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Abstract 

 
The assessment of the Barents Sea shrimp was made on the basis of the “stock-recruitment” logistic function and the 
Bayesian approach. Calculations were done with different versions of assumptions about possible value of the 
carrying capacity K. Predictive estimates and risk analysis were performed at three eventual exploitation levels: 100, 
200 and 300 thousand tons. 
 
Results of investigations revealed that predictive estimates depended on our assumptions about possible value of K 
rather than on actual yield and survey indices. The fishery factor is not a significant factor in the modelled system. 
 

Introduction 
 
Inherently, the Bayesian approach is based on knowledge of four components (Bayesian methods for Ecology, 
2007). Prior knowledge (prior) and new data (data) obtained during the survey and fishery have been integrated by 
means of a model (model) to acquire a posterior knowledge (posterior). In our case posterior knowledge means 
desired values of parameters in the simulated “stock-fishery” system. These four components can be presented in the 
form of a verbal formula:  
 

                 posteriordataprior ⎯⎯ →⎯+ model                                                (1) 
 
The influence strength of prior and data on posterior is assigned, by the modeller. Having a high-quality set of data, 
we can reduce the influence of prior. And visa versa, under low-information conditions prior (preliminary) 
knowledge of model parameters (prior) may affect the parameter estimation to a greater extent. In both cases we can 
obtain an applicable estimate, for example, for the stock abundance dynamics, calculate the risk of exceeding the 
reference points of management and provide recommendations for further stock exploitation. However, the 
researcher has to fully realize whether the results of his/her estimation were based on actual data or expert 
assumptions that  are subjective in many cases.  
 
This paper is an author’s attempt to gain insight into the effect of our subjective assumptions on final results of the 
assessment of the northern shrimp stock state in the Barents Sea. 
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Method 
 

Modelling framework and state equations 
 
The model was built in a state-space framework (Hvingel, 2007; Hvingel and Kingsley, 2006; Schnute, 1994). 
Model background, formulation, checking, validation and further details are given in Hvingel and Kingsley (2002). 
 
The basic equation was a generalization of the logistic model of population growth (Schaefer, 1954). Its form is: 
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where tB  is the stock biomass at time t, and  r is the population growth rate and K is the maximum population size 
for growth to be positive. The equation describing the state transition from time t to t+1 and parameterised in terms 
of MSY (Maximum Sustainable Yield) rather than r (intrinsic growth rate) (cf. Fletcher 1978): 
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Data and link functions 
 
The model synthesized information from input priors and three independent series of shrimp biomasses and one 
series of shrimp catches (Hvingel, 2007; Table 1). The three series of shrimp biomass indices were: a Norwegian 
standardised series of annual commercial-vessel catch rates for 1980–2006, CPUEt (Hvingel and Aschan 2006); and 
two trawl-survey biomass index for 1982–2004, survRt, (Anon. 2005) and 2004-2006, survEt (Hvingel, 2006). These 
indices were scaled to 3 true biomass by catchability parameters, qC, qR and qE. Lognormal observation errors, ω, κ 
and ε were applied, giving: 

)exp(ωtMSYct PBqCPUE =  

)exp(κtMSYRt PBqsurvR =                                                                (3) 

)exp(εtMSYEt PBqsurvE =  
 

where Pt is the stock biomass relative to biomass at MSY (Pt=Bt/BMSY) in year t. The error terms, ω, κ and ε are 
normally, independently and identically distributed with mean 0 and variance 2

ωσ , 2
κσ  and 2

εσ . 
Total reported catch in ICES Div. I and II 1970-2006 was used as yield data (Table 1). The fishery being without 
major discarding problems or variable misreporting, reported catches were entered into the model as error-free. 
 
Estimation of Parameters (Priors) 
 
According to the equations (2) and (3) prior distributions for parameters P1, MSY, K, qC, qR, qE and observation 
errors should be given to adjust the modelling process. In this paper priors were chosen on the basis of an 
assumption made by Carsten Hvingel and Michel Kingsley when they assessed the northern shrimp stocks off East 
Greenland, in the Barents and North Seas (Table 2). It is apparent that we do not have today any “external” 
information on P1, MSY, K,  qC, qR, qE parameters and observation errors. In this paper priors for these parameters 
were also taken as low-information ones. 
 
Size of initial biomass P1  is  usually   assigned large in absence of intensive fishing. In 1970 the shrimp fishery in the 
Barents Sea took place in costal areas and could not essentially affect the stock dynamics.  The size of initial 
biomass was most likely much above BMSY and   ranged from BMSY to K.   Based on such information we are able to 
assign the prior normally distributed with median =1.5 and variance σ = 0.26. 
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Notwithstanding, the initial value of B1  slightly affects  the results of model indices for last years observations 
provided that observation series is long enough.  We have exercised several calculation   options with different prior 
distributions of B1  but the results of  posterior parameters were similar.  
 
The carrying capacity or maximum population abundance K is a key parameter, whose prior distribution has impact 
on modelling results. In our computations we have used several options of prior distribution of K. First of all we 
applied the principle “let the data speak for themselves” (McAllister and Kirkwood, 1998), i.e we made the 
distribution limits as great as possible in the range from 0 to 10 million tones. Such a principle is usually applied in 
the event where results of calculations with minimum impact of prior probabilities for the parameter p(θ) are to be 
analyzed with  concurrent  increasing the  impact of function of maximum likelihood   In other words, this option of 
calculation demonstrates how much would our input data informative and how they would affect the calculation 
results.  
 
For the subsequent calculation options assumptions of possible value of K were made. By choosing a prior we based 
on the principle advanced by Carsten Hvingel and described in Hvingel (2007).  A prior for K was constructed based 
on an estimated posterior for this parameter from the West Greenland shrimp stock (Hvingel and Kingsley 2006). 
This had a median of 728 ktons and 95% of the distribution between 300 and 2500 ktons. The area of the Barents 
sea is ca. 3.4 times that of the West Greenland area and thus the Greenland estimate of K was multiplied by 3.4 to 
give the K-prior for the Barents Sea, i.e. approximated by a lognormal distribution with median of 2500 ktons and 
95% confidence limits at 800 and 8000 ktons (Table 2; median K = 2500).  Such assumptions were used as basis for 
the option 4 of the calculations. 
 
To investigate the model sensitivity to the parameter K the runs were done with a lognormally distributed prior 
having a median of 625 ktons (option 2 of calculation), 1250 ktons (option 3) and 5000 ktons (option 5) (Table 2). 
 
Risk analysis  
 
Risk analysis was carried out to examine the influence of the prior K on predictive indices.  
Blim was  selected as a reference point for management. It was suggested that a stock was in safe state if risk of its 
reduction  below Blim was  under 5%. In our paper we applied three possible exploitation rates for the forecast years 
which were in line with annual catches of 100, 200 and 300 thousand tons. 
 

Results 
 

Simulation runs with five different options for prior K were done (Fig.1). By choosing an uniform little informative 
prior distribution of K (Fig. 1A) the model could not be tuned using only input data and give an adequate estimate of 
its  posterior distribution. By choosing an informative prior K (Fig. 1 B-E) the estimated results of K were extremely 
similar to its posterior distributions. Because of this, K cannot be reliably estimated using input data only; its 
posterior distribution depends heavily on the chosen prior. 
 
The abundance dynamics has similar trends for all calculation options (Fig. 2). Although the trends agree the 
biomass absolute values for calculation versions 2 and 3 are lower. When calculating with prior K  having a median 
of 2500 thousand tons and  over the values of relative biomass (P) coincide.  
 
The risk estimation for a one-year period showed a low probability (below 1 %) of stock reduction below Blim   for 
estimation options 1-5 with different exploitation rates. The estimation of probability of stock reduction below Blim 
in 5 years is given in Table 3. The value of  stock reduction risk depends heavily both on the chosen prior K and on 
the exploitation rate. The results of prognostic risk estimation for a   ten-year period at the annual catch of 200 ktons 
are showed in Figure 3. 
 
The goodness-of fit of input data   to properties of the production model can be demonstrated by plot of relationship 
between the stock size and production surplus calculated directly from observed indices (Figure 4).    The results of 
calculation option 4  with K=2500 ktons and MSY= 175 ktons were taken as a basis. Factual indices were applied   
to compute the biomass size taking due account of catchability factors calculated by the model. The production was 
calculated by deduction of the biomass in the current year from the next year’s biomass, whereupon the removal was 
added. As shown in Figure 4, the equilibrium curve very approximately describes data, indices and considerable 
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discards which poorly correlate with parabolic dependence of the stock production surplus. The left side of the arc 
for the lack of input data in this area was calculated using our expert assumptions about K -value. 
 

Discussion 
 
Under conditions of poor information security the estimations for parameters are often found using algorithms based 
on the Bayes’ formula when not only observation data are taken as initial information but also prior (preliminary) 
knowledge of model parameters. The approach is based on an attempt to start a statistical inference   with some 
initial assumptions (guesses) of probabilistic distribution of unknown parameters. The values of model parameters 
can be a priori assigned on the basis of estimates obtained, for example, for the same species from different areas or 
for similar species from the same area. With the Bayes’s theorem, one can estimate final (posterior) values of 
parameters with due regard for observation data and preset values of parameters. 
 
Today the assessment of the northern shrimp stock in the Barents Sea by the production model is also based on 
observation data (catch, survey indices) and preset values for the parameter K. According to Figure 2 the abundance 
dynamics of the stock depends on abundance indices rather than on possible values of K. With different prior 
assumptions about possible values of K the character of abundance trends remains unchanged. The application of a 
relative parameter Pt    in studies of abundance dynamics negates any uncertainty about the “catchability» and allows 
an estimate of the absolute abundance to be ignored.  
 
However, the estimate of K   largely influences the biomass absolute abundance (Bt)  that in its turn   has an effect 
on  the results of calculations when predictive estimation  and risk analysis are made. Depending on given possible 
value of K at annual catches of 200 thousand tons the probability of stock reduction below Blim    can increase during 
5 years from 3% to 81% (Table 3).  The character of risk increase in the course of 10 years may also depend heavily 
on the chosen prior K (Figure 4).  
 
The production curve may only approximate input data, which is to say that the fishery factor only slightly affect the 
biomass dynamics of the northern shrimp. Most likely, other factors ignored by the model (e.g. changes in 
recruitment and natural mortality as well as spatial fluctuations) make a greater impact on the dynamics. 
 
From the foregoing it may be concluded that: 
 

1) Predictive estimates depend on our assumptions about possible value of K to a greater extent than on actual 
yield and survey indices. 

2) The fishery factor is not a significant one in the modelled system.  
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Table 1. Model input data series: Catch by the fishery; three indices of shrimp stock biomass – a standardized catch 
rate index based on fishery data (CPUE), a research survey index (the “shrimp survey”) discontinued in 2004 and 
the current “Ecosystem survey” started in 2004. 
 

Year Catch 
(ktons) 

CPUE 
(index) 

Survey1 
(ktons) 

Survey2 
(ktons) 

1970 5.5 - - - 

1971 5.1 - - - 

1972 6.8 - - - 

1973 6.9 - - - 

1974 9 - - - 

1975 8.2 - - - 

1976 10.3 - - - 

1977 24.4 - - - 

1978 36.3 - - - 

1979 36.7 - - - 

1980 46.3 1 - - 

1981 44.6 1.161 - - 

1982 62.8 1.102 327  

1983 104.8 1.257 429  

1984 128.1 1.312 471  

1985 124.5 1.043 246  

1986 65.3 0.629 166  

1987 43.4 0.476 146  

1988 48.7 0.522 181  

1989 62.7 0.681 216  

1990 81.2 0.682 262  

1991 74.9 0.719 321  

1992 68.6 0.828 239  

1993 56.3 0.884 233  

1994 28.3 0.699 161  

1995 25.2 0.615 193  

1996 34.5 0.791 276  

1997 35.7 0.775 300  

1998 55.8 0.934 341  

1999 75.7 0.53 316  

2000 83.2 0.856 247  

2001 57.5 0.859 184  

2002 61.5 0.847 196  

2003 39.2 0.841 212  

2004 40.7 0.752 151 129 

2005 40.7 1.096 - 145 

2006 29.7 1.254 - 188 

2007 28 1.033 - 159 
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Table 2. Priors used in the model. ~ means “distributed as..”, dunif = uniform-, dlnorm = lognormal-, dnorm= 
normal- and dgamma = gammadistributed. Symbols as in text. 
 

 
 
 
 
Table 3. Risk of falling bellow Blim within a five-years perspective and associated with three optional catch level 
given different K options 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Options Prior 

Name Symbol  Type Distribution 

Carrying capacity K 1 reference ~dunif(0,10000) 

  2 informative (median = 625kt) ~dlnorm(6.475,3) 

  3 informative (median = 1250kt) ~dlnorm(7.127,3) 

  4 informative (median = 2500kt) ~dlnorm(7.82,3) 

  5 informative (median = 5000kt) ~dlnorm(7.515,3) 

Maximal Suatainable Yield MSY 1-5 reference ~dunif(1,1000) 

Catchability survey 1 qR  1-5 reference ln(qR)~dunif(-10,1) 

Catchability survey 2 qE  1-5 reference ln(qE)~dunif(-10,1) 

Catchability CPUE qC 1-5 reference ln(qC)~dunif(-10,1) 

Initial biomass ratio P1 1-5 informative ~dnorm(1.5,15) 

Precision survey 1 2/1 Rσ  1-5 reference ~dgamma(4,0.1125) 

Precision survey 2 2/1 Eσ  1-5 reference ~dgamma(4,0.1125) 

Precision CPUE 2/1 Cσ  1-5 reference ~dgamma(4,0.1125) 

Precision model 2/1 Pσ  1-5 reference ~dgamma(0.1,0.1) 

Prior K option 

Catch option 
(ktons) 

100 200 300 

1 reference (~dunif(0,10000)) 1.0 3.1 7.7 
2 informative (median = 625kt) 11.2 81.0 92.5 
3 informative (median = 1250kt) 2.2 37.3 64.4 
4 informative (median = 2500kt) 2.2 8.6 19.1 
5 informative (median = 5000kt) 1.3 3.0 5.8 
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Fig. 1. Probability density distributions of carrying capacity (K): posterior (solid line) and prior (broken line) 
distributions (A – K ~dunif(0,10000); B – median K = 625kt; C – median K = 1250kt; D – median K = 2500kt; E – 
median K = 5000kt). 
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Fig.2. Estimated median biomass trajectories 1970-2007 given different K options (A – K ~dunif(0,10000); B – 
median K = 625kt; C – median K = 1250kt; D – median K = 2500kt; E – median K = 5000kt). 
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Fig.3. Risk of going below  Blim  1970-2007 given 200 kt catch level and different K options (A – K 

~dunif(0,10000); B – median K = 625kt; C – median K = 1250kt; D – median K = 2500kt; E – median K = 5000kt). 
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Fig. 4. Ability of model to define the stock-production curve: annual stock size estimates calculated directly by 
applying the estimated catchabilities to the actual index values, and the corresponding production calculated by 
subtracting biomass in the current year from biomass in the next, then adding catch. The generalized stock-
recruitment curve shown was based on the median of the posteriors of the parameter MSY. 


