# NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)



Serial No. N5674 NAFO SCR Doc. 09/38

### SCIENTIFIC COUNCIL MEETING - JUNE 2009

The Canadian fishery for Greenland halibut in SA 2 + Div. 3KLMNO, with emphasis on 2008.

by

W. B. Brodie, D. Power, and B.P.Healey Science Branch, Department of Fisheries and Oceans P. O. Box 5667, St. John's, Newfoundland, Canada AlC 5Xl

#### **Abstract**

The Canadian catch of Greenland halibut in 2008 in NAFO Subarea 2 and Divisions 3KLMNO was reported to be 4862 tons, about 480 t lower than in 2007. The largest decrease was in the deepwater gillnet fleet, while otter trawl catches increased. Catches in 2008 were again highest in Div 2J, similar to 2007 levels, where almost all of the otter trawl catch was taken, similar in Div 3K, and declined in Div. 3L. About 31% of the catch was taken in June, although almost 80% of the otter trawl catch was taken in January to March. Overall, the catch at age in 2008 was dominated by the 2000 and 2001 year classes, which accounted for 81% of the catch numbers and 76% of the catch weight. Catches in the deepwater gillnet sector have trended toward younger fish since 2001, coincident with the permitted use of smaller mesh in deeper zones in recent years. Mean weights at age in 2008 were similar to previous years. CPUE analysed from logbooks of Canadian trawlers increased by about 40% in 2008, following large increases in 2006 and 2007.

# Review of the Canadian fishery

As reported in several previous documents (e.g. Brodie et.al. 2008), the Canadian fishery for Greenland halibut in Subareas 2 and 3 began in the early 1960s, using gillnets in the deepwater bays of eastern Newfoundland, particularly Trinity Bay. As catches declined here, the effort moved progressively northward in the other bays along the east and northeast coast of Newfoundland. In later years, vessels moved further offshore to the deep channels, such as the area in the central part of Div. 3K known as Funk Island Deep, and eventually to the continental slope. Canadian catches increased from fairly low levels in the early 1960s to almost 32,000 tons in 1980 then declined steadily to between 2900 and 6300 tons in each year from 1993-99 (Table 1). This declining trend was mainly a result of low catch rates and reduced effort, as fishers pursued other species such as snow crab which were more profitable. In 2000, the Canadian catch in NAFO Subarea 2 and Divisions 3KLMNO increased to about 10,600 tons, more than two and a half times the catches in 1998 and 1999. However, catches have declined since then, to a level between 4,800 and 7,000 since 2002. Reasons for fluctuations in catch and effort include a switch of some effort by fishers in Divs. 3KL between snow crab and G.halibut due to changes in quotas and product prices, combined with variable catch rates for Greenland halibut in some of the traditional fishing areas (Brodie et al. 2007).

Canadian catches have been taken mainly by gillnet (Table 1), and most of these gillnet catches are from Div. 3K. This fishery has been conducted mainly by small vessels (<20 m) fishing in the deepwater channels near the Newfoundland and Labrador coast as well as in the deepwater bays, using an average mesh size of about 150 mm. However, Canadian gillnet catches taken during recent years also include those from a substantial fishery along the deep edge of the continental slope. In an attempt to reduce the catch of young Greenland halibut in this deepwater fishery, gillnet mesh size for Greenland halibut in the Canadian zone in depths > 731 m (400 fm) was regulated to be no less than 191 mm, with the exception of Div. 2J. Other restrictions on numbers of nets also exist, as indicated in the tables below, which show the 2007 and 2008 conservation harvesting plans (CHP) regulations in

the Canadian gillnet fishery for Greenland halibut. In 2005-2008, fishers in Div. 3K were permitted to use some 152 mm mesh gillnets in waters deeper than 732 m, but these fishers were then not permitted to fish for G. halibut in depths less than 732 m. The number of nets allowed in depths > 732 m in Div. 2GHJ + 3K was reduced from 500 to 400 in 2007, and further to 250 in 2008.

#### 2007

| Area      | Depth (m) | # of Nets | Min. Mesh |
|-----------|-----------|-----------|-----------|
| 2GH       | 293 - 549 | 125       | 152 mm    |
| 2GH + 3KL | 549 - 732 | 200       | 152       |
| 2GH + 3K  | > 732     | 400       | 191       |
| 2Ј        | > 732     | 400       | 152       |
| 3LMNO     | > 732     | 500       | 191       |

### 2008

| Area      | Depth (m) | # of Nets | Min. Mesh |
|-----------|-----------|-----------|-----------|
| 3L        | 293 - 549 | 125       | 152 mm    |
| 2GH + 3KL | 549 - 732 | 200       | 152       |
| 2GH+3K    | > 732     | 250       | 191       |
| 2Ј        | > 732     | 250       | 152       |
| 3LNO      | > 732     | 500       | 191       |

Gillnet catches during the 1990's ranged from 2400 to 6700 tons, averaging about 4200 tons. Catches in 2000 from this sector then increased to 9300 tons, similar to the levels seen in the late 1980's, but since then have declined to between 2400 and 3900 tons. Since early-2002, an area in the Funk Island Deep region of Div. 3K (see Fig. 1) was closed to gillnetting in order to reduce by-catch of snow crab, and was partly responsible for the decline in gillnet catch. An area of Hawke Channel in Division 2J has also been closed to fishing for some years, due to crab – shrimp fishing interactions. The extent of these areas has undergone modifications over time. Longline catches avartaged about 550 tons from 2002-04, but have generally been < 200 t/year, and often less than 50 t/year.

Canadian otter trawl (OT) catches peaked at about 8,000 tons in 1982, but from 1993 to 1999, catches by this fleet were less than 1050 tons annually. OT catches increased sharply from less than 90 tons in 1998 and 1999, to around 1800 tons in 2001-02 and 2004, but were double this level at just over 3700 tons in 2003 (Table 1). Annual OT catch since then has been in the range of 1800 to 2400 tons. Much of the otter trawl catch after 2002 was in the slope area around the boundary between Divs. 3K and 3L, although almost all otter trawl catch in 2007-08 occurred in Div. 2J. This fishery is conducted mainly by large vessels (>30 m in length), and minimum codend mesh size has been regulated to be 145 mm for several years, in all areas.

Catches from Subarea 2 were very low prior to the mid 1970's, then increased to a peak around 9000 tons in 1982 (Table 2). From 1991 to 2001, catches from Subarea 2 were in the range of 1000 to 2500 tons per year. The catch in SA 2 increased to almost 3000 tons in 2003, due to higher catches in Div. 2GH, and was around this value in 2007-08. Most of the catch from Subarea 2 has come from Div. 2J, although catches in 1993-96 and 2003-04 were higher in Div. 2GH combined compared to Div. 2J. In some cases, fishing in Subarea 2 has been opportunistic, as vessels transit to or from Subarea 0. In most years, Div. 3K has produced the largest Canadian catches, peaking around 18,000 tons in 1979-80. Catches in recent years from Div. 3K have fluctuated between 750 tons (1995) and 5800 tons (2000), with the 2007-08 values being around 1500 tons. Peak catches of around 13,000 tons in Div 3L occurred in 1966-67 and 1980, and averaged about 1300 tons in 2005 to 2007. Catches in Div. 3M, 3N, and 3O combined have generally been in the range of 100 tons or less in recent years, mainly from Div. 3O (Table 2).

### The Canadian fishery in 2008

There were some differences in the spatial and temporal patterns in the Canadian fishery for G.halibut in 2008 compared to those observed in 2007 and other recent years. The total reported catch was just under 4900 tons, a decline of about 10% from 2007, and similar to the 2004 catch. Catches in the both gillnet fleets were lower in 2008, but catches in the otter trawl fleet increased. Some quotas within the Canadian zone are managed using different seasons, and this has

had impacts on the temporal and spatial distribution of catches in recent years, as well as on ability of some fleets to catch all their quota in a given season or area.

Breakdowns of the catch by gear, Division, depth range and month are shown in Tables 3 and 4. In all years except 2008 and 2003, when otter trawls dominated the catches, gillnet was the dominant gear. In 2004 to 2007 the gillnet catches in the shallow zone (<400 fm) were lower than in the deep zone, although the differences were small in 2006 and 2007. However, catches in the deep water gillnet fleet were much reduced in 2008. These gillnet catches are referred to in Tables 3 and 4 as GN<400 and GN>400. GN<400 catches have been stable around 1800 tons in 2006-08. Longline catches declined to less than 25 tons in 2007-08. The main change in the spatial pattern of the fishery in recent years has been the decline in catch in Div 3KL, from over 5300 tons in 2006, to about 2100 tons in 2008. Otter trawl catches occurred primarily in 2J in 2007 and 2008, although there was little consistency in the distribution of OT catches by division in 2004 to 2007. In 2006-08, there was negligible (actually zero in 2008) Canadian catch of G.halibut by otter trawl in Div. 3L, compared to about 1000 tons per year in this area in 2002-03.

Most of the total Canadian catch in 2008 occurred in summer, with just under 1500 tons taken in June, almost all by gillnet. Similar to 2007, a large percentage of otter trawl catches in 2008 occurred before April, although catches were earlier in 2008 than in 2007. The temporal pattern of catch in 2008 was unusual compared to 2005 and 2007, with only a small amount of catch occurring in July (similar to 2006). In 2008, almost all GN catch in Div. 2J and 3K took place in June, compared to July-August in Div. 2GH and 3L. In total, only 4.5 % of the 2008 catch occurred later than August, similar to the 5-6% in 2006-07.

Figs. 1-2 show the location of most of the Canadian catch of Greenland halibut in 2005-08. These data were aggregated by 10-minute squares from logbook records. In all four years, the plotted data account for over 90% of the total Canadian catch. The spatial distributions of the catches in these 4 years were broadly similar (Figs 1-2). One difference between recent years and those prior to 2005 is the recent presence of the gillnet catches in the north-central part of Div. 3L, although less so in 2008, when the fishery was closed early due to cod by-catch (Brodie et al. 2008). This also corresponds with the reduction in catch from the central 3K (Funk Island Deep) area, due to the area closed to gillnetting (Brodie and Power, 2002). This was noted in previous sections, and is shown in Fig. 1, as well as in Power and Brodie (2006), where the closed area, which was not in the regulations in 2001, was overlaid on the 2001 catch.

Fig. 3 shows the location of the 2008 catch by the 4 major gear types (2 gillnet categories, otter trawl, and longline, which were negligible in 2008). Most of the otter trawl fishery in 2008 (Figs 3, 6) was located in one main area, around the slope edge between 53 and 55 degrees N latitude in Div. 2J. In many years, this fishery operated at from the border between Divs. 3K and 3L north to about 51 N. The spatial distribution of the deepwater gillnet fishery in 2008 was similar to recent years, ie. widely distributed along the slope edge, with relatively more effort in Div. 3K, although catches in the fleet sector were much lower in 2008 than in recent years. With the closure of the Funk Island Deep area, the shallow water gillnet catches were more concentrated towards the slope area in 3K in 2002-08 compared to 2001 and earlier (eg. Brodie and Power 2006, and earlier documents). In 2008, much of the shallow water GN catches came from Div 3K, compared to north-central 3L in 2007. As noted above, some smaller mesh gillnets have been allowed in Div. 2J and 3K in recent years. In 2007, gillnet catches were about the same in each of June, July, and August, generally occurring in the early summer in 2J and 3K, and later in Div. 3L (Figs. 4 and 5). This contrasts with 2008, when very little catch was taken in July, and 58% of all GN catches were taken in June, primarily in Div. 3K. The main reason for these variations is a split season used in managing the fixed gear quotas, and how these quotas affect effort in other fisheries (directed at species other than G. halibut). Almost all of the otter trawl catch was taken in January to April in 2008, similar to the patterns in 2006-07, but earlier than in most years (e.g. May to July for the bulk of this fishery in 2005). As in 2006-07, the reasons for this in 2008 were favorable ice conditions, high CPUE, and generally low by-catch of species under moratorium in the winter months (Brodie et al 2008).

## Catch at age

Details on the Canadian catch at age for previous years can be found in Bowering and Brodie (2000), and Brodie et al (2007, 2008) and Brodie and Power (2006; and earlier documents by same authors). Ages 6-8 dominated the Canadian catch in most years, both in the otter trawl and shallow water gillnet fisheries. The catch in the GN>400 fleet has been tending towards smaller fish, as smaller mesh is permitted in deeper areas.

Sampling data collected in 2007 by observers at sea and by port samplers, were available from Divs. 2J, 3KLO. The following table shows the number of length measurements by Division and gear, and the number of otoliths (in italics).

| 2007           | 2J    |     | 3K   |     | 3LO  | 3LO |  |
|----------------|-------|-----|------|-----|------|-----|--|
| Gill net < 400 | 528   |     | 1197 |     | 7330 |     |  |
| Gill net > 400 | 2200  | 201 | 1758 | 273 | 1250 | 490 |  |
| Otter trawl    | 8889  | 226 | 501  |     | 381  | 43  |  |
| Totals         | 11617 | 427 | 3456 | 273 | 8861 | 533 |  |

| 2008           | 2J   |     | 3K   |     | 3LO              |     |
|----------------|------|-----|------|-----|------------------|-----|
| Gill net < 400 |      |     | 2633 |     | 3247             |     |
| Gill net > 400 | 967  | 144 | 1398 | 316 | 451 <sup>1</sup> | 325 |
| Otter trawl    | 4899 | 440 | 255  | 37  | 93               |     |
| Totals         | 5866 | 584 | 4286 | 353 | 3791             | 325 |

<sup>&</sup>lt;sup>1</sup> Linetrawl, Div 3L

The otolith samples from the fixed gear sectors have been combined, as there is a mixture of mesh sizes in the deepwater fisheries. The large number of measurements from the otter trawl catch is due to the requirement for these large vessels to have a high percentage of observer coverage. The total number of length measurements in 2008 was 13,943, a decrease of 42% from 2007 levels, following decreases of 33% and 50% in the previous 2 years. The number of length measurements collected in 2008, from a catch of about 4900 tons, was therefore only 21% of the 2005 total (from a catch of 6637 t). However, with the reduced quotas in 2007-08, and concentration of effort in relatively few gear/month cells (Table 4), most fleet sectors appeared to be adequately sampled for lengths in 2008. The number of otoliths (1262) was 2% higher than in 2007. As usual, it was necessary to combine age-lengths keys across some gear types, Divisions, and seasons to calculate catch at age, as there were not sufficient numbers of otoliths in all individual categories.

Age compositions for the 2008 fishery are presented for both gillnet components (GN<400 and GN>400) as well as for otter trawl (Table 5). The predominant age in the otter trawl catch was 7 (2001 year class), while age 8 (2000 year class) was most abundant in the catches of both gillnet fleets. Ages 7 and 8 were also dominant in these fisheries in all recent years. Overall, the catch at age in 2008 was dominated by the 2000 and 2001 year classes, which accounted for 81% of the catch numbers and 76% of the catch weight. The comparable figures for 2007 for ages 7 and 8 combined were 80 and 72%. In recent years, the catch at age has become more dominated more by these 2 ages (7+8). As was the case in 2000 - 2007, age 8 was second highest in the 2008 catch numbers, while ages 6 and 9 contributed similar numbers. The catch in the GN>400 fleet has been tending towards smaller fish in recent years, as smaller mesh is permitted in deeper areas. For example, only 6-15% of the catch in numbers by this fleet in 2006-08 was estimated to be age 10 or older, compared to 72-80% in 2001 and 2002. In total, only about 1% of the 2008 catch numbers were from fish older than 10 years. A longline sample from Div. 30 in March of 2008 contained much larger fish than length frequencies collected from other fleet sectors, which is not unusual for longline catches. Fish from that sample had an average weight of 3.1 kg, compared to 1.1 kg from the otter trawl fishery in Div. 2J. However, there was negligible impact on the overall catch at age, as longline catches totaled only 24 tons in 2008.

Mean weights at age for all areas were calculated using the same length-weight relationship used for Greenland halibut catch at age in 1998-2007, which was the Divisions-combined, year = 1997 (from Gundersen and Brodie 1999). Weights at ages 5 to 7 in 2008 were slightly higher than in 2005 and 2006, with those at ages 8-10 being very similar to the previous 2 years (Brodie and Power 2007). Beyond age 10 there are few fish in the catch, and weights at these ages are often variable between years. The sum of products was about 8% lower than the catch weight, which is a larger difference than usual. This may be related to the larger proportion of fish caught in the first quarter of the year.

### **CPUE**

Catch and effort data from the Canadian otter trawl fishery directed for Greenland halibut during the period 1975 to 2002 were obtained from the NAFO STATLANT 21B database were combined with data from 2003-2008 from Canada (N) logbook (ZIFF) records. The catch/effort data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index based on an hours-fished measure of effort. Ln (CPUE) was the dependent variable in the model. Independent variables (category types) were: (1) a combination country-gear-tonnage-class category type (CGT), (2) month, (3) NAFO Division and (4) Year. Consistent with previous catch rate standardizations (e.g. Power, 2004), individual observations with catch less than 10 tons or effort less than 10 hours were eliminated prior to analysis. Subsequently, within each dependent variable, categories with arbitrarily less than five observations were also eliminated, with the exception of the variable "year", which is the purpose of the standardization. The advantage of running the Gavaris model is the derived standardized index is retransformed into the original units of fishing effort and can be computed for any chosen combination of the main factors.

After the selection criteria were applied, the percentage of otter trawl catch with hours fished effort utilized in the analysis ranged from 10% in 1976 to at least 90% from 2000-2008, and averaged 92% since 1995. In recent years, there was sufficient data available from the tonnage class 4 trawlers, and, the tonnage class 7 trawlers utilizing twin trawls for inclusion in the standardization. The twin trawls were introduced in 2003 but have accounted for less than 11% of the otter trawl catch with the exception of 2005 when they took 32%, however, twin trawls were not used since 2006.

Residual plots (not shown) did not indicate model misspecification. The model resulted in a significant regression (P < 0.05) explaining 66% of the variation in catch rates (Table 6). Based on the regression coefficients, over the entire time series, catch rates were better in late summer and higher in Div. 2H. The fishing power of the large trawlers (TC 7) is the highest with no difference between single and twin trawls.

The standardized catch rate series (Table 7, Fig. 7) shows much between-year variability. CPUE more than doubled from 1976 to 1978, probably as a result of captains learning a relatively new fishery, then showed a period of stability to 1984, during which time some of the highest catch rates were realized. CPUE declined by about two-thirds from 1984 to 1992 although there were some sporadic increases over this period. The 1992 value was near the lowest in the series, but catch rates increased gradually to 2001, doubling over this period. Catch rate declined sharply in 2002, remained stable to 2005 which was only slightly higher than the lowest catch rate estimated over the 32 year series. Over the next three years to 2008, the index increased rapidly, by over 240%, and is currently the highest in the series. These most recent increases are associated with large variability within each year.

Additional analysis was conducted on CPUE series in 2009, as reported in the Greenland halibut WG which met June 1-3. This analysis suggested that increased CPUE may be partly due to fleets moving to areas of higher fish densities. In any case, Scientific Council has not accepted any CPUE series as indices of abundance for this stock.

#### References

Bowering, W. R., and W. B. Brodie. 2000. Calculation of catch-at-age for commercially caught Greenland halibut in NAFO Subarea 2 and Divisions 3KLMNO during 1975-99 with particular emphasis on construction of the catch-at-age matrix since 1989. NAFO SCR Doc. 00/24.

Brodie, W. B. and D. Power. 2001. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2000. NAFO SCR Doc. 01/65, Ser. No. N4443, 13 p.

Brodie, W. B. and D. Power. 2002. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2001. NAFO SCR Doc. 02/39, Ser. No. N4650, 12 p.

Brodie, W. B. and D. Power. 2003. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2002. NAFO SCR Doc. 03/36, Ser. No. N4854, 14 p.

Brodie, W. B. and D. Power. 2004. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2003. NAFO SCR Doc. 04/33, Ser. No. N4983, 14p.

Brodie, W. B. and D. Power. 2005. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2004. NAFO SCR Doc. 05/62, Ser. No. N5148, 16p.

Brodie, W. B. and D. Power. 2006. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2005. NAFO SCR Doc. 06/47, Ser. No. N5273, 19p.

Brodie, W. B., D. Power and B. P.Healey. 2007. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2006. NAFO SCR Doc. 07/50, Ser. No. N5402, 20p.

Brodie, W. B., D. Power and B. P.Healey. 2008. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2007. NAFO SCR Doc. 08/47, Ser. No. N5549, 21p.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.

Gundersen, A.C. and W.B.Brodie. 1999. Length-weight relationships of Greenland halibut in NAFO Divisions 2GHJ and 3KLMNO, 1990-97. NAFO SCR Doc. 99/31, Ser. No. N4087.

Orr, D.C., P. Veitch, and D. Sullivan. 2002. An update of information pertaining to northern shrimp (*Pandalus borealis* Kroyer) and groundfish in NAFO Divisions 3LNO. NAFO SCR Doc. 02/160, Ser. No. N4789, 55 p.

| Table 1. | Canadian | catch of G.ha | alibut, by | gear typ | e, from 1960-2 | 2008.  |
|----------|----------|---------------|------------|----------|----------------|--------|
|          |          |               | GEAR       |          |                | Canada |
| YEAR     | GILLNET  | LONGLINE      | MISC       | UNSP     | OT TRAWL       | TOTAL  |
| 1960     | GILLIAL  | LONGLINE      | 191100     | 660      | 01 11 00 11 12 | 660    |
| 1961     |          |               |            | 741      |                | 741    |
| 1962     |          |               |            | 586      |                | 586    |
| 1963     |          | 5             |            | 771      |                | 776    |
| 1964     |          |               |            | 1757     |                | 1757   |
| 1965     |          |               |            | 8082     |                | 8082   |
| 1966     | 257      | 194           | 15         | 15640    | 120            | 16226  |
| 1967     | 93       | 144           | 95         | 15478    | 798            | 16608  |
| 1968     |          | 94            |            | 12766    | 493            | 13353  |
| 1969     | 9980     | 850           | 69         | 412      | 245            | 11556  |
| 1970     | 9818     | 371           | 119        | 318      | 85             | 10711  |
| 1971     | 8947     | 153           | 55         | 180      | 75             | 9410   |
| 1972     | 8775     | 34            | 22         | 50       | 71             | 8952   |
| 1973     | 6546     | 35            | 70         | 102      | 95             | 6848   |
| 1974     | 5500     | 49            | 16         | 8        | 184            | 5757   |
| 1975     | 7510     | 3             | 53         | 1        | 247            | 7814   |
| 1976     | 8500     | 6             | 41         |          | 767            | 9314   |
| 1977     | 15038    | 33            | 36         |          | 2866           | 17973  |
| 1978     | 20622    | 46            | 83         |          | 3951           | 24702  |
| 1979     | 24550    | 116           | 116        |          | 5183           | 29965  |
| 1980     | 27703    | 128           | 57         |          | 3946           | 31834  |
| 1981     | 17927    | 55            | 43         |          | 6155           | 24180  |
| 1982     | 11038    | 69            | 59         |          | 8143           | 19309  |
| 1983     | 9911     | 58            | 73         |          | 7085           | 17127  |
| 1984     | 11100    | 27            | 100        |          | 6070           | 17297  |
| 1985     | 7422     | 2             | 42         |          | 4847           | 12313  |
| 1986     | 6293     | 7             | 20         |          | 1896           | 8216   |
| 1987     | 10849    | 22            | 115        |          | 2465           | 13451  |
| 1988     | 7715     | 70            | 53         |          | 629            | 8467   |
| 1989     | 10956    | 16            | 35         |          | 988            | 11995  |
| 1990     | 6732     | 18            | 15         |          | 2402           | 9167   |
| 1991     | 3440     | 36            | 9          |          | 3254           | 6739   |
| 1992     | 4470     | 30            | 1          |          | 2502           | 7003   |
| 1993     | 3863     | 4             | 5          |          | 1034           | 4906   |
| 1994     | 2378     |               |            |          | 575            | 2953   |
| 1995     | 2602     | 1             |            |          | 632            | 3235   |
| 1996     | 5134     | 1             |            | 1        | 1043           | 6179   |
| 1997     | 5202     | 61            |            |          | 1017           | 6280   |
| 1998     | 3963     | 108           | 4          |          | 46             | 4121   |
| 1999     | 3870     | 65            |            |          | 81             | 4016   |
| 2000     | 9271     | 18            | 5          | 14       | 1285           | 10593  |
| 2001     | 6395     | 123           | 14         |          | 1833           | 8365   |
| 2002     | 3854     | 652           |            |          | 1784           | 6290   |
| 2003     | 2668     | 596           |            |          | 3710           | 6974   |
| 2004     | 2634     | 403           |            |          | 1832           | 4869   |
| 2005     | 4317     | 101           | 1          |          | 2218           | 6637   |
| 2006     | 3848     | 175           |            |          | 2356           | 6379   |
| 2007     | 3202     | 3             |            | 268      | 1866           | 5339   |
| 2008     | 2409     | 24            |            |          | 2429           | 4862   |
|          |          |               |            |          |                |        |

|      |      |      |      |        |       | DIVISIO | N    |     |     |      | Canada |
|------|------|------|------|--------|-------|---------|------|-----|-----|------|--------|
| YEAR | 2G   | 2H   | 2J   | 54.2   | 3K    | 3L      | 3M   | 3N  | 30  | Unk  |        |
| 1960 | - 20 | 211  | - 20 | L0-3 E | 610   | 50      | 3171 | 314 | -30 | Olik | 660    |
| 1961 |      |      |      |        | 613   | 128     |      |     |     |      | 741    |
| 1962 |      |      |      |        | 479   | 107     |      |     |     |      | 586    |
| 1963 |      |      |      |        | 592   | 184     |      |     |     |      | 776    |
| 1964 |      |      |      |        | 870   | 887     |      |     |     |      | 1757   |
| 1965 |      |      |      |        | 2129  | 5953    |      |     |     |      | 8082   |
| 1966 |      |      |      |        | 3691  | 12518   |      | 17  |     |      | 16226  |
| 1967 |      |      | 7    | 7      | 2892  | 13705   |      | 1   | 3   |      | 16608  |
| 1968 |      |      | 53   | 53     | 3672  | 9597    |      | 31  |     |      | 13353  |
| 1969 |      |      | - 33 | 0      | 7140  | 4413    |      | 1   | 2   |      | 11556  |
| 1970 |      |      | •    | 0      | 5937  | 4769    |      | 5   |     |      | 10711  |
| 1971 |      |      | •    | 0      | 4160  | 5248    |      | 2   |     |      | 9410   |
| 1972 |      |      | •    | 0      | 4736  | 4216    |      |     |     |      | 8952   |
| 1973 |      |      | 5    | 5      | 3602  | 3233    |      | 1   | 7   |      | 6848   |
| 1974 |      |      | 19   | 19     | 2817  | 2909    |      | 9   | 3   |      | 5757   |
| 1975 |      |      | 22   | 22     | 3245  | 4540    |      | 7   | J   |      | 7814   |
| 1976 | 62   | 168  | 153  | 383    | 4779  | 4144    | 1    | 7   |     |      | 9314   |
| 1977 | 02   | 72   | 419  | 497    | 10751 | 6725    | 1    | 2   | 3   |      | 17973  |
| 1978 |      | 14   | 1255 | 1269   | 15875 | 7548    | 1    | 5   | 4   |      | 24702  |
| 1979 |      | 34   | 3163 | 3797   | 18165 | 8578    | 2    | 17  | 6   |      | 29965  |
| 1980 |      | 217  | 1157 | 1374   | 17658 | 12742   | 14   | 43  | 3   |      | 31834  |
| 1981 | 10   | 41   | 862  | 973    | 14379 | 8833    | - 17 | 49  | 6   |      | 24180  |
| 1982 | 15   | 5155 | 3942 | 9772   | 6031  | 4105    |      | 55  | 6   |      | 19309  |
| 1983 | 13   | 2578 | 2238 | 4816   | 7679  | 4618    |      | 12  | 2   |      | 17127  |
| 1984 |      | 1913 | 2796 | 4709   | 7496  | 5078    |      | 12  | 2   |      | 17297  |
| 1985 |      | 1758 | 3101 | 4859   | 4395  | 3023    |      | 35  | 1   |      | 12313  |
| 1986 |      | 82   | 2476 | 2558   | 2886  | 2769    |      | 2   | 1   |      | 8216   |
| 1987 |      | 6    | 4143 | 4149   | 4740  | 4561    |      | 1   | - ' |      | 13451  |
| 1988 | 45   | 27   | 1867 | 1939   | 4591  | 1921    | 2    | 12  | 2   |      | 8467   |
| 1989 | 73   | 190  | 2635 | 2825   | 6342  | 2809    | 6    | 10  | 3   |      | 11995  |
| 1990 | 57   | 171  | 2798 | 3026   | 4075  | 2020    | 38   | 4   | 4   |      | 9167   |
| 1991 | 31   | 50   | 3008 | 3058   | 2215  | 1291    | 157  | 11  | 7   |      | 6739   |
| 1992 | 428  | 230  | 476  | 1134   | 3882  | 1951    | 4    | 10  | 22  |      | 7003   |
| 1993 | 557  | 403  | 214  | 1174   | 2398  | 880     | 7    | 19  | 435 |      | 4908   |
| 1994 | 1045 | 210  | 203  | 1458   | 1032  | 258     |      | 1   | 204 |      | 2953   |
| 1995 | 1006 | 453  | 709  | 2168   | 754   | 197     |      | - ' | 116 |      | 3235   |
| 1996 | 688  | 639  | 1058 | 2385   | 2567  | 888     |      |     | 339 |      | 6179   |
| 1997 | 370  | 619  | 1513 | 2502   | 2659  | 935     |      |     | 184 |      | 6280   |
| 1998 | 358  | 418  | 1234 | 2010   | 1374  | 633     |      | 1   | 103 |      | 4121   |
| 1999 | 65   | 103  | 1094 | 1262   | 1940  | 683     |      | - ' | 131 |      | 4018   |
| 2000 | 45   | 81   | 1152 | 1278   | 5845  | 2901    | 1    | 1   | 567 |      | 10593  |
| 2001 | 63   | 251  | 1030 | 1344   | 3999  | 2666    | - 1  | 9   | 347 |      | 8365   |
| 2002 | 374  | 360  | 1030 | 1764   | 2933  | 1466    | 15   | 3   | 112 |      | 6290   |
| 2002 | 258  | 1897 | 730  | 2885   | 2873  | 964     | 13   |     | 252 |      | 6974   |
| 2003 | 147  | 1050 | 891  | 2000   | 1844  | 794     |      | 1   | 142 |      | 4869   |
| 2004 | 39   | 378  | 1717 | 2134   | 3006  | 1379    |      | 3   | 115 |      | 6637   |
| 2006 | 102  | 402  | 499  | 1003   | 3904  | 1438    |      | J   | 34  |      | 6379   |
| 2007 | 3    | 121  | 2648 | 2772   | 1456  | 1015    |      | 5   | 92  |      | 5340   |
| 2007 | 10   | 158  | 2591 | 2759   | 1435  | 645     |      | 4   | 19  |      | 4862   |

| Table 3a. S                | Summary of Ca            | nadian catche    | es of G.halibu | t in 2002 by area | and gear.                        | Table 3b. S | ummary of Ca  | nadian catche | es of G.halibu | t in 2003 by are | a and gear.        |
|----------------------------|--------------------------|------------------|----------------|-------------------|----------------------------------|-------------|---------------|---------------|----------------|------------------|--------------------|
|                            |                          |                  |                |                   |                                  |             | GN <400       | GN >400       | Longline       | Otter trawl      | Total Can          |
|                            | GN <400                  | GN >400          | Longline       | Otter trawl       | Can (N)                          | 0.0         |               |               | 050            | -                | 050                |
| 2011                       | 454                      | -                | 570            |                   | 704                              | 2G          |               | 50            | 253            | 5                | 258                |
| 2GH                        | 154                      | 7                | 573            |                   | 734                              | 2H          | 000           | 52            | 160            | 1685             | 1897               |
| 2J                         | 389                      | 597              | 9              | 35                | 1030                             | 2J          | 263           | 271           |                | 196              | 730                |
| 3K                         | 1304                     | 830              | 28             | 771               | 2933                             | 3K          | 1462          | 539           | 2              | 870              | 2873               |
| 3L                         | 56                       | 424              | 8              | 978               | 1466                             | 3L          | 5             | 70            | 5              | 954              | 964                |
| 3MO                        | 93                       | 1050             | 34             | 1704              | 127                              | 30          | 1700          | 76            | 176            | 2710             | 252<br><b>6974</b> |
| Total                      | 1996                     | 1858             | 652            | 1784              | 6290                             | Total       | 1730          | 938           | 596            | 3710             | 6374               |
| Table 3c. S                | Summary of Ca            | nadian catch     | es of G.halibu | t in 2004 by area | and gear.                        | Table 3d. S | ummary of Ca  | nadian catch  | es of G.halibu | t in 2005 by are | a and gear.        |
|                            | GN <400                  | GN >400          | Longline       | Otter trawl       | Total Can                        |             | GN <400       | GN >400       | Longline       | Otter trawl      | Total Can          |
| 2G                         |                          |                  | 144            | 3                 | 147                              | 2G          |               |               | 39             |                  | 39                 |
| 2H                         | 52                       |                  | 131            | 867               | 1050                             | 2H          | 50            | 286           | 41             | 1                | 378                |
| 2J                         | 262                      | 533              |                | 96                | 891                              | 2J          | 10            | 767           |                | 940              | 1717               |
| 3K                         | 173                      | 1231             | 38             | 402               | 1844                             | 3K          | 446           | 1441          |                | 1119             | 3006               |
| 3L                         | 208                      | 116              | 6              | 464               | 794                              | 3L          | 1002          | 220           | 2              | 155              | 1379               |
| 3N                         |                          |                  | 1              |                   | 1                                | 3N          |               | 3             |                |                  | 3                  |
| 30                         |                          | 59               | 83             |                   | 142                              | 30          |               | 93            | 19             | 3                | 115                |
| Total                      | 695                      | 1939             | 403            | 1832              | 4869                             | Total       | 1508          | 2810          | 101            | 2218             | 6637               |
|                            |                          |                  |                |                   |                                  |             |               |               |                |                  |                    |
| Table 3e. S                | Summary of Ca            | nadian catch     | es of G.halibu | t in 2006 by area | and gear.                        | Table 3f. S | ummary of Car | iadian catche | s of G.halibut | in 2007 by area  | a and gear.        |
|                            | GN <400                  | GN >400          | Longline       | Otter trawl       | Total Can                        |             | GN <400       | GN >400       | Longline       | Otter trawl      | Total Can          |
| 2G                         |                          |                  | 102            |                   | 102                              | 2G          |               | 3             |                |                  | 3                  |
| 2H                         | 200                      | 134              | 51             | 17                | 402                              | 2H          | 48            | 73            |                |                  | 121                |
| 2J                         | 52                       | 370              | 5              | 72                | 499                              | 2J          | 331           | 577           |                | 1740             | 2648               |
| 3K                         | 292                      | 1373             | 5              | 2234              | 3904                             | 3K          | 576           | 760           |                | 120              | 1458               |
| 3L                         | 1299                     | 133              | 2              | 4                 | 1438                             | 3L          | 881           | 128           |                | 6                | 1015               |
| 30                         |                          | 24               | 10             |                   | 34                               | 3N          |               |               | 5              |                  | 5                  |
| Total                      | 1843                     | 2034             | 175            | 2327              | 6379                             | 30          |               | 88            | 4              |                  | 92                 |
|                            |                          |                  |                |                   |                                  | Total       | 1836          | 1629          | 9              | 1866             | 5340               |
|                            |                          |                  |                |                   |                                  |             |               | Includes 269  | t for Can (SF) |                  |                    |
| Table 3g. S                | Summary of Ca            | nadian catch     | es of G.halibu | t in 2008 by area | and gear.                        |             |               |               |                |                  |                    |
|                            |                          |                  |                | a                 |                                  |             |               |               |                |                  |                    |
|                            | GN <400                  | GN >400          | Longline       | Otter trawl       | Total Can                        |             |               |               |                |                  |                    |
| 2G                         |                          |                  | Longline       | Utter trawl       | 10                               |             |               |               |                |                  |                    |
| 2H                         | 122                      | 36               | Longline       | 10                | 10<br>158                        |             |               |               |                |                  |                    |
| 2H<br>2J                   | 122<br>27                | 36<br>210        | Longline       | 10<br>2354        | 10<br>158<br>2591                |             |               |               |                |                  |                    |
| 2H<br>2J<br>3K             | 122<br>27<br>1054        | 36<br>210<br>316 |                | 10                | 10<br>158<br>2591<br>1435        |             |               |               |                |                  |                    |
| 2H<br>2J<br>3K<br>3L       | 122<br>27                | 36<br>210        | 1              | 10<br>2354        | 10<br>158<br>2591<br>1435<br>645 |             |               |               |                |                  |                    |
| 2H<br>2J<br>3K<br>3L<br>3N | 122<br>27<br>1054        | 36<br>210<br>316 | 1 4            | 10<br>2354        | 10<br>158<br>2591<br>1435<br>645 |             |               |               |                |                  |                    |
| 2H<br>2J<br>3K<br>3L       | 122<br>27<br>1054<br>610 | 36<br>210<br>316 | 1              | 10<br>2354        | 10<br>158<br>2591<br>1435<br>645 |             |               |               |                |                  |                    |

|     |             | Jan | Feb | Mar | Anr | May | Jun  | Jul | Aug | Con | Oct | Nov | Dec | Total     |
|-----|-------------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----------|
|     |             | Jan | гев | Mar | Apr | мау | Jun  | Jui | Aug | Sep | UCC | MOA | Dec | ruta      |
|     | GN<400 fm   |     |     |     |     |     |      |     | 122 |     |     |     |     | 122       |
|     | GN>400 fm   |     |     |     |     |     |      |     | 36  |     |     |     |     | 122<br>38 |
| 2GH | Otter trawl |     |     |     |     |     |      | 10  |     |     |     |     |     | 10        |
|     | Longline    |     |     |     |     |     |      |     |     |     |     |     |     |           |
|     | Total       |     |     |     |     |     |      | 10  | 158 |     |     |     |     | 16        |
|     | GN<400 fm   |     |     |     |     |     |      |     | 27  |     |     |     |     | 27        |
| 2J  | GN>400 fm   |     |     |     |     |     | 202  |     | 8   |     |     |     |     | 210       |
|     | Otter Trawl | 770 | 646 | 436 |     | 281 | 80   |     |     |     |     |     | 141 | 2354      |
|     | Longline    |     |     |     |     |     |      |     |     |     |     |     |     |           |
|     | Total       | 770 | 646 | 436 |     | 281 | 282  |     | 35  |     |     |     | 141 | 2591      |
|     | GN<400 fm   |     |     |     |     |     | 908  | 7   | 138 | 1   |     |     |     | 1054      |
| 3K  | GN>400 fm   |     |     |     |     |     | 264  | 14  | 38  |     |     |     |     | 316       |
|     | Otter Trawl |     | 5   | 52  |     | 8   |      |     |     |     |     |     |     | 65        |
|     | Longline    |     |     |     |     |     |      |     |     |     |     |     |     |           |
|     | Total       |     | 5   | 52  |     | 8   | 1172 | 21  | 176 | 1   |     |     |     | 1435      |
|     | GN<400 fm   |     |     |     |     |     | 12   | 261 | 261 | 55  | 21  |     |     | 610       |
|     | GN>400 fm   |     |     |     |     |     |      | 34  |     |     |     |     |     | 34        |
| 3L  | Otter Trawl |     |     |     |     |     |      |     |     |     |     |     |     |           |
|     | Longline    |     |     |     |     | 1   |      |     |     |     |     |     |     | 1         |
|     | Total       |     |     |     |     | 1   | 12   | 295 | 261 | 55  | 21  |     |     | 645       |
|     | Gillnet     |     |     |     |     |     |      |     |     |     |     |     |     |           |
| 3NO | Longline    | 7   | 2   | 8   | 5   |     |      |     | 1   |     |     |     |     | 23<br>23  |
|     | Total       | 7   | 2   | 8   | 5   |     |      |     | 1   |     |     |     |     | 23        |
|     | TOTAL       | 777 | 653 | 496 | 5   | 290 | 1466 | 326 | 631 | 56  | 21  |     | 141 | 4862      |

| Table 5. Catch at age for the Canadian catch of G.halibut in SA 2 + Div. 3KLMNO in 2008. |  |
|------------------------------------------------------------------------------------------|--|
| Catch at age in thousands of fish. See text for definition of GN gear types.             |  |
| Asterisk represents catch of less than 500 fish. SOP is catch number x mean wgt.         |  |
| Total includes 24 t of longline catch, not shown by gear-type in the table               |  |

|     |          |        |        |       |         | Mea      | an       |          |
|-----|----------|--------|--------|-------|---------|----------|----------|----------|
| Age | OT trawl | GN<400 | GN>400 | Total | Pct     | Len (cm) | Wgt (kg) | S.O.P(t) |
| 3   |          |        |        |       |         |          |          |          |
| 4   | 1        |        |        | 0.7   | 0.02%   | 32.5     | 0.270    | 0.2      |
| 5   | 15       | 1      | *      | 15    | 0.36%   | 37.2     | 0.424    | 6.4      |
| 6   | 275      | 32     | 3      | 311   | 7.50%   | 43.0     | 0.660    | 205.3    |
| 7   | 1291     | 666    | 87     | 2044  | 49.27%  | 47.7     | 0.916    | 1872.3   |
| 8   | 482      | 729    | 99     | 1310  | 31.57%  | 51.8     | 1.186    | 1553.7   |
| 9   | 128      | 148    | 52     | 329   | 7.93%   | 56.6     | 1.566    | 515.2    |
| 10  | 43       | 19     | 33     | 97    | 2.34%   | 61.1     | 2.006    | 194.6    |
| 11  | 16       | 1      | 5      | 23    | 0.55%   | 67.6     | 2.749    | 63.2     |
| 12  | 6        | *      | 3      | 10    | 0.24%   | 71.3     | 3.255    | 32.6     |
| 13  | 4        |        | 1      | 7     | 0.17%   | 77.3     | 4.203    | 29.4     |
| 14  | 1        |        | *      | 2     | 0.05%   | 76.7     | 4.089    | 8.2      |
| 15  |          |        | *      | 0.2   | 0.005%  | 86.0     | 5.831    | 1.2      |
| 16  |          |        |        |       |         |          |          |          |
| 17  |          |        |        |       |         |          |          |          |
| 18  |          |        |        |       |         |          |          |          |
| 19  |          |        |        |       |         |          |          |          |
|     | 2262     | 1596   | 283    | 4149  | 100.00% |          |          | 4482     |
|     |          |        |        |       |         |          | Catch    | 4862     |

Table 6. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized CPUE index for Greenland halibut in NAFO Div. 2HJ3KL. Analysis is based on HOURS FISHED from the Canadian ottertrawl fleet (2008 based on preliminary data).

| REGRE<br>MULTIPLE R.<br>MULTIPLE R                            | <br>SQUARI    | <br>ED                               | . 0            | ATIVE MOD<br>.811<br>.658                       | DEL              |
|---------------------------------------------------------------|---------------|--------------------------------------|----------------|-------------------------------------------------|------------------|
| ANALYSIS OF                                                   |               |                                      |                |                                                 |                  |
| SOURCE OF<br>VARIATION                                        | DF<br>        | SUMS<br>SQUAR                        | ES             | MEAN<br>SQUARE                                  | F-VALUE          |
| INTERCEPT<br>REGRESSION<br>Cntry Gear TC<br>Month<br>Division | 1<br>52<br>6  | 2.50<br>9.22<br>1.01<br>2.68<br>3.05 | E2<br>E1<br>E1 | 2.50E2<br>1.77E0<br>1.68E0<br>2.44E-1<br>1.02E0 | 10.643<br>10.104 |
| RESIDUALS<br>TOTAL                                            | 288<br>341    | 4.80<br>3.90                         |                | 1.67E-1                                         |                  |
| REGRES                                                        |               |                                      | CIENTS         |                                                 |                  |
|                                                               |               |                                      | DEC            | CTD                                             | NO               |
| CATEGORY                                                      | CODE          |                                      |                | STD.<br>ERR                                     |                  |
| Cntry Gear TC                                                 | 3125          |                                      |                | 0.305                                           |                  |
| Month<br>Division                                             | 9<br>22       |                                      |                |                                                 |                  |
| Year                                                          | 76            |                                      |                |                                                 |                  |
| (1)                                                           | 3123          | 1                                    |                | 0.136                                           | 12               |
|                                                               |               | 2                                    |                |                                                 |                  |
|                                                               | 3126          | 3                                    | 0.017          | 0.130                                           |                  |
|                                                               |               | 4                                    | 0.768          | 0.124                                           |                  |
|                                                               | 3857<br>27125 | 6                                    | 0.778<br>0.138 | 0.157<br>0.099                                  |                  |
| (2)                                                           | 1             |                                      |                | 0.142                                           |                  |
| (-)                                                           | 2             | 8                                    | 0.056          |                                                 |                  |
|                                                               | 3             | 9                                    |                |                                                 |                  |
|                                                               | 4             | 10                                   | -0.092         | 0.114                                           | 31               |
|                                                               | 5             | 11                                   |                |                                                 |                  |
|                                                               | 6             | 12                                   |                |                                                 |                  |
|                                                               | 7             | 13                                   |                |                                                 |                  |
|                                                               | 8<br>10       | 14<br>15                             |                | 0.088<br>0.117                                  |                  |
|                                                               | 11            |                                      | -0.200         |                                                 |                  |
|                                                               | 12            |                                      |                |                                                 |                  |
| (3)                                                           | 23            | 18                                   | -0.136         | 0.085                                           | 95               |
|                                                               | 31            | 19                                   | -0.336         | 0.089                                           | 140              |
| (.)                                                           | 32            | 20                                   | -0.349         |                                                 | 61               |
| (4)                                                           | 77<br>70      | 21                                   | 0.281          | 0.346                                           | 5                |
|                                                               | 78<br>79      | 22<br>23                             | 0.853<br>0.865 | 0.333<br>0.379                                  | 8<br>3           |
|                                                               | 80            | 24                                   | 1.025          | 0.319                                           | 13               |
|                                                               | 81            | 25                                   | 0.902          | 0.320                                           | 14               |
|                                                               | 82            | 26                                   | 0.944          | 0.326                                           | 10               |
|                                                               | 83            | 27                                   | 0.939          | 0.313                                           | 18               |
|                                                               | 84            | 28                                   | 1.082          | 0.319                                           | 12               |
|                                                               | 85<br>86      | 29<br>30                             | 0.613          | 0.318<br>0.334                                  | 13<br>8          |
|                                                               | 00            | VAR                                  | 0.390<br>REG.  | 8.334<br>STD.                                   | NO.              |
| CATEGORY                                                      | CODE          | #                                    | COEF           | ERR                                             | OBS              |
|                                                               | 87            | 31                                   | 0.833          | 0.347                                           | 5                |

| 88  | 32 | 0.059 | 0.362 | 4  |
|-----|----|-------|-------|----|
| 89  | 33 | 0.538 | 0.340 | 6  |
| 90  | 34 | 0.486 | 0.319 | 12 |
| 91  | 35 | 0.149 | 0.314 | 16 |
| 92  | 36 | 0.032 | 0.312 | 20 |
| 93  | 37 | 0.130 | 0.323 | 15 |
| 94  | 38 | 0.226 | 0.361 | 4  |
| 95  | 39 | 0.377 | 0.414 | 2  |
| 96  | 40 | 0.239 | 0.330 | 8  |
| 97  | 41 | 0.603 | 0.335 | 7  |
| 98  | 42 | 0.410 | 0.416 | 2  |
| 99  | 43 | 0.335 | 0.420 | 2  |
| 100 | 44 | 0.499 | 0.328 | 9  |
| 101 | 45 | 0.681 | 0.316 | 17 |
| 102 | 46 | 0.267 | 0.323 | 11 |
| 103 | 47 | 0.174 | 0.307 | 28 |
| 104 | 48 | 0.201 | 0.310 | 20 |
| 105 | 49 | 0.201 | 0.316 | 23 |
| 106 | 50 | 0.694 | 0.337 | 10 |
| 107 | 51 | 1.061 | 0.346 | 8  |
| 108 | 52 | 1.450 | 0.356 | 6  |

## **LEGEND FOR ANOVA RESULTS:**

3123 = Can(NFLD) Otter Trawl TC 3
3124 = " " TC 4
3125 = " TC 5
3126 = " TC 6
3127 = " TC 7

27125 = Can(M) Otter Trawl TC 5

CGT CODES: All are Stern Trawlers

DIVISION CODES: 22 = 2H, 23 = 2J, 31 = 3K, 32 = 3L

Table 7. Standardized CPUE for Greenland halibut in NAFO 2HJ3KL based on a multiplicative model based utilizing HOURS FISHED as a measure of effort. Results are from the CANADIAN OTTERTRAWL fleet (2008 based on preliminary data).

# PREDICTED CATCH RATE

|      | LN TRANSFORM |        | RETRANSFORMED |       |       |        | % OF CATCH IN |
|------|--------------|--------|---------------|-------|-------|--------|---------------|
| YEAR | MEAN         | S.E.   | MEAN          | S.E.  | CATCH | EFFORT | THIS ANALYSIS |
|      |              |        |               |       |       |        |               |
| 1976 | -1.2081      | 0.0933 | 0.310         | 0.093 | 767   | 2475   | 9.5           |
| 1977 | -0.9274      | 0.0442 | 0.421         | 0.088 | 2866  | 6813   | 20.9          |
| 1978 | -0.3547      | 0.0327 | 0.750         | 0.135 | 3951  | 5267   | 30.0          |
| 1979 | -0.3430      | 0.0697 | 0.745         | 0.194 | 5183  | 6957   | 35.4          |
| 1980 | -0.1831      | 0.0253 | 0.894         | 0.141 | 3946  | 4414   | 42.9          |
| 1981 | -0.3057      | 0.0238 | 0.791         | 0.122 | 6155  | 7778   | 59.2          |
| 1982 | -0.2641      | 0.0225 | 0.825         | 0.123 | 8143  | 9865   | 73.4          |
| 1983 | -0.2691      | 0.0172 | 0.824         | 0.108 | 7085  | 8603   | 87.4          |
| 1984 | -0.1256      | 0.0195 | 0.950         | 0.132 | 6070  | 6393   | 90.4          |
| 1985 | -0.5955      | 0.0196 | 0.594         | 0.083 | 4847  | 8166   | 91.2          |
| 1986 | -0.8184      | 0.0289 | 0.473         | 0.080 | 1896  | 4011   | 74.6          |
| 1987 | -0.3754      | 0.0422 | 0.731         | 0.149 | 2465  | 3371   | 85.6          |
| 1988 | -1.1496      | 0.0535 | 0.335         | 0.077 | 629   | 1876   | 38.8          |
| 1989 | -0.6703      | 0.0375 | 0.546         | 0.105 | 988   | 1810   | 21.2          |
| 1990 | -0.7217      | 0.0226 | 0.522         | 0.078 | 2402  | 4599   | 75.9          |
| 1991 | -1.0587      | 0.0218 | 0.373         | 0.055 | 3254  | 8722   | 70.0          |
| 1992 | -1.1765      | 0.0188 | 0.332         | 0.045 | 2502  | 7534   | 50.2          |
| 1993 | -1.0780      | 0.0276 | 0.365         | 0.060 | 1034  | 2834   | 87.7          |
| 1994 | -0.9822      | 0.0531 | 0.396         | 0.090 | 575   | 1450   | 96.5          |
| 1995 | -0.8311      | 0.0933 | 0.452         | 0.135 | 632   | 1398   | 56.2          |
| 1996 | -0.9686      | 0.0307 | 0.406         | 0.071 | 1043  | 2566   | 81.0          |
| 1997 | -0.6055      | 0.0346 | 0.583         | 0.108 | 1017  | 1744   | 94.7          |
| 1998 | -0.7977      | 0.0953 | 0.467         | 0.141 | 46    | 99     | 63.0          |
| 1999 | -0.8731      | 0.0982 | 0.432         | 0.132 | 81    | 187    | 81.5          |
| 2000 | -0.7096      | 0.0299 | 0.527         | 0.091 | 1285  | 2439   | 99.3          |
| 2001 | -0.5274      | 0.0221 | 0.635         | 0.094 | 1833  | 2889   | 99.2          |
| 2002 | -0.9409      | 0.0263 | 0.419         | 0.068 | 1784  | 4260   | 98.7          |
| 2003 | -1.0339      | 0.0134 | 0.384         | 0.044 | 3710  | 9661   | 89.9          |
| 2004 | -1.0067      | 0.0166 | 0.394         | 0.051 | 1832  | 4650   | 98.5          |
| 2005 | -1.0073      | 0.0253 | 0.392         | 0.062 | 2225  | 5675   | 97.8          |
| 2006 | -0.5138      | 0.0373 | 0.638         | 0.122 | 2282  | 3575   | 97.9          |
| 2007 | -0.1470      | 0.0457 | 0.917         | 0.194 | 1866  | 2034   | 99.7          |
| 2008 | 0.2422       | 0.0528 | 1.349         | 0.306 | 2429  | 1801   | 93.0          |
|      |              |        |               |       |       |        |               |

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.188

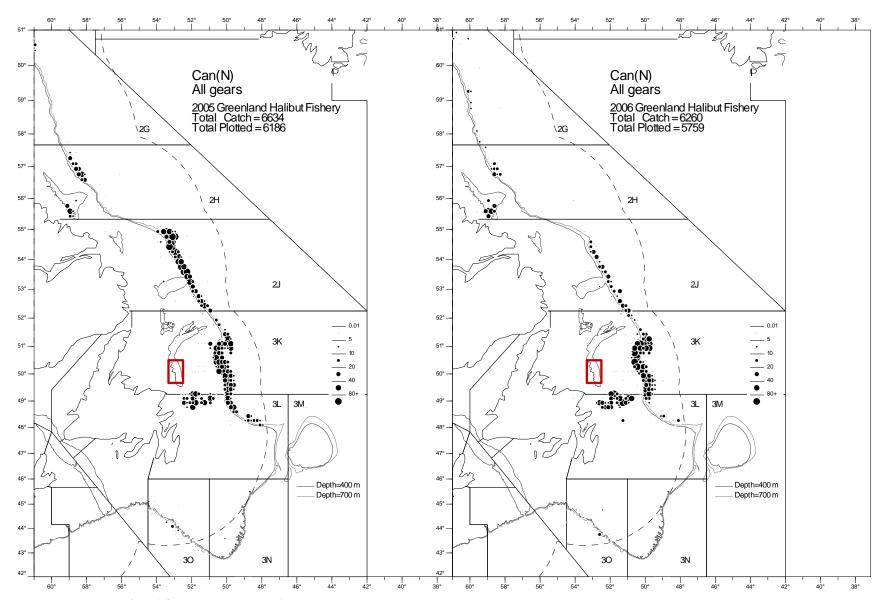



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2005 and 2006 fisheries. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10-minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Also shown is the area in Div. 3K closed to GILLNETs since early 2002 due to snow crab bycatch.

dr£005+6 afcat 2d3duand ACN

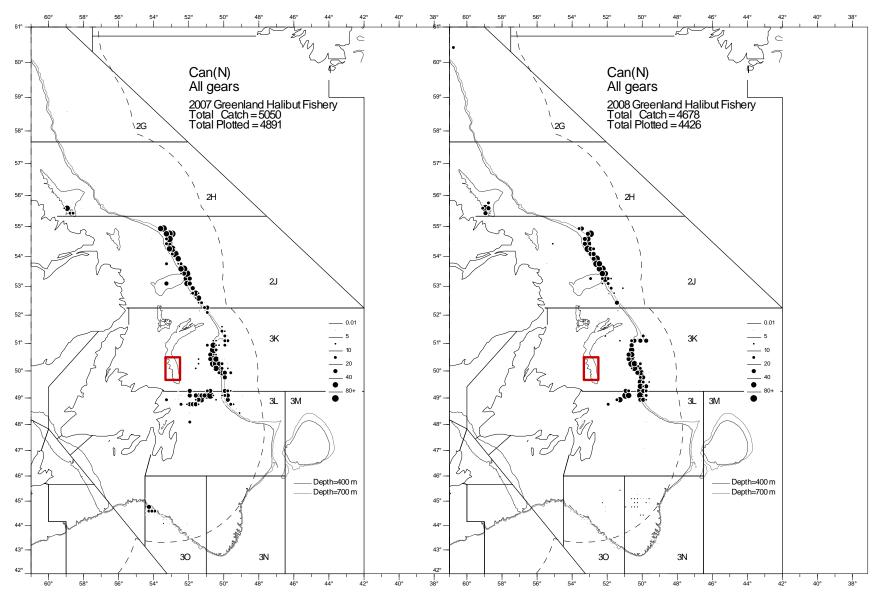



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2007 and 2008 fisheries. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10-minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Also shown is the area in Div. 3K closed to GILLNETs since early 2002 due to snow crab bycatch.

dr@007+8 zfcat 2d8dzand ACN

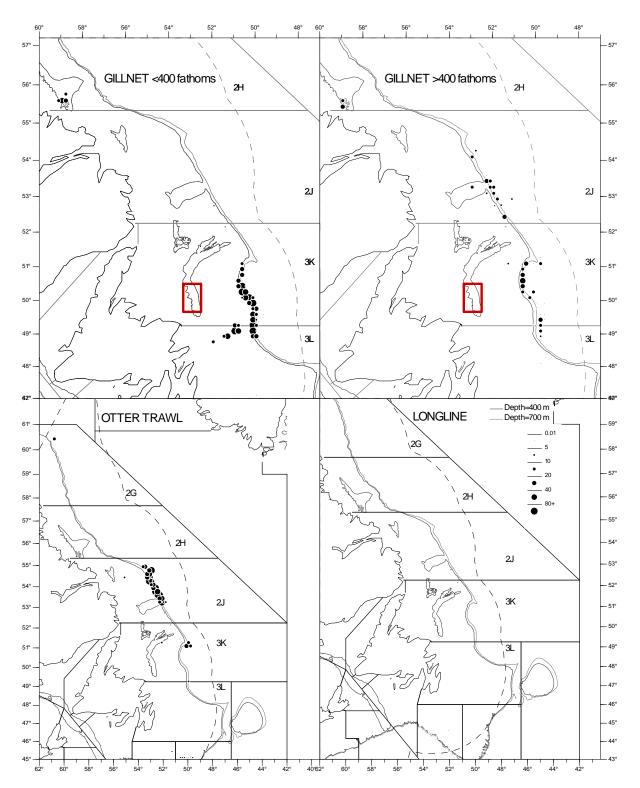



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2008 commercial fishery. Represented is LONGLINE, GILLNET (<400 fathoms and >400 fathoms) and OTTER TRAWL from both directed and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

ntP008 afrat hunter ACN

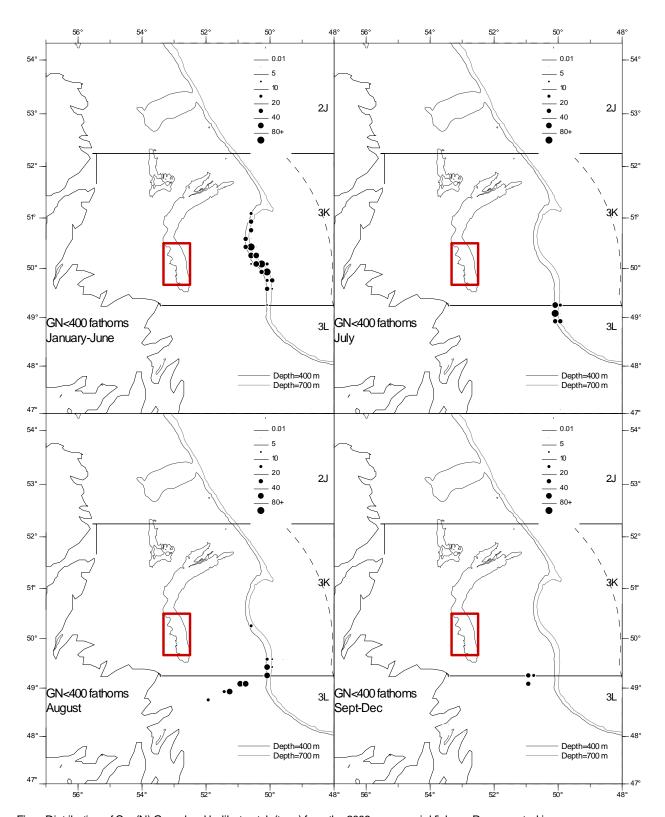



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2008 commercial fishery. Represented is GILLNET (<400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

ah2008 zirat GNLE400 ACN



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2008 commercial fishery. Represented is GILLNET (>400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

ah2008 ziran GNGT400 ACN

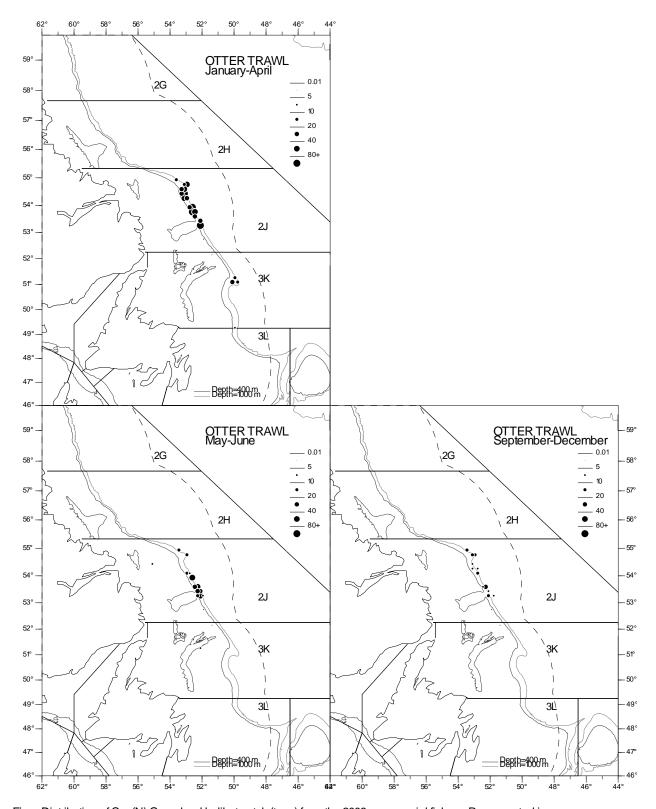



Fig. . Distribution of Can(N) Greenland halibut catch (tons) from the 2008 commercial fishery. Represented is OTTER TRAWL catch for various months from directed fisheries and by-catch from other fisheries. The data are aggregated by 10-minute square for Div. 2J3KL where position was recorded on the logbook.

ah2008 zhan OT ACN

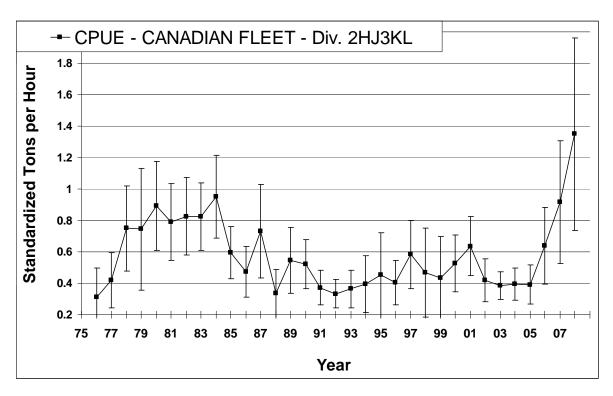



Fig. 7. Standardized Mean CPUE  $\pm$  2 standard errors for Greenland Halibut in Div. 2HJ3KL utilizing effort in HOURS fished from the CANADIAN OTTERTRAWL FLEET.