitable method for producing non-biased distributions from bootstrap replicates was the bootstrap bias 
corrected percentile technique.   First the percentile method is used to form an empirical cumulative frequency 
distribution:  
 

( ) { } { }ˆ#ˆ ˆP
b x

x x
B

η
η

≤
Ω = ≤ =    (13) 

 
Where: 
η̂  = Quantity being estimated (e.g. number-at-age), 

ˆbη = Bootstrap replicate of η̂ , 
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{ }ˆ# b xη ≤  = the number of bootstrap replicates less than or equal to x, 

B = Total number of bootstrap replicates. 
 
This can be considered as a set of paired values (α, ˆbη ) where ˆbη are the ordered bootstrap values and α are the 
respective probability levels equal to 1/B, 2/ B, 3/ B … B / B. 
 
Using this cumulative frequency distribution, each bootstrap replicate, ˆbη , is bias corrected, b

BCηr  , to produce a bias 
corrected bootstrap distribution: 
 

 ( )( )1
0

ˆ 2b
BC z zαη −= Ω Φ +
r     (14) 

 
Where: 
Φ , Ω̂  = Cumulative frequency distribution of the bootstrap distribution and a standard normal variate, respectively 
(i.e. the probability of a given critical value). 
 

1−Φ , 1ˆ −Ω  = Inverse distribution functions (i.e. critical value corresponding to the specified probability level). 
 

( )1zα α−= Φ    where α is the probability level of a given bootstrap value, ˆbη . 

( )( )1
0

ˆ ˆz η−= Φ Ω     

This last factor determines the bias.  If median( ˆbη ) = η̂  then ( )ˆ η̂Ω =0.5.  Therefore z0 = 0 and  b
BCηr  = ˆbη . i.e. no 

bias correction will occur. 
 
 

Results and Discussion 
 
We found that XSA estimates using FLR are identical to those using the Lowestoft Assessment Suite, but that the 
standard errors and scaled weights of indices are different.  This needs to be investigated further, but we assume that 
the Lowestoft suite estimates are correct and that the FLR code requires further attention.  Our results are based on 
comparing bootstrap XSA estimates within FLR with those from the NAFO 2006 assessment made using the 
Lowestoft Suite.  We do not use the FLR version of XSA estimates of standard errors. 
 
In Table 2 we compare the XSA survivors at age for the start of 2006 with those obtained from the nonparametric 
bootstrap analysis.  The means and the medians from the bootstrap distributions are close to the XSA point estimates 
for ages up to age 7.  For ages 8 to 10 the XSA point estimates are lower than the bootstrap means and medians, but 
this is reversed for ages 11 to 14.  For younger ages the CVs from the two methods are similar, but the bootstrap CV 
indicates substantially wider confidence intervals than those estimated by the XSA (based on internal SE) for ages 
11 to 14.   
 
We investigated whether these differences were related to shrinkage in some way by varying the permitted standard 
error of F when shrinking to mean F (Fse).  In Table 3 we compare estimates with Fse = 0.5 (same as Table 2) and 
1.0 (less shrinkage effect) based on 1000 runs.  It is clear that changing the degree of shrinkage has a major effect on 
the point estimates, whereas the bootstrap estimates are relatively robust.  With less shrinkage (higher Fse), the point 
estimates for ages 8-10 decrease whereas those for ages 11 to 14 increase.  This sensitivity to shrinkage is of concern 
and needs to be investigated further.    
   
Table 3 also provides the bias corrected estimates of survivors based on the bootstrap results.  A negative bias-
corrected estimate for age 9 at the lower level of shrinkage (higher value of Fse) is clearly not feasible.   Table 4 
provides results for the same shrinkage comparison, but in this case for the 2006 estimates of 5+ biomass, 10+ 
biomass and average F. When aggregated across ages, impact of shrinkage is less evident because of the reversal of 
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effects on ages 8-10 vs. 11-14.  Given the increase in the older, heavier ages with greater shrinkage, there is however 
a considerable increase in the 10+ biomass.  
  
The difference between the bootstrap estimates and the XSA point estimates of exploitable (5+) biomass and 10+ 
biomass are illustrated in Figs. 3 and 4.  For  5+ biomass the XSA point estimates are close to the median of the 
bootstrap estimates.  For the 10+ biomass the XSA point estimates are also close to the median of the bootstrap 
distribution for the early 2000s, but by 2006 come to lie closer to the 25th percentile.  The confidence intervals for 
the 5+ biomass are relatively narrow compared to the 10+ biomass.  The point estimates from XSA for numbers at 
age 1 (recruitment) are close to the median of the bootstrap distribution (Fig. 5).  The confidence intervals are 
relatively wide, particularly for the period in the early 2000s.  The XSA point estimates for average F fall above the 
95th percentile of the bootstrap estimates in 2005 (Fig. 6).  The confidence intervals are relatively wide for the last 
two years.  
 
In addition to the estimates of survivors and the resulting estimates of 5+ and 10+ biomass, it is interesting to 
compare the bootstrap estimates of fishing mortality reference points with those applied in the last assessment.  In 
Fig. 7 the distribution of 200 bootstrap estimates of F0.1 and Fmax are shown together with the point estimates.  In this 
case it is only variability in partial recruitment (PR), averaged from the Fs for the last three years in each bootstrap 
sample, that is influencing the calculations.  It would appear that both the F0.1 and Fmax point estimates used in the 
XSA are relatively high compared with the bootstrap distributions.     
 
The CVs (measures of uncertainty) for survivors at age in 2006 from the bootstrap results for each of the different 
resampling methods are compared with the internal standard errors used by Healey and Mahé (2006) in Fig. 8.  For 
almost all ages, resampling all residuals, without standardizing, leads to the highest CV.  The patterns of CVs by age 
are very similar when residuals are resampled within ages and indices, or standardized residuals are resampled 
across ages and indices.  CVs are lowest for the highly selected ages (5-10) and highest for the early ages and older 
fish (including the plus group).  The internal standard errors from the XSA greatly underestimate CV for the older 
ages (>10) relative to the bootstrap estimates, most likely due to shrinkage used in the formulation of the model.    
 
Survivors-at-age estimates are the primary output from the XSA, and other statistics such as 5+ and 10+ biomass are 
derived statistics.  As can be seen in Table 3, bootstrap estimates of survivors at age overestimate the best estimate 
for younger ages and underestimate it for older ages.  Statistics calculated across ages, such as 5+ biomass, could be 
misleading because errors could cancel when the age groups are amalgamated. In other words, the statistics 
represented in Table 4 and Figures 3, 4 and 6 combine biases from the different survivor at age estimates and 
negative and positive biases for different ages may cancel.  Bias should be examined for the primary outputs of the 
XSA - the survivors at age.  If bias correction is necessary, it should be done on survivors-at-age estimates before 
further statistics based on these are calculated. 
 
The bias to standard error ratios for the bootstrap estimates of survivors at age are shown in Fig. 9..  It can be seen 
that there is little difference in either variation or bias between the different methods of resampling residuals.  Bias is 
low up to and including age 7, but ages 8-10 have large positive bias and ages 11-14 have large negative bias.  Ages 
5-8 are heavily selected by the fishery.  With the exception of age 8, these estimates have low bias.  It would be a 
concern if there was a large bias for ages that make up the bulk of the population, as this could result in retrospective 
problems.  This distinct pattern of bias by age needs to be examined more closely to determine exactly what the 
causes are. 
 
The results of the bootstrap distribution bias correcting methods are illustrated in Fig. 10 for survivors on 1 January 
2006 at three ages: age 4, age 9 and age 12.  In relation to the standard error of the bootstrap distributions, the bias of 
the estimate for age 4 survivors was very low (0.15), while there was a large positive bias for age 9 survivors (1.40) 
and a large negative bias for age 12 survivors (-1.14).  The bootstrap bias corrected percentile technique does not 
allow for the bias corrected bootstrap distribution to lie outside the range of the observed bootstrap distribution.  
This in itself appears to be reasonable, but given a large bias (and in particular a large positive bias), this can lead to 
distributions being highly constrained by either the lower or upper bounds of the bootstrap distribution (i.e. to pile 
up at the bound).  This can clearly be seen in the case of age 9 survivors, where the range of the bias corrected 
distribution is extremely small as a result of most bias corrected bootstrap replicates being corrected to the minimum 
value of the distribution.  Trying to correct such large biases using the bootstrap bias correction percentile technique 
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would not seem to be appropriate and efforts should rather be focused on improving the efficiency of the estimator 
so that less bias-correction is required.   
 
Both the EU 3M and the Canadian spring 3LMNO surveys appear to have cohort effects in their residuals in the 
2006 XSA, while the Canadian Fall 2J3K survey has mainly year effects in the residuals (Fig. 11).  Cohort effects in 
residuals indicate some misspecification in the XSA model.  The bootstrap resampling of residuals mixes up the 
residuals from cohorts that have been consistently under-estimated or over-estimated with the residuals from other 
cohorts.  It is therefore to be expected that a large bias will be apparent when comparing the XSA estimates of 
survivors from a cohort that has predominantly negative or positive residuals.  The 1995 cohort (age 12 survivors on 
1 January 2006) had predominantly positive residuals in both the EU and Canadian Spring surveys, leading to a 
large negative bias.  Conversely, the 1998 cohort (age 9 survivors on 1 January 2006) had predominantly negative 
residuals, leading to a large positive bias.  Low biases tend to result from cohorts that no strong patterns in the 
residuals (age 4 survivors on 1 January 2006).  Large biases resulting from cohort patterns in the residuals point to a 
misspecification within the XSA model design as applied to this stock.   

 
It was found that estimates of bias and variance were relatively robust to the way residuals were resampled in the 
bootstrap.  We consider the approach of standardizing the residuals and them resampling from the complete set of 
residuals to be the most logical.  It is assumed that by standardizing residuals they should conform to the i.i.d. 
assumptions and bootstrap methods should provide good estimates of error associated with XSA estimates.  We 
think that the nonparametric bootstrap provides a more reasonable estimation of the CV of XSA estimates than the 
internal standard error from the XSA, especially at older ages where it appears the internal SEs from the XSA are 
affected by the shrinkage applied in the model.  With regards to estimates for older ages, the nonparametric 
bootstrap is relatively robust shrinkage.  There are notable concerns with the bias in the XSA estimates of survivors 
at age for the older (>7) ages.  These biases are communicated into biased estimates of 5+, 10+ biomass, and 
consequently F.  F0.1 and Fmax reference points also appear to be biased.  
 
Bias-correction of the bootstrap distribution using the bootstrap bias correction percentile technique poses some 
technical difficulties which were not able to overcome and which may be further indicative of problems in the XSA 
formulation for this stock.  Bias could possibly be linked to cohort effects in the residuals of indices.  Also, while the 
XSA does not converge without some shrinkage, if standard errors permitted around the estimate of F under 
shrinkage (Fse in the control group) is allowed to be larger,  (i.e. less shrinkage) the bias is somewhat reduced.  We 
would like to follow up on the possible causes of the bias through simulation testing on a known, simulated stock. 
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Table 1.  XSA control group used to mimic the 2006 assessment of Greenland halibut. 

Argument Description 
Value for G. Hal. 
(2006 assess.) 

tol Convergence tolerance 1.00E-09 
maxit Maximum number of iterations 60 
min.nse Minimum value of SE permitted in estimate of N 0.5 
fse SE of F when shrinking to mean F 0.5 

rage 
Oldest age for which two parameter model is used fro 
catchability at age 0 

qage Age after which catchability is no longer estimated 11 
shk.n Shrinkage to mean N TRUE 
shk.f Shrinkage to mean F TRUE 
shk.yrs No. years for shrinkage of F for terminal year 5 
shk.ages No. ages for shrinkage of F for terminal age 3 
window Time window to consider in model fitting 100 
tsrange No. years to use in time series weighting 20 
tspower Power to be used in the time series weighting 0 
vpa VPA (T) or cohort analysis (F) FALSE 

 



Table 2. Survivors-at-age on 1 January 2006 as estimated by the XSA and 1000 bootstrap replicates of the XSA (standardized residuals resampled).  

 
XSA 

 Bootstrap Replicates Bootstrap Replicate Percentiles Bootstrap Range 

Age Estimate Int. SE Mean SE CV 5% 25% Median 75% 95% Min Max Range 
2 28548 0.32 30518 9047 0.30 17737 24222 29458 35888 46327 11799 70998 59199
3 44456 0.24 45708 10092 0.22 31387 38353 44933 51901 63559 24350 85124 60775
4 52583 0.20 53665 9325 0.17 39269 47212 52956 59559 69674 31114 87472 56358
5 43964 0.16 43254 5644 0.13 34344 39360 42966 47048 52648 25954 65196 39242
6 32586 0.14 31331 3971 0.13 25122 28646 30980 33799 38433 20476 44185 23709
7 19952 0.13 19408 2880 0.15 14851 17343 19329 21342 24196 11439 28850 17411
8 3570 0.16 4843 989 0.20 3489 4120 4703 5377 6680 2814 9803 6989
9 1656 0.20 2448 483 0.20 1804 2118 2377 2689 3324 1393 4400 3007

10 1244 0.20 1648 363 0.22 1163 1387 1595 1858 2329 857 3229 2372
11 959 0.19 853 198 0.23 570 698 833 981 1218 411 1768 1356
12 604 0.19 445 131 0.29 281 348 426 521 695 211 1248 1037
13 223 0.20 188 61 0.32 110 143 178 220 301 77 474 397
14 260 0.21 220 78 0.36 126 165 204 257 368 82 626 544
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Table 3.  XSA estimates at two levels of shrinkage, Fse=0.5 as per the 2006 assessment and Fse=1 to implement less shrinkage.  A no-shrinkage run was also 
attempted but the XSA does not converge and the estimated cannot be compared with runs in which shrinkage is applied.  Standardized residuals were resampled 
for 1000 bootstrap estimates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fse = 0.5 (original XSA)        
Survivors-at-
age in 2006 

XSA 
Estimate 

Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
SE 

Bootstrap 
CV Bias Bias/SE 

Bias Corrected 
Estimate 

2 28548 30518 29458 9047 0.30 1970 0.22 26578
3 44456 45708 44933 10092 0.22 1252 0.12 43204
4 52583 53665 52956 9325 0.17 1082 0.12 51501
5 43964 43254 42966 5644 0.13 -710 -0.13 44674
6 32586 31331 30980 3971 0.13 -1255 -0.32 33841
7 19952 19408 19329 2880 0.15 -544 -0.19 20496
8 3570 4843 4703 989 0.20 1274 1.29 2296
9 1656 2448 2377 483 0.20 791 1.64 865

10 1244 1648 1595 363 0.22 404 1.11 840
11 959 853 833 198 0.23 -106 -0.53 1065
12 604 445 426 131 0.29 -159 -1.22 763
13 223 188 178 61 0.32 -36 -0.58 259
14 260 220 204 78 0.36 -40 -0.51 300

Fse = 1.0 (less shrinkage)        
Survivors-at-age 

in 2006 
XSA 
Estimate 

Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
SE 

Bootstrap 
CV Bias Bias/SE 

Bias Corrected 
Estimate 

2 27635 30948 29746 10440 0.34 2399 0.23 25236
3 43882 46427 45360 10323 0.22 1971 0.19 41911
4 51990 53602 53014 9916 0.18 1019 0.10 50971
5 44589 44516 43561 7264 0.16 552 0.08 44037
6 34030 32778 32570 4720 0.14 192 0.04 33838
7 20505 20272 20141 3564 0.18 320 0.09 20185
8 1225 4470 4196 1648 0.37 900 0.55 325
9 36 2341 2130 987 0.42 685 0.69 -649

10 457 1611 1467 694 0.43 367 0.53 90
11 1501 975 919 371 0.38 16 0.04 1485
12 1275 553 522 233 0.42 -52 -0.22 1327
13 455 205 193 97 0.47 -19 -0.19 474
14 497 239 216 119 0.50 -21 -0.17 518
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Table 4.  Comparison of point estimates from the XSA under two levels of shrinkage with the 
nonparametric bootstrap estimates.  
 

Fse = 0.5 
(Original 
XSA) n = 200        

2006 
XSA 
Estimate 

Bootstrap 
Median 

Bootstrap 
Mean 

Bootstrap 
SE 

Bootstrap 
CV Bias Bias/SE

Bias 
Corrected 
Estimate 

5+Biomass 68415 69245 69516 5240 0.08 1101 0.21 67314
10+Biomass 9773 9225 9436 1602 0.17 -337 -0.21 10110
F 0.63 0.55 0.55 0.04 0.07 -0.08 -2.06 0.71

 
 

Fse = 1 
(Less 
shrinkage) n = 200        

2006 
XSA 
Estimate 

Bootstrap 
Median 

Bootstrap 
Mean 

Bootstrap 
SE 

Bootstrap 
CV Bias Bias/SE

Bias 
Corrected 
Estimate 

5+Biomass 70786 71549 71691 7421 0.10 905 0.12 69880
10+Biomass 12527 10081 10237 2561 0.25 -2290 -0.89 14817
F 0.74 0.58 0.58 0.08 0.13 -0.16 -2.05 0.89
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Fig. 1 Frequency distribution for the log catchability residuals for each tuning index from XSA applied to 
the 2006 data for Greenland halibut. 
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Fig. 2.  Box-and-whisker plot of the distributions of the log catchability residuals for each age from XSA 
applied to the 2006 data for Greenland halibut. The box indicates the inter-quartile range and the whiskers 
extend to the furthest point within 1.5*the box range.  Distributions do not differ significantly if the notches 
in the side of the boxes overlap.  Outliers are marked.  The width of the boxes is relative to the number of 
observations. 
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Fig. 3.  Comparison of the bootstrap percentiles with the 2006 XSA point estimates for exploitable (5+) 
biomass. 
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Fig. 4.  Comparison of the bootstrap percentiles with the 2006 XSA point estimates for 10+ biomass. 
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Fig. 5.  Comparison of the bootstrap percentiles with the 2006 XSA point estimates for recruitment (age 1). 
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Fig. 6.  Comparison of the bootstrap percentiles with the 2006 XSA point estimates for mean F (ages 5 to 
10). 
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Fig. 7.  Bootstrap frequency distribution of estimates of F0.1 and Fmax from 200 replicates.  The vertical 
broken lines show the location of the 2006 XSA point estimates. 
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Fig. 8.  Comparison of bootstrap coefficients of variation and internal standard errors (used in the stochastic 
projections of Healey and Mahé 2006)) for the survivors-at-age in 2006 (the terminal year). 
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Fig. 9. Bias to standard error ratios for the bootstrap estimates of survivors at age using three different 
methods of resampling residuals. 
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Age 12 survivors (XSA estimate = 604) 
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Age 9 survivors (XSA estimate = 1656) 
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Fig. 10. Biased (uncorrected) and bias-corrected bootstrap probability distributions of survivors at ages 4, 9 
and 12 in the terminal year (1 Januray 2006).  Standardized residuals were resampled.  Vertical lines 
represent the estimates of survivors-at-age from the original XSA.  Multiplicatively Shifted distributions 
involve simply shifting the entire distribution, multiplicatively, such that the mean of the distribution lines 
up with the bias-corrected value of the best estimate. 
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Fig. 11. Bubble plots of the XSA residuals for the EU 3M, Can Fall 2J3K and Can Spr 3LMNO indices 
used in the Greenland Halibut XSA, indicating how cohort effects lead to bias in the bootstrap distributions.  
Bias/SE values show the ratio of bias to standard error for estimates of survivors at age at the start of 2006 
for ages 4, 9 and 12.  Dashed arrows lie over the respective cohorts.
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APPENDIX 1:  R code to run a bootstrap replicate of the XSA for Greenland Halibut 
 
Input: 
GH.stock = An FLStock object with the relevenat Greenland Halibut information (catch etc.) 
GH.index = An FLIndices object with the three research surveys of the Greenland Halibut stock  

("EU 3M","Can 2J3K Fall","Can 3LNO Spr") 
GH.xsa = An FLXSA object with the results of the XSA carried out using GH.stock and GH.index above (the control group for the   
XSA is given below and is the same one used for the bootstrap replicate) 
 
# Control file for XSAs 
maxIt <- 60   # Set the max number of iterations 
GH.control<-FLXSA.control( tol = 1e-09, maxit = maxIt, min.nse = 0.5, fse = 0.5, 
         rage = 0, qage = 11, shk.n = TRUE, shk.f = TRUE, shk.yrs = 5, 
         shk.ages = 3, window = 100, tsrange = 20, tspower = 0, vpa = FALSE) 
 
# Get values for ranges 
# Stock object 
maxYear <- GH.stock@range[[5]]; minYear <- GH.stock@range[[4]]; numYears <- maxYear-minYear+1 
minAge <- GH.stock@range[[1]]; maxAge <- GH.stock@range[[2]]; numAges <- maxAge-minAge+1 
 
# Indices 
EUnumYears <- GH.index2[[1]]@range[[5]]-GH.index2[[1]]@range[[4]]+1 
EUmaxAge <- GH.index2[[1]]@range[2] 
EUnumCases <- EUmaxAge*EUnumYears 
 
CanFallnumYears <- GH.index2[[2]]@range[[5]]-GH.index2[[2]]@range[[4]]+1 
CanFallmaxAge <- GH.index2[[2]]@range[2]-1 # Because can't get residuals for age 14 - in plusgroup 
CanFallnumCases <- CanFallmaxAge*CanFallnumYears 
 
CanSprnumYears <- GH.index2[[3]]@range[[5]]-GH.index2[[3]]@range[[4]]+1 
CanSprmaxAge <- GH.index2[[3]]@range[2] 
CanSprnumCases <- CanSprmaxAge*CanSprnumYears 
 
AllresidsnumCases <- EUnumCases+CanFallnumCases+CanSprnumCases 
 
# Create vectors with all the log catchability residuals for each index 
EUresid <- array(NA,dim=c(EUnumCases)) 
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CanFallresid <- array(NA,dim=c(CanFallnumCases)) 
CanSprresid <- array(NA,dim=c(CanSprnumCases)) 
Allresids <- array(NA,dim=c(AllresidsnumCases)) 
 
EUresid <- as.numeric(GH.xsa@index.res[[1]]) 
CanFallresid <- as.numeric(GH.xsa@index.res[[2]]) 
CanSprresid <- as.numeric(GH.xsa@index.res[[3]]) 
Allresids <- c(EUresid, CanFallresid, CanSprresid) 
 
# To standardize residuals 
EUresidSE <- apply(EUresid,1,sd) 
CanFallresidSE <- apply(CanFallresid,1,sd) 
CanSprresidSE <- apply(CanSprresid,1,sd) 
 
for (eur in 1:12) { stdEUresid[eur,] <- EUresid[eur,]/EUresidSE[eur] } 
for (eur in 1:13) { stdCanFallresid[eur,] <- CanFallresid[eur,]/CanFallresidSE[eur] } 
for (eur in 1:8) { stdCanSprresid[eur,] <- CanSprresid[eur,]/CanSprresidSE[eur] } 
 
stdAllresids <- c(stdEUresid,stdCanFallresid,stdCanSprresid) 
 
# exponents of log(q') to get q' i.e. vector of catchability residuals 
expEUresid <- exp(EUresid) 
expCanFallresid <- exp(CanFallresid) 
expCanSprresid <- exp(CanSprresid) 
expAllresids <- exp(Allresids) 
 
# Calculate index model PREDICTED values (= XSA stock numbers at age and year multiplied by index catchability at age (avg.  
over years)) 
EUpredIndex <- array(NA,, dim=c(EUmaxAge,EUnumYears)) 
for (r in 1:EUmaxAge) { for (cc in 1:EUnumYears) {  
      EUpredIndex[r,cc] <- GH.xsa@stock.n[r,numYears-EUnumYears+cc,,,]*GH.xsa@q.hat[[1]][r,,,,]   

}} 
 
CanFallpredIndex <- array(NA,, dim=c(CanFallmaxAge,CanFallnumYears)) 
for (r in 1:CanFallmaxAge) { for (cc in 1:CanFallnumYears) {  

CanFallpredIndex[r,cc] <- GH.xsa@stock.n[r,numYears-CanFallnumYears+cc,,,]*GH.xsa@q.hat[[2]][r,,,,]  
}} 

 
CanSprpredIndex <- array(NA,, dim=c(CanSprmaxAge,CanSprnumYears)) 
for (r in 1:CanSprmaxAge) { for (cc in 1:CanSprnumYears) {  
      CanSprpredIndex[r,cc] <- GH.xsa@stock.n[r,numYears-CanSprnumYears+cc,,,]*GH.xsa@q.hat[[3]][r,,,,]   
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}} 
 
 
# Create base index file (values rescaled to the beginning of the year and start and end of fishing set at 0) 
# This is done because index predicted values calculated above are for survivors at the START of each year, therefore index must 
reflect this. 
GH.index00 <- GH.index 
 
for (ind in 1:3){ 
    for (j in 6:7) { GH.index00[[ind]]@range[j] <- 0 } 
    if (ind == 1 || ind ==3){ 
      GH.index00[[ind]]@catch.n <- GH.xsa@index[[ind]] 
      GH.index00[[ind]]@index <- GH.xsa@index[[ind]] 
      } 
    if (ind == 2) { 
      GH.index00[[ind]]@catch.n[1:13] <- GH.xsa@index[[ind]] 
      GH.index00[[ind]]@index[1:13] <- GH.xsa@index[[ind]] 
      } 
    } 
 
# Replace negative values in the index file with NAs 
GH.index00 <- replaceNegative(GH.index00)     # A function from the FLR website 
 
# Running a bootstrapped replicate of the XSA 
 
# Create index file for run i from base index file  (and stock file from GH.stock) 
GH.indexMC <- GH.index00 
GH.stockMC <- GH.stock 
 
# Model predicted index is multiplied by the a ramndomly sampled, exponentiated residual 
# residSamp is a dummy variable to choose Between resampling methods 
 
if (residSamp==1) {      # Resample accross all residuals 
for (r in 1:EUmaxAge) { for (cc in 1:EUnumYears) { GH.indexMC[[1]]@index[r,cc,,,] <-  
   EUpredIndex[r,cc]*expAllresids[round(runif(1,min=0.5,max=AllresidsnumCases+0.5),0)] }} 
for (r in 1:CanFallmaxAge) { for (cc in 1:CanFallnumYears) { GH.indexMC[[2]]@index[r,cc,,,] <-  
   CanFallpredIndex[r,cc]*expAllresids[round(runif(1,min=0.5,max=AllresidsnumCases+0.5),0)] }} 
for (r in 1:CanSprmaxAge) { for (cc in 1:CanSprnumYears) { GH.indexMC[[3]]@index[r,cc,,,] <-  
    CanSprpredIndex[r,cc]*expAllresids[round(runif(1,min=0.5,max=AllresidsnumCases+0.5),0)] }} 
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    } 
 
if (residSamp==2) {  # Resample accross all standardised residuals 
for (r in 1:EUmaxAge) { for (cc in 1:EUnumYears) { GH.indexMC[[1]]@index[r,cc,,,] <-   

EUpredIndex[r,cc]*exp(stdAllresids[round(runif(1,min=0.5,max=length(stdAllresids)+0.5),0)] 
*EUresidSE[r])   }} 

     
for (r in 1:CanFallmaxAge) { for (cc in 1:CanFallnumYears) { GH.indexMC[[2]]@index[r,cc,,,] <-  
   CanFallpredIndex[r,cc]*exp(stdAllresids[round(runif(1,min=0.5,max=length(stdAllresids)+0.5),0)] 
   *CanFallresidSE[r]) }} 
 
for (r in 1:CanSprmaxAge) { for (cc in 1:CanSprnumYears) { GH.indexMC[[3]]@index[r,cc,,,] <-  
   CanSprpredIndex[r,cc]*exp(stdAllresids[round(runif(1,min=0.5,max=length(stdAllresids)+0.5),0)] 
   *CanSprresidSE[r]) }} 
    } 
 
if (residSamp==3) {  # Resample within indices and ages 
for (r in 1:EUmaxAge) { for (cc in 1:EUnumYears) { GH.indexMC[[1]]@index[r,cc,,,] <-  
   EUpredIndex[r,cc]*expEUresid[r,round(runif(1,min=0.5,max=ncol(EUresid)+0.5),0)] }} 
for (r in 1:CanFallmaxAge) { for (cc in 1:CanFallnumYears) { GH.indexMC[[2]]@index[r,cc,,,] <-  
    CanFallpredIndex[r,cc]*expCanFallresid[r,round(runif(1,min=0.5,max=ncol(CanFallresid)+0.5),0)] }} 
for (r in 1:CanSprmaxAge) { for (cc in 1:CanSprnumYears) { GH.indexMC[[3]]@index[r,cc,,,] <-  
    CanSprpredIndex[r,cc]*expCanSprresid[r,round(runif(1,min=0.5,max=ncol(CanSprresid)+0.5),0)] }} 
    } 
 
for (ind in 1:3) { GH.indexMC[[ind]]@catch.n <- GH.indexMC[[ind]]@index } 
 
# Run XSA 
GH.xsaBS <- FLXSA(GH.stockMC,GH.indexMC,GH.control) 
 
# If the XSA does not converge in the maximum # of iterations, resample residuals and try again until it does 
numIts <- GH.xsaBS@control@maxit 
 
if (numIts > (maxIt-1)) { 
  while (numIts > (maxIt-1)) { 
for (r in 1:EUmaxAge) { for (cc in 1:EUnumYears) { GH.indexMC[[1]]@index[r,cc,,,] <- 
EUpredIndex[r,cc]/expAllresids[round(runif(1,min=0.5,max=AllresidsnumCases+0.5),0)] }} 
 
for (r in 1:CanFallmaxAge) { for (cc in 1:CanFallnumYears) { GH.indexMC[[2]]@index[r,cc,,,] <- 
CanFallpredIndex[r,cc]/expAllresids[round(runif(1,min=0.5,max=AllresidsnumCases+0.5),0)] }} 
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for (r in 1:CanSprmaxAge) { for (cc in 1:CanSprnumYears) { GH.indexMC[[3]]@index[r,cc,,,] <- 
CanSprpredIndex[r,cc]/expAllresids[round(runif(1,min=0.5,max=AllresidsnumCases+0.5),0)] }} 
 
for (ind in 1:3) { GH.indexMC[[ind]]@catch.n <- GH.indexMC[[ind]]@index } 
 
GH.xsaBS <- FLXSA(GH.stockMC,GH.indexMC,GH.control, paste("Run#: ",i, sep = "")) 
numIts <- GH.xsaBS@control@maxit 
    } 
} 
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APPENDIX 2:  R code methods to run the bootstrap bias corrected percentile method on a set of bootstrap replicates 
 
 
############################################################################### 
# "invPnorm" 
## Inverse cumulative distribution function of a standard normal variate 
# Author: David C. M. Miller (millerdcm@dfo-mpo.gc.ca) 
# Date: 25 March 2007 
 
setGeneric("invPnorm", function(Obj){ 
 standardGeneric("invPnorm") 
 } 
) 
setMethod("invPnorm", signature(Obj="numeric"), 
  function(Obj){ 
    pot <- 0 
    x <- -4.001 
      while ((Obj - pot) > 0.00001) { 
        x <- x+0.001 
        pot = pnorm(x) 
      } 
    return(round(x,7)) 
 } 
) 
 
############################################################################### 
# "empCumFreq" 
##  Empirical cumulative frequency distribution 
# Author: David C. M. Miller (millerdcm@dfo-mpo.gc.ca) 
# Date: 26 March 2007 
 
setGeneric("empCumFreq", function(Obj, Value, ...){ 
 standardGeneric("empCumFreq") 
 } 
) 
setMethod("empCumFreq", signature(Obj="matrix"), 
  function(Obj, Value){ 
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    numObs <- length(Obj) 
    sortedProb <- matrix(data=NA,2,numObs) 
    sortedProb[1,] <- sort(Obj) 
    sortedProb[2,] <- seq((1/numObs),1,(1/numObs)) 
 
  diff <- array(NA,dim=c(1,numObs)) 
 
  for (colm in 1:numObs) { 
    diff[1,colm] <- abs(sortedProb[1,colm]-Value) 
  } 
   
  minDiff <- as.numeric(which.min(diff[1,])) 
   
  return(sortedProb[2,minDiff]) 
 } 
) 
 
############################################################################### 
# "invEmpCumFreq" 
##  Inverse empirical cummulative frequency distribution 
# Author: David C. M. Miller (millerdcm@dfo-mpo.gc.ca) 
# Date: 26 March 2007 
 
setGeneric("invEmpCumFreq", function(Obj, Value, ...){ 
 standardGeneric("invEmpCumFreq") 
 } 
) 
setMethod("invEmpCumFreq", signature(Obj="matrix"), 
  function(Obj, Value){ 
    numObs <- length(Obj) 
    sortedProb <- matrix(data=NA,2,numObs) 
    sortedProb[2,] <- sort(Obj) 
    sortedProb[1,] <- seq((1/numObs),1,(1/numObs)) 
 
  diff <- array(NA,dim=c(1,numObs)) 
 
  for (colm in 1:numObs) { 
    diff[1,colm] <- abs(sortedProb[1,colm]-Value) 
  } 
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  minDiff <- as.numeric(which.min(diff[1,])) 
 
  return(sortedProb[2,minDiff]) 
 } 
) 
 
############################################################################### 
# "biasCorPercent" 
## Bootstrap bias corrected percentile technique 
# Author: David C. M. Miller (millerdcm@dfo-mpo.gc.ca) 
# Date: 26 March 2007 
# Input matrix of bootstrap samples and vector (1 row/column) of observed values for bias correction of each column of 
bootstrap samples 
 
setGeneric("biasCorPercent", function(Obj, Obs, ...){ 
 standardGeneric("biasCorPercent") 
 } 
) 
setMethod("biasCorPercent", signature(Obj="matrix"),#, Obs="matrix"), 
  function(Obj, Obs){ 
    numYr <- length(Obj[1,]) 
    noBoots <- length(Obj[,1]) 
     
    biasCorValues <- matrix(data=NA,noBoots,numYr,dimnames=Obj@dimnames) 
 
    for (colm in 1:numYr) {  
      wrkCol <- matrix(sort(Obj[,colm]),noBoots,1) 
      #obs <- Obs[1,colm] 
      sortedCol <- matrix(data=NA,2,noBoots) 
      sortedCol[2,] <- wrkCol 
      sortedCol[1,] <- seq((1/noBoots),1,(1/noBoots)) 
      Z0 <- invPnorm(empCumFreq(wrkCol,Obs[colm]))#obs))          
      for (btstrp in 1:noBoots){ 
        Za <- invPnorm(sortedCol[1,btstrp]) 
        biasCorValues[btstrp,colm] <- invEmpCumFreq(wrkCol,pnorm(2*Z0+Za)) 
        } 
    } 
 
    return(biasCorValues) 
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  } 
) 
 
############################################################################### 


