

Northwest Atlantic

Serial No. N5549

Fisheries Organization

NAFO SCR Doc. 08/47

SCIENTIFIC COUNCIL MEETING – JUNE 2008

The Canadian fishery for Greenland halibut in SA 2 + Div. 3KLMNO, with emphasis on 2007.

by

W. B. Brodie, D. Power, and B.P.HealeyScience Branch, Department of Fisheries and OceansP. O. Box 5667, St. John's, Newfoundland, Canada AIC 5X1

Abstract

The Canadian catch of Greenland halibut in 2007 in NAFO Subarea 2 and Divisions 3KLMNO was reported to be 5339 tons, about 1000 t lower than in 2006. Decreases were similar in all gear categories. Catches were highest in Div 2J, where almost all of the otter trawl catch was taken, and declined sharply in Div. 3K. About 54% of the catch was taken in June to August, although almost all the otter trawl catch was taken in January to April. The catch at age in 2007 was dominated by the 1999 and 2000 year classes, which accounted for 80% of the catch numbers and 72% of the catch weight in the Canadian fishery. Catches in the deepwater gillnet sector continued the trend toward younger fish since 2001, coincident with the permitted use of smaller mesh in deeper zones in recent years. Mean weights at age in 2007 were similar to previous years. CPUE analysed from logbooks of Canadian trawlers increased by about 45% in 2007, following a larger increase in 2006.

Review of the Canadian fishery

As reported in several previous documents (e.g. Brodie et.al. 2007), the Canadian fishery for Greenland halibut in Subareas 2 and 3 began in the early 1960s, using gillnets in the deepwater bays of eastern Newfoundland, particularly Trinity Bay. As catches declined here, the effort moved progressively northward in the other bays along the east and northeast coast of Newfoundland. In later years, vessels moved further offshore to the deep channels, such as the area in the central part of Div. 3K known as Funk Island Deep, and eventually to the continental slope. Canadian catches increased from fairly low levels in the early 1960s to almost 32,000 tons in 1980 then declined steadily to between 2900 and 6300 tons in each year from 1993-99 (Table 1). This declining trend was mainly a result of low catch rates and reduced effort, as fishers pursued other species such as snow crab which were more profitable. In 2000, the Canadian catches in 1998 and 1999. However, catches declined by more than 2000 tons from 2000 to 2001, then declined by a similar amount to about 6300 tons in 2002. Since then, catches have mainly been around 6500 tons per year, with the exception of about 4900 t in 2004. Reasons for fluctuations in catch and effort include a switch of some effort by fishers in Divs. 3KL between snow crab and G.halibut due to changes in quotas and product prices, combined with variable catch rates for Greenland halibut in some of the traditional fishing areas (Brodie and Power, 2000).

Canadian catches have been taken mainly by gillnet (Table 1), and most of these gillnet catches are from Div. 3K. This fishery has been conducted mainly by small vessels (<20 m) fishing in the deepwater channels near the Newfoundland and Labrador coast as well as in the deepwater bays, using an average mesh size of about 150 mm. However, Canadian gillnet catches taken during recent years also include those from a substantial fishery along the deep edge of the continental slope. In an attempt to reduce the catch of young Greenland halibut in this deepwater fishery, gillnet mesh size for Greenland halibut in the Canadian zone in depths > 731 m (400 fm) was regulated to be no less than 191 mm, with the exception of Div. 2J. Other restrictions on numbers of nets also exist, as indicated in the table below, which shows the 2007 conservation harvesting plan (CHP) regulations in the

Canadian gillnet fishery for Greenland halibut. In 2005 -2007, fishers in Div. 3K were permitted to use some 152 mm mesh gillnets in waters deeper than 732 m, but these fishers were then not permitted to fish for G. halibut in depths less than 732 m. The number of nets allowed in depths > 732 m in Div. 2GHJ + 3K in 2007 was reduced from 500 to 400.

Area	Depth	# of Nets	Min. Mesh
2GH	293 - 549 m	125	152 mm
2GH + 3KL	549 - 732 m	200	152 mm
2GH + 3K	> 732 m	400	191 mm
2J	> 732 m	400	152 mm
3LMNO	> 732 m	500	191 mm

Gillnet catches during the 1990's ranged from 2400 to 6700 tons, averaging about 4200 tons. Catches in 2000 from this sector then increased to 9300 tons, similar to the levels seen in the late 1980's, but since then have declined to between 2600 and 3900 tons. Since early-2002, an area in the Funk Island Deep region of Div. 3K (see Fig. 1) was closed to gillnetting in order to reduce by-catch of snow crab, and was partly responsible for the decline in gillnet catch. An area of Hawke Channel has also been closed to fishing for some years, due to crab – shrimp fishing interactions. Both these areas have undergone modifications over time.

Canadian otter trawl (OT) catches peaked at about 8,000 tons in 1982, but from 1993 to 1999, catches by this fleet were less than 1050 tons annually. OT catches increased sharply from less than 90 tons in 1998 and 1999, to around 1800 tons in 2001-02 and 2004, but were double this level at just over 3700 tons in 2003 (Table 1). OT catch since then has been in the range of 1800 to 2400 tons. Much of the otter trawl catch after 2004 was in the slope area around the boundary between Divs. 3K and 3L, although almost all otter trawl catch in 2007 occurred in Div. 2J. This fishery is conducted mainly by large vessels (>30 m in length), and minimum codend mesh size has been regulated to be 145 mm for several years, in all areas.

Catches from Subarea 2 were very low prior to the mid 1970's, then increased to a peak around 9000 tons in 1982 (Table 2). From 1991 to 2001, catches from Subarea 2 were in the range of 1000 to 2500 tons per year. The catch in SA 2 increased to almost 3000 tons in 2003, due to higher catches in Div. 2GH, but has since declined. Most of the catch from Subarea 2 has come from Div. 2J, although catches in 1993-96 and 2003-04 were higher in Div. 2GH combined compared to Div. 2J. In most years, Div. 3K has produced the largest Canadian catches, peaking around 18,000 tons in 1979-80. Catches in recent years from Div. 3K have fluctuated between 750 tons (1995) and 5800 tons (2000), with the 2006 value at 3900 tons. Peak catches of around 13,000 tons in Div 3L occurred in 1966-67 and 1980, and averaged about 1400 tons in 2005 and 2006. Catches in Div. 3M , 3N, and 3O combined have generally been in the range of 100 to 600 tons per year, mainly from Div. 3O (Table 2).

The Canadian fishery in 2007

There were some differences in the spatial and temporal patterns in the Canadian fishery for G.halibut in 2007 compared to those observed in 2002-06. The total reported catch was just under 5400 tons, about 1000 t lower than in 2006, reflecting declines in quotas. Catches in the both gillnet fleets, and in the otter trawl fleet, decreased in 2007.

Breakdowns of the catch by gear, Division, depth range and month are shown in Tables 3 and 4. As in most years, gillnet was the dominant gear in 2007. In 2004 to 2007 the gillnet catches in the shallow zone (<400 fm) were lower than in the deep zone, although the differences were small in 2006 and 2007. These gillnet catches are referred to in Tables 3 and 4 as GN<400 and GN>400. Longline catches, which had not exceeded 130 tons per year since the early 1970's, were higher in 2002-2004, but have declined since to practically nil in 2007. The main change in the spatial pattern of the fishery in 2007 was the shift of otter trawl catches to 2J, although there has been little consistency in the distribution of OT catches by division in the past 4 years. Most of the total catch in 2007 occurred in summer, with just under 1000 tons per month in each of June to August, almost all by gillnet. Over 93% of otter trawl catches came in January to April, mostly in March. The temporal pattern of catch in 2006 was unusual compared to 2005 and 2007, with only a small amount of catch occurring in July of 2006. In 2007, almost all GN catch in Div. 2J and 3K took place in June and July, compared to August in Div. 3L.

Figs. 1-2 show the location of most of the Canadian catch of Greenland halibut in 2002-04, and 2006-07. These data were aggregated by 10-minute squares from logbook records. In all four years, the plotted data account for over 93% of the total Canadian catch. The spatial distributions of the 4 years were fairly similar (Figs 1-2), with the major difference being the gillnet catches in the north-central part of Div. 3L in 2006 and 2007, which was also fished in 2005, but to a lesser extent in 2004, and not at all in 2002-03. A major difference from 2002 onward was the reduction in catch from the central 3K (Funk Island Deep) area, due to the area closed to gillnetting (Brodie and Power, 2002). This was noted in previous sections, and is shown in Fig. 1, as well as in Power and Brodie (2006), where the closed area, which was not in the regulations in 2001, was overlaid on the 2001 catch. Fig. 3 shows the location of the 2007 catch by the 4 major gear types (2 gillnet categories, otter trawl, and longline, which was almost nil in 2007). Most of the otter trawl fishery in 2007 (Figs 3, 6) was located in one main area: around the slope edge between 53 and 55 degrees N latitude in Div. 2J. In many previous years, this fishery operated at from the border between Divs. 3K and 3L north to about 51 N. The spatial distribution of the deepwater gillnet fishery in 2007 was similar to recent years, ie. widely distributed along the slope edge, with relatively more effort in Div. 3K. With the closure of the Funk Island Deep area, the shallow water gillnet catches were more concentrated towards the slope area in 3K in 2002-05 compared to 2001 and earlier (eg. Brodie and Power 2006, and earlier documents). In 2007, much of the shallow water GN catches came from north-central 3L. As noted above, some smaller mesh gillnets have been allowed in Div. 2J and 3K in recent years. In 2007, gillnet catches were about the same in each of June, July, and August, generally occurring in the early summer in 2J and 3K, and later in Div. 3L (Figs. 4 and 5). This contrasts with 2006, when almost no catch was taken in July. Also, almost all of the otter trawl catch was taken in January to April in 2007, similar to the pattern in 2006, but earlier than in most years (e.g. May to July for the bulk of this fishery in 2005). As in 2006, the reasons for this in 2007 may have been favorable ice conditions in the slope areas, high CPUE, and, possibly, lower by-catch of species under moratorium in certain months.

As in previous years, by-catches were taken in the 2007 Greenland halibut fisheries within Canadian waters. These include rough-head grenadier, American plaice, witch flounder, redfish, and cod. Some by-catches of snow crab were also reported. By-catches of Greenland halibut in the Canadian shrimp fishery have been described previously (e.g. Orr et al. 2002), and are updated annually. A continuing caveat with the set-by-set discard estimates of G. halibut recorded in the shrimp fishery is that any amount of discards < 1 kg are recorded as 1 kg in the database.

Catch at age

Details on the Canadian catch at age for previous years can be found in Bowering and Brodie (2000), and Brodie et al (2007) and Brodie and Power (2006; and earlier documents by same authors). Ages 6-8 dominated the Canadian catch in most years, both in the otter trawl and shallow water gillnet fisheries. The catch in the GN>400 fleet has been tending towards smaller fish, as smaller mesh is permitted in deeper areas.

Sampling data collected in 2007 by observers at sea and by port samplers, were available from Divs. 2J, 3KLO. The following table shows the number of length measurements by Division and gear, and the number of otoliths (in italics).

2007	2J		3K		3LO	
Gill net < 400	528		1197		7330	
Gill net > 400	2200	201	1758	273	1250	490
Otter trawl	8889	226	501		381	43
Totals	11617	427	3456	273	8861	533

The otolith samples from the fixed gear sectors have been combined, as there is a mixture of mesh sizes in the deepwater fisheries. The large number of measurements from the otter trawl catch is due to the requirement for these large vessels to have a high percentage of observer coverage. The total number of length measurements in 2007 was 24,034, which was a decrease of 33% from 2006 levels, following a decrease by about 50% from 2005. However, with the reduced quotas in 2007, and concentration of effort in relatively few gear/month cells (Table 4), all major fleet sectors appeared to be adequately sampled for lengths in 2007. The number of otoliths (1233) was 44% lower than in 2006, resulting in age-lengths keys having to be combined across some gear types, Divisions, and seasons to calculate catch at age.

Age compositions for the 2007 fishery are presented for both gillnet components (GN<400 and GN>400) as well as for otter trawl (Table 5). The predominant age in the otter trawl in all areas, and GN <400 sectors was 7 (2000 year class), while age 8 (1999 year class) was most abundant in the catches of deepwater gillnets. Ages 7 and 8 were also dominant in these fisheries in all recent years. Overall, the catch at age in 2007 was dominated by the 1999 and 2000 year classes, which accounted for 80% of the catch numbers and 72% of the catch weight. In recent years, the catch at age is becoming dominated more by these 2 ages (7+8). As was the case in 2000 - 2006, age 8 was second highest in the catch numbers, followed by age 6. The catch in the GN>400 fleet has been tending towards smaller fish, as smaller mesh is permitted in deeper areas. For example, only 6% of the catch in numbers by this fleet in 2007 was estimated to be age 10 or older, compared to 14% in 2006, and to 72-80% in 2001 and 2002.

Mean weights at age for all areas were calculated using the same length-weight relationship used for Greenland halibut catch at age in 1998-2006, which was the Divisions-combined, year = 1997 (from Gundersen and Brodie 1999). Weights at ages 5 and 6 in 2007 were slightly higher than in 2005 and 2006, with those at other ages being very similar to the previous 2 years (Brodie et al. 2007; Brodie and Power 2006). The sum of products was about 6.2% lower than the catch weight, which is a larger difference than usual.

CPUE

Catch and effort data from the Canadian otter trawl fishery directed for Greenland halibut during the period 1975 to 2002 were obtained from the NAFO STATLANT 21B database were combined with data from 2003-2007 from Canada (N) logbook (ZIFF) records. The catch/effort data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index based on an hours-fished measure of effort. Ln (CPUE) was the dependent variable in the model. Independent variables (category types) were: (1) a combination country-gear-tonnageclass category type (CGT), (2) month, (3) NAFO Division and (4) Year. Consistent with previous catch rate standardizations (e.g. Power, 2004), individual observations with catch less than 10 tons or effort less than 10 hours were eliminated prior to analysis. Subsequently, within each dependent variable, categories with arbitrarily less than five observations were also eliminated, with the exception of the variable "year", which is the purpose of the standardization. In recent years, there was sufficient data available from the tonnage class 4 trawlers and the tonnage class 7 trawlers utilizing twin trawls for inclusion in the standardization. The twin trawls were introduced in 2003 but have accounted for less than 11% of the otter trawl catch with the exception of 2005 when they took 32%. The advantage of running the Gavaris model is that the derived index is retransformed into the original units of fishing effort and can be computed for any chosen combination of the main factors. After the selection criteria were applied, the percentage of otter trawl catch with hours fished effort utilized in the analysis ranged from 10% in 1976 to 90% or more from 2000-2007, and averaged 92% since 1995.

Residual plots did not indicate model misspecification. The model resulted in a significant regression (P < 0.05) explaining 62% of the variation in catch rates (Table 6). Based on the regression coefficients, over the entire time series, catch rates were better in late summer and higher in Div. 2H. The fishing power of the large trawlers (TC 7) is also much higher, as would be expected. The standardized catch rate index (Table 7, Fig. 7) shows much between-year variability. Initial CPUE increased rapidly to 1978, probably as a result of captains learning a relatively new fishery, then showed period of stability from to 1984, during which time the highest catch rates were realized. CPUE declined by about two-thirds from 1984 to 1992 although there were some sporadic increases over this period. The 1992 value was the lowest in the series (excluding the first point in 1976). Between 1992 and 2001 catch rates increased gradually, doubling over this period. Catch rate declined sharply in 2002, remained stable to 2005 at a level marginally higher than the lowest catch rates observed over the 30 year series. The index increased by over 60% in 2006 and then by another 45% in 2007, to a level which is near the highest in the series. These most recent increases as associated with large variability within each year. In 2004, 2007 and 2008, Scientific Council rejected the use of CPUE series in general as indices of abundance for this stock, due in part to large fluctuations in the Canadian and Spanish indices, concerns about possible effects of concentration of effort on CPUE, and doubts as to what CPUE was actually measuring in each year.

References

Bowering, W. R., and W. B. Brodie. 2000. Calculation of catch-at-age for commercially caught Greenland halibut in NAFO Subarea 2 and Divisions 3KLMNO during 1975-99 with particular emphasis on construction of the catch-at-age matrix since 1989. NAFO SCR Doc. 00/24.

Brodie, W. B. and D. Power. 2001. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2000. NAFO SCR Doc. 01/65, Ser. No. N4443, 13 p.

Brodie, W. B. and D. Power. 2002. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2001. NAFO SCR Doc. 02/39, Ser. No. N4650, 12 p.

Brodie, W. B. and D. Power. 2003. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2002. NAFO SCR Doc. 03/36, Ser. No. N4854, 14 p.

Brodie, W. B. and D. Power. 2004. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2003. NAFO SCR Doc. 04/33, Ser. No. N4983, 14p.

Brodie, W. B. and D. Power. 2005. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2004. NAFO SCR Doc. 05/62, Ser. No. N5148, 16p.

Brodie, W. B. and D. Power. 2006. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2005. NAFO SCR Doc. 06/47, Ser. No. N5273, 19p.

Brodie, W. B., D. Power and B. P.Healey. 2007. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2006. NAFO SCR Doc. 07/50, Ser. No. N5402, 20p.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.

Gundersen, A.C. and W.B.Brodie. 1999. Length-weight relationships of Greenland halibut in NAFO Divisions 2GHJ and 3KLMNO, 1990-97. NAFO SCR Doc. 99/31, Ser. No. N4087.

Orr, D.C., P. Veitch, and D. Sullivan. 2002. An update of information pertaining to northern shrimp (*Pandalus borealis* Kroyer) and groundfish in NAFO Divisions 3LNO. NAFO SCR Doc. 02/160, Ser. No. N4789, 55 p.

F			GEAR			Canada
YEAR	GILLNET	LONGLINE	MISC	UNSP	OT TRAWL	TOTAL
1960				660		660
1961				741		741
1962				586		586
1963		5		771		776
1964				1757		1757
1965				8082		8082
1966	257	194	15	15640	120	16226
1967	93	144	95	15478	798	16608
1968		94		12766	493	13353
1969	9980	850	69	412	245	11556
1970	9818	371	119	318	85	10711
1971	8947	153	55	180	75	9410
1972	8775	34	22	50	71	8952
1973	6546	35	70	102	95	6848
1974	5500	49	16	8	184	5757
1975	7510	3	53	1	247	7814
1976	8500	6	41		767	9314
1977	15038	33	36		2866	17973
1978	20622	46	83		3951	24702
1979	24550	116	116		5183	29965
1980	27703	128	57		3946	31834
1981	17927	55	43		6155	24180
1982	11038	69	59		8143	19309
1983	9911	58	73		7085	17127
1984	11100	27	100		6070	17297
1985	7422	2	42		4847	12313
1986	6293	7	20		1896	8216
1987	10849	22	115		2465	13451
1988	7715	70	53		629	8467
1989	10956	16	35		988	11995
1990	6732	18	15		2402	9167
1991	3440	36	9		3254	6739
1992	4470	30	1		2502	7003
1993	3863	4	5		1034	4906
1994	2378				575	2953
1995	2602	1			632	3235
1996	5134	1		1	1043	6179
1997	5202	61			1017	6280
1998	3963	108	4		46	4121
1999	3870	65			81	4016
2000	9271	18	5	14	1285	10593
2001	6395	123	14		1833	8365
2002	3854	652			1784	6290
2003	2668	596			3710	6974
2004	2634	403			1832	4869
2005	4317	101	1		2218	6637
2005	3848	175	-		2356	6379
2007	3202	3		268	1866	5339

Table 1. Canadian catch of G.halibut, by gear type, from 1960-2007.

-						DIVISIO	N				Canada
YEAR	2G	2H	2J	SA 2	3K	3L	3M	3N	30	Unk	TOTAL
1960					610	50					660
1961					613	128					741
1962					479	107					586
1963					592	184					776
1964					870	887					1757
1965					2129	5953					8082
1966					3691	12518		17			16226
1967			7	7	2892	13705		1	3		16608
1968			53	53	3672	9597		31			13353
1969				0	7140	4413		1	2		11556
1970				0	5937	4769		5			10711
1971				0	4160	5248		2			9410
1972				0	4736	4216					8952
1973			5	5	3602	3233		1	7		6848
1974			19	19	2817	2909		9	3		5757
1975			22	22	3245	4540		7			7814
1976	62	168	153	383	4779	4144	1	7			9314
1977		72	419	491	10751	6725	1	2	3		17973
1978		14	1255	1269	15875	7548	1	5	4		24702
1979		34	3163	3197	18165	8578	2	17	6		29965
1980		217	1157	1374	17658	12742	14	43	3		31834
1981	10	41	862	913	14379	8833		49	6		24180
1982	15	5155	3942	9112	6031	4105		55	6		19309
1983		2578	2238	4816	7679	4618		12	2		17127
1984		1913	2796	4709	7496	5078		12	2		17297
1985		1758	3101	4859	4395	3023		35	1		12313
1986		82	2476	2558	2886	2769		2	1		8216
1987		6	4143	4149	4740	4561		1			13451
1988	45	27	1867	1939	4591	1921	2	12	2		8467
1989		190	2635	2825	6342	2809	6	10	3		11995
1990	57	171	2798	3026	4075	2020	38	4	4		9167
1991		50	3008	3058	2215	1291	157	11	7		6739
1992	428	230	476	1134	3882	1951	4	10	22		7003
1993	557	403	214	1174	2398	880		19	435		4906
1994	1045	210	203	1458	1032	258		1	204		2953
1995	1006	453	709	2168	754	197			116		3235
1996	688	639	1058	2385	2567	888			339		6179
1997	370	619	1513	2502	2659	935			184		6280
1998	358	418	1234	2010	1374	633		1	103		4121
1999	65	103	1094	1262	1940	683			131		4016
2000	45	81	1152	1278	5845	2901	1	1	567		10593
2001	63	251	1030	1344	3999	2666		9	347		8365
2002	374	360	1030	1764	2933	1466	15	-	112		6290
2003	258	1897	730	2885	2873	964	_		252		6974
2004	147	1050	891	2088	1844	794		1	142		4869
	39	378	1717	2134	3006	1379		3	115		6637
2005								-			
2005 2006	102	402	499	1003	3904	1438			34		6379

Table 2. Canadian catch of G.halibut, by Division, from 1960-2007.

Table 3a. Summary of Canadian catches of G.halibut in 2002 by area

and gear. Table 3a. Summary of Canadian catches of G.halibut in 2002 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Can (N)
2GH	154	7	573		734
2J	389	597	9	35	1030
3K	1304	830	28	771	2933
3L	56	424	8	978	1466
3MO	93		34		127
Tota					
<u> </u>	1996	1858	652	1784	6290

Table 3b. Summary of Canadian catches of G.halibut in 2003 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Total Can
2G			253	5	258
2H		52	160	1685	1897
2J	263	271		196	730
3K	1462	539	2	870	2873
3L	5		5	954	964
30		76	176		252
Tota					
I	1730	938	596	3710	6974

Table 3a. Summary of Canadian catches of G.halibut in 2002 by area and gear.

Table 3a. Summary of Canadian catches of G.halibut in 2002 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Can (N)
2GH	154	7	573		734
2J	389	597	9	35	1030
3K	1304	830	28	771	2933
3L	56	424	8	978	1466
3MO	93		34		127
Tota					
<u> </u>	1996	1858	652	1784	6290

Table 3b. Summary of Canadian catches of G.halibut in 2003 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Total Can
2G			253	5	258
2H		52	160	1685	1897
2J	263	271		196	730
3K	1462	539	2	870	2873
3L	5		5	954	964
30		76	176		252
Tota					
I	1730	938	596	3710	6974

Table 3c. Summary of Canadian catches of G.halibut in 2004 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Total Can
2G			144	3	147
2H	52		131	867	1050
2J	262	533		96	891
3K	173	1231	38	402	1844
3L	208	116	6	464	794
3N			1		1
30		59	83		142
Tota					
I	695	1939	403	1832	4869

Table 3d. Summary of Canadian catches of G.halibut in 2005 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Total Can
2G			39		39
2H	50	286	41	1	378
2J	10	767		940	1717
3K	446	1441		1119	3006
3L	1002	220	2	155	1379
3N		3			3
30		93	19	3	115
Tota					
I	1508	2810	101	2218	6637

	GN <400	GN >400	Longline	Otter trawl	Total Can
2G			102		102
2H	200	134	51	17	402
2J	52	370	5	72	499
3K	292	1373	5	2234	3904
3L	1299	133	2	4	1438
30		24	10		34
Tota					
I	1843	2034	175	2327	6379

Table 3e. Summary of Canadian catches of G.halibut in 2006 by area and gear.

Table 3f. Summary of Canadian catches of G.halibut in 2007 by area and gear.

	GN <400	GN >400	Longline	Otter trawl	Total Can
20		0			
2G		3			3
2H	48	73			121
2J	68	577		1740	2385
3K	576	760		120	1456
3L	881	128		6	1015
30		88	3		91
Tota					
I	1573	1629	3	1866	5339
	Total inclu	des 268 t fo	r Can (SE) -	Div and Gear	unknown

Total includes 268 t for Can (SF) - Div and Gear unknown

		Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tota
	GN<400 fm GN>400 fm								26 36	22 40				48 76
2GH	Otter trawl Longline													
	Total								62	62				124
	GN<400 fm								30	38				6
2J	GN>400 fm				62	28	201	265	21					57
	Otter Trawl	199	455	825	191							10	60	174
	Longline													
	Total	199	455	825	253	28	201	265	51	38		10	60	238
	GN<400 fm						217	359						57
3K	GN>400 fm						495	263		2				76
	Otter Trawl		54	26					40					12
	Longline													
	Total		54	26			712	622	40	2				145
	GN<400 fm							13	729	99	40			88
	GN>400 fm						5	64	56			3		12
3L	Otter Trawl										6			
	Longline													
	Total						5	77	785	99	46	3		101
	Gillnet						31	33	24					8
30	Longline	3												-
	Total	3					31	33	24					ç
	TOTAL	202	509	851	253	28	949	997	962	201	46	13	60	533

Table 4. Breakdown of Canadian catches of G.halibut in SA 2 + Div 3KLMNO in 2007 by area, gear, and month.

						Mear		
Age	OT trawl	GN<400	GN>400	Total	Pct	Len (cm)	Wgt (kg)	S.O.P(t)
3								
4	*			0.1	0.002%	31.9	0.256	0.03
5	23	*		23	0.51%	38.0	0.444	10.2
6	218	36	12	266	5.88%	42.9	0.653	173.7
7	1063	762	318	2142	47.38%	47.3	0.895	1917.1
8	532	551	382	1464	32.38%	51.2	1.144	1674.8
9	95	88	148	330	7.30%	55.5	1.487	490.7
10	60	17	87	164	3.63%	61.1	2.013	330.1
11	15	6	50	71	1.57%	67.0	2.671	189.6
12	2	3	28	33	0.73%	70.3	3.116	102.8
13	2	*	16	19	0.42%	75.1	3.837	72.9
14			5	5.4	0.12%	80.3	4.727	25.5
15			1	1.5	0.03%	84.3	5.501	8.3
16			2	1.7	0.04%	85.1	5.686	9.7
17			*	0.3	0.01%	91.8	7.217	2.2
18			*	0.1	0.002%	92.9	7.466	0.7
19								
	2010	1463	1049	4521.1	100.00%			5008

Table 5. Catch at age for the Canadian catch of G.halibut in SA 2 + Div. 3KLMNO in 2007. Catch at age in thousands of fish. See text for definition of GN gear types. Asterisk represents catch of less than 500 fish. SOP is catch number x mean wgt

Catch 5339

13

Table 6. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized CPUE index for Greenland halibut in NAFO Div. 2HJ3KL. Analysis is based on HOURS FISHED from the Canadian ottertrawl fleet (2007 based on preliminary data).

REGRESSION OF MULTIPLICATIVE MODEL MULTIPLE R 0.789 MULTIPLE R SQUARED 0.623									
ANALYSIS OF VARIANCE									
SOURCE OF VARIATION		SUMS	OF	MEAN SQUARE					
INTERCEPT REGRESSION Cntry Gear TC(Month(Division(Year(1 51 1) 6 2) 11 3) 3 4) 31	2.61 7.83 9.69 2.95 3.11 3.15	E2 E1 E0 E0 E0 E1	2.61E2 1.54E0 1.62E0 2.68E-1 1.04E0 1.02E0	9.155 9.625 1.596 6.179 6.049				
RESIDUALS TOTAL		4.75 3.87		1.68E-1					
	SSION (CIENTS						
CATEGORY		VAR #	REG.		OBS				
Cntry Gear TC Month Division Year	3125 9	INT	-1.206	0.307	335				
(1)	3123 3124 3126	1 2		0.137 0.199 0.135	5				
(2)	3127 3857 27125 1	4 5 6 7	0.769 0.779 0.136	0.128 0.158 0.100	11 25				
(2)	2		0.051 -0.215 -0.093	0.146 0.126 0.114	13 21				
	5 6 7	11 12 13	0.077 -0.020	0.105	36 50				
	8 10 11	14 15 16	-0.193 -0.205	0.118 0.138	21 14				
(3)	12 23 31 32	17 18 19 20	-0.134 -0.340	0.086 0.090	90 139				
(4)	32 77 78 79	20 21 22 23	0.291 0.858	0.347 0.334	5 8				
	80 81 82	23 24 25 26	1.033 0 903	0 322	13 14				
	83	20	0.935	0.327	18				

1.079

0.610

0.384

REG.

#

84

85

86

CATEGORY

28

29

30

VAR

CODE

0.320

0.319

0.335

COEF

12

13

8 STD. NO.

ERR

OBS

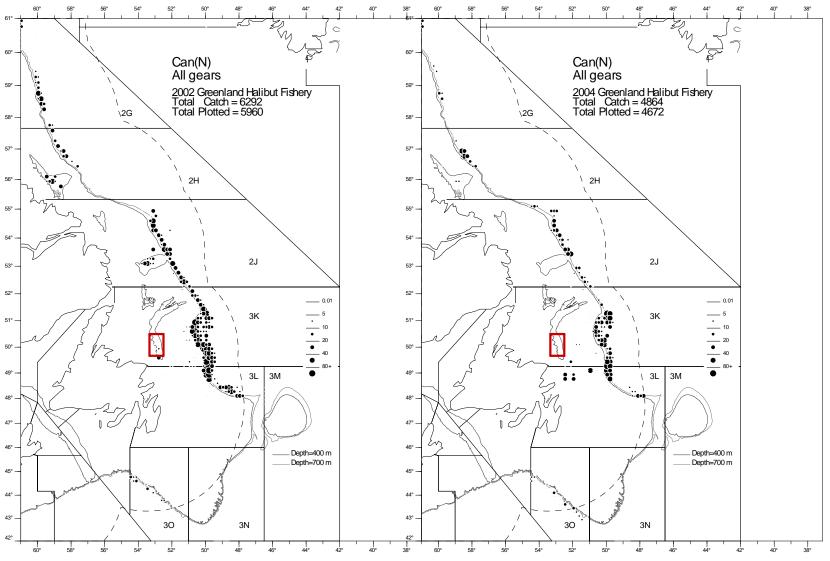
87	31	0.829	0.349	5
88	32	0.065	0.363	4
89	33	0.536	0.341	6
90	34	0.488	0.320	12
91	35	0.148	0.315	16
92	36	0.031	0.313	20
93	37	0.142	0.324	15
94	38	0.225	0.363	4
95	39	0.379	0.416	2
96	40	0.237	0.331	8
97	41	0.600	0.336	7
98	42	0.400	0.418	2
99	43	0.318	0.422	2
100	44	0.492	0.329	9
101	45	0.682	0.317	17
102	46	0.271	0.324	11
103	47	0.170	0.308	28
104	48	0.198	0.312	20
105	49	0.195	0.318	23
106	50	0.697	0.341	10
107	5	51 1	.067	0.349

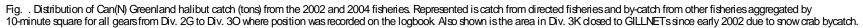
8

LEGEND FOR ANOVA RESULTS:

CGT CODES:	All are St	tern Trawlers	
3123 = Can	(NFLD)	Otter Trawl	TC 3
3124 =	"	"	TC 4
3125 =	"	"	TC 5
3126 =	"	"	TC 6
3127 =	"	"	TC 7
3857 =	" Twi	n Otter Trawl	TC 7
<u>27125 = Can</u>	(M)	Otter Trawl	TC 5

DIVISION CODES:


22 = 2H, 23 = 2J, 31 = 3K, 32 = 3LYEARS 100-107 = 2000-2007


Table 7. Standardized CPUE for Greenland halibut in NAFO 2HJ3KL based on a multiplicative model based utilizing HOURS FISHED as a measure of effort. Results are from the CANADIAN OTTERTRAWL fleet (2007 based on preliminary data).

PREDICTED CATCH RATE

			RETRA				% OF CATCH IN
YEAR	MEAN	S.E.	MEAN	S.E.	CATCH	EFFORT	THIS ANALYSIS
1976	-1.2060	0.0942		0.093	767	2469	9.5
1977	-0.9154	0.0446		0.089		6729	20.9
1978	-0.3478	0.0330	0.756	0.136	3951	5228	30.0
1979	-0.3387	0.0704	0.748	0.195	5183	6925	35.4
1980	-0.1728	0.0256	0.904	0.144	3946	4367	
1981	-0.3026	0.0240	0.794	0.122	6155	7750	59.2
1982	-0.2629	0.0227	0.827	0.124	8143	9848	73.4
1983	-0.2706	0.0174	0.823	0.108	7085	8612	87.4
1984	-0.1268	0.0196	0.949	0.132	6070	6397	90.4
1985	-0.5961	0.0197	0.593	0.083	4847	8168	91.2
1986	-0.8221	0.0292	0.471	0.080	1896	4024	74.6
1987	-0.3768	0.0425	0.731	0.149	2465	3374	85.6
1988	-1.1415	0.0539	0.338	0.078	629	1860	38.8
1989	-0.6703	0.0377	0.546	0.105	988	1809	21.2
1990	-0.7182	0.0227	0.524	0.079	2402	4580	75.9
1991	-1.0577	0.0220	0.374	0.055	3254	8710	70.0
1992	-1.1747	0.0189	0.333	0.046	2502	7517	50.2
1993	-1.0636	0.0281	0.370	0.062	1034	2792	87.7
1994	-0.9812	0.0535	0.397	0.091	575	1448	96.5
1995	-0.8270	0.0939	0.454	0.136	632	1392	56.2
1996	-0.9691	0.0309	0.406	0.071	1043	2566	81.0
1997	-0.6062	0.0348	0.583	0.108	1017	1744	94.7
1998	-0.8060	0.0960	0.463	0.140	46	99	63.0
1999	-0.8881	0.0990	0.426	0.131	81	190	81.5
2000	-0.7141	0.0301	0.525	0.090	1285	2449	99.3
2001	-0.5238	0.0222	0.637	0.095	1833	2877	99.2
2002	-0.9352	0.0265	0.421	0.068	1784	4234	98.7
2003	-1.0363	0.0135	0.383	0.045	3710	9679	89.9
2004	-1.0084	0.0168	0.394	0.051	1832	4656	98.5
2005	-1.0108	0.0256	0.391	0.062	2225	5693	97.8
2006	-0.5090	0.0381	0.642	0.124	2282	3557	97.9
2007	-0.1387	0.0466	0.925	0.198	1865	2016	99.7

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.188

ghi2002+4 zifcat 2g3oLand.ACN

Figure 1



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2006 and 2007 fisheries. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10-minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Also shown is the area in Div. 3K closed to GILLNETs since early 2002 due to snow crab bycatch.

ohl2006+7 zifcat 2d3oLand.ACN

Figure 2

17

60

48

50

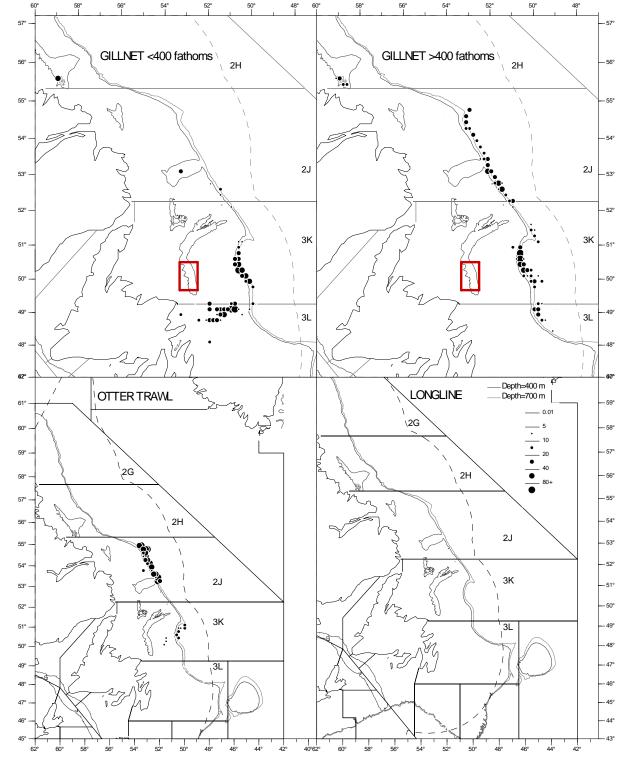


Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2007 commercial fishery. Represented is LONGLINE, GILLNET (<400 fathoms and >400 fathoms) and OTTER TRAWL from both directed and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

Figure 3

gh2007 zifcat bygear.ACN

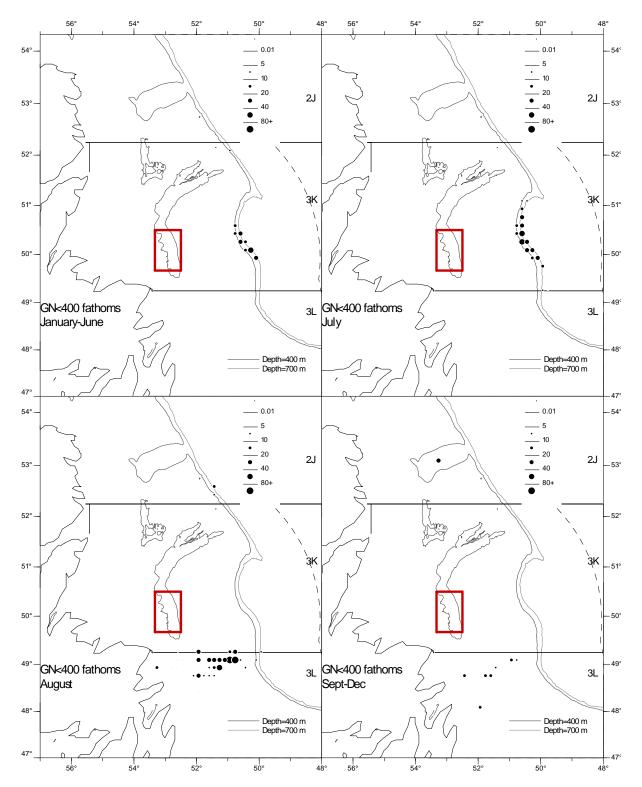


Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2007 commercial fishery. Represented is GILLNET (<400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

Figure 4

gN2006 zifcat GNLE400.ACN

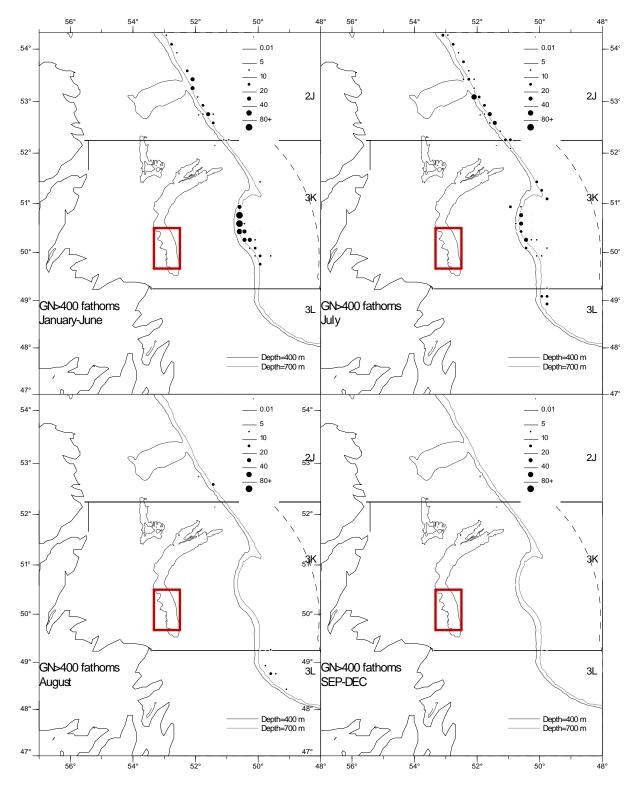


Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2007 commercial fishery. Represented is GILLNET (>400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

gh/2007 zifcat GNGT400.ACN

Figure 5

19

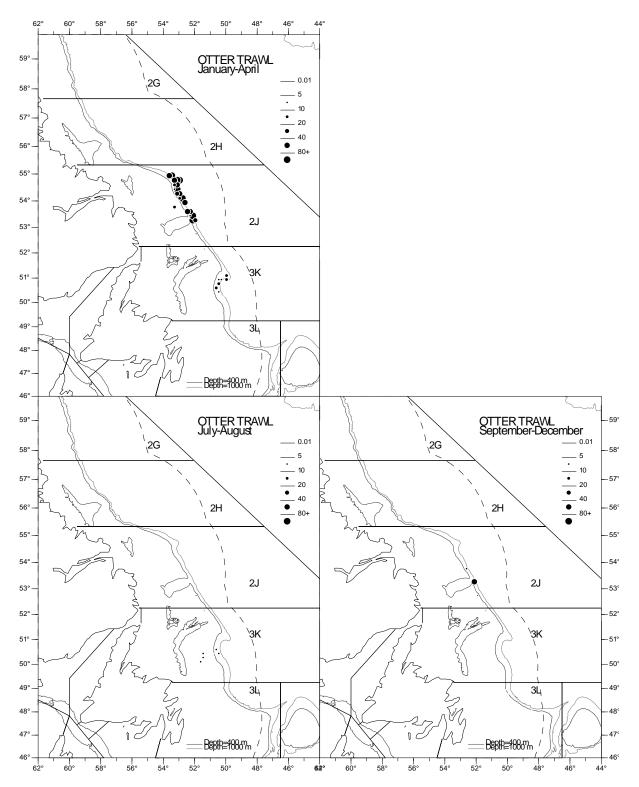


Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2007 commercial fishery. Represented is OTTER TRAWL catch for various months from directed fisheries and by-catch from other fisheries. The data are aggregated by 10-minute square for Div. 2J3KL where position was recorded on the logbook.

Figure 6

ghl2007 zifcat OT.ACN

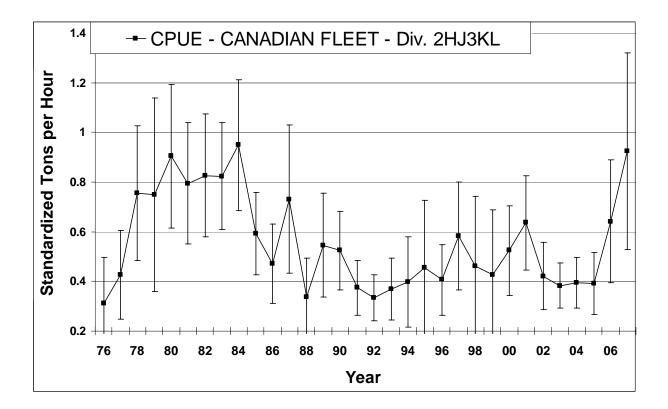


Fig. 7. Standardized Mean CPUE ± 2 standard errors for Greenland Halibut in Div. 2HJ3KL utilizing effort in HOURS fished from the CANADIAN OTTERTRAWL FLEET.