# NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Serial No. N5717



**Fisheries Organization** 

NAFO SCR Doc. 09/56

# NAFO/ICES WGPAND MEETING - OCTOBER 2009

# Assessment of the International Fishery for Shrimp (*Pandalus borealis*) in Division 3M (Flemish Cap), 1993-2009

by

J. M. Casas

Instituto Español de Oceanografía, Apdo. 1552, 36200 Vigo, Spain

e-mail:mikel.casas@vi.ieo.es

### Abstract

The development of the international shrimp (Pandalus borealis) fishery in NAFO Division 3M is described. Various indices show that even the stock was in high levels in 2006 and 2007 the lack of good recruitments in the last years and the progressive disappearance of the strong year classes 2001 and 2002 have caused a drastic decline of the stock. Although the effort in the last years was low due to high cost of oil and low marketing prize of shrimp, the increase of cod biomass (the most important predator of northern shrimp in 3M) has probably been the cause of the successive bad recruitments and resulting decline of the stock. The revised Nominal catches declined from 63970 tonnes in 2003 to 12889 tonnes in 2008. The catch in 2009 was only 2958 tonnes to 10 September. Noting the lack of reports on catch this figure might increase although is very unlikely that the catches exceed the 5000 tonnes. The results from the ageing which is based on biological sampling showed a great number of five year olds per hour in 2007 proving the 2002 year-class to be very strong. However in 2008 this year class was barely represented and it was residual in 2009. The female biomass from EU survey was variable though without trends at a relative high level from 1998 to 2007 but in 2008 the estimated biomass decreased to levels prior to 1998. In the 2009 EU survey the 3M biomass index was 2797 t, next to the lowest values estimated in the beginning of the EU survey series and confirming the decrease initiated in 2002. The female standardized CPUE could not be updated due to the lack and high uncertainty in the catch and effort data from 2009. Indices of recruitment from the commercial fishery (age 2 in numbers) are plotted against CPUE of 3+ two and three years later showing a significative relationship between them. The recruitment indices of both commercial fishery and EU survey show a very strong 2002 year-class followed by weak year-class since then.

Considering the 15% of the maximum survey female biomass index as a limit reference point for biomass ( $B_{lim}$ ), the stock is now below  $B_{lim}$  entering the collapse zone defined by the NAFO PA framework. Also the recruitment prospects remain poor and therefore the fishing mortality would be set as close to zero as possible in 2010.

### 1. INTRODUCTION

The fishery for northern shrimp at Flemish Cap began in the spring of 1993 and has since continued with estimated annual catches (as estimated by STACFIS, Table 1) of approximately 26000 t to 48000 t in the years 1993 through 1996. After 1996 the catches were lower and rising slowly from 26 000 t in 1997 to 53000 t in 2000 and 2001. There was 50000 t taken in 2002. The catch increased in 2003, reaching the highest value in the catches series (64000 t). After 2003 the catches decreased all years to 13000 t in 2008. Removals to September 2009 (about 3000 t) are much lower than reported in 2008 for the same period.

Since 1993 the number of vessels ranged from 40-110, and in 2006 there were approximately 20 vessels fishing shrimp in Div. 3M compared to 50 in 2004. There is not a lot of information on the number of vessels taking part in the shrimp fishery since 2007 but probably they do not exceed 10 units in 2009.

The development of the international shrimp (*Pandalus borealis*) fishery in NAFO Division 3M is described. Various indices are listed with the purpose of tracking the status of the Flemish Cap shrimp stock. Among these the standardized CPUE and an international database of observer samples is used on which ageing was carried out. The results from the ageing are presented as well as numbers/hour per age based on the standardized CPUE. The indices of female stock are mainly from the EU survey. Also there is calculated a standardized CPUE series of female index. Moreover there is recruitment index from the EU survey and the commercial fishery.

Background on the assessment and management of this resource since 1993 can be found in Parsons (1998), Gudmundsdóttir (2003), Gudmundsdóttir and Nicolajsen (2003) Skúladóttir and Pétursson (2005) and NAFO Scientific Council Reports (2005).

### 2. MATERIAL AND METHODS

#### Standardization of CPUE

The standardized dataset, consisting of data from Canada, Faroe Islands, Greenland, Iceland, Norway, Russia, Estonia and Spain from 1993 to 2008 was updated. Data were selected from the standardized data file where catch >0 kg and/or effort >10 hours. As area is not defined in some of the reported data and it has been noticed that area is not important to the regression (Gudmundsdottir, 2003) area is not used in the regression. Although Estonian data were available from 2009 they could not be used in the analysis due to the uncertainty on the allocation of the catches between 3M and 3L. The adopted criterion in previous years whereby only were analysed those trips where the catches were carried out exclusively in 3M Division, it could not be applied this year because all the trips with available information in 2009 presented catches in both divisions 3M and 3L.

With the updated international dataset the CPUE was again modelled against year, vessel, month and gear, but using the Generalized Linear Model function glm in Splus (version 6) where the modelled CPUE is log-linked. Effort is used as the weighting factor. As previous years the model was standardized to data from 1993, June, single trawl and Icelandic data.

#### Samples

Shrimp were separated into 3 categories namely, males, primiparous females (including transitional) and multiparous females according to the sternal spine criterion (McCrary. 1971), oblique carapace lengths were measured using sliding calipers and grouped into 0.5 mm length-classes. These data form the International shrimp aging database as recommended Appendix II of the 1999 NAFO Scientific Council meeting on shrimp (NAFO, 2003).

Modal analysis (MacDonald and Pitcher, 1979) was conducted on an individual month by month basis using each nation's catch, for weighting. This analysis provided the mean lengths and proportions at age and sex per month. The mean lengths were converted to mean weights using length weight relationships for the appropriate months to calculate the number caught (Skuladottir, 1997). An average length at age was calculated for the whole period, weighted by number caught each month and by nation. The mean lengths were then converted to weights using the length weight relationship for April-June. This was said to be the average weight for that particular year at age and sex. Since 2006, due to the lack of good information about length distributions from commercial fishery, the modal analysis was only conducted on length distributions estimated in the EU survey carried out in summer on Flemish Cap. In the same way, since 2006 the mean weights used in the calculations were estimated from the lengths-weight relationship obtained in the EU survey each year.

As response to NIPAG recommendation from SC Meeting in 2008, the age composition by sex in the fishery calculated from length distribution in the UE survey and from commercial samples was compared when both were obtained. The data used were the mean length by age estimated from UE surveys and from commercial fishery since 1993 to 2005. The mean length for age 1 was remove from the data set due to the low frequencies in the length distribution from EU survey data. With the mean lengths by age was built the Von Bertalanffy growth curves from

the corresponding year class (1991 to 1999) and they were compared by means of Likelihood ratio test following Kimura (1980). All the statistical analysis was made in R (www.flr-project.org).

### 3. CATCH

The total catch per year is listed by nations in Table 1. The catch is mostly as it is reported to NAFO either provisionally in monthly reports and annually some StatlantA reports. But in some cases information are got from the shrimp specialists of the individual countries. As the flag nations of EU do not report provisionally on shrimp catch on Flemish Cap in 2009, the small catch of 2247 t to 10 October is only one preliminary estimate. The total catch recorded around 3000 t was much lower that the recorded last year for this date (figure 1).

# 4. CPUE MODEL

A summary table was made from the data, shown in Table 2. Table 3 shows the no. of data records used in the model by year and country. Whether the data had constant variance was tested by plotting standard errors versus mean CPUE (Smith and Showell, 1996) and fitting a line through the points (Figure 2). Since the coefficients of variance were constant (Table 4) a gamma distribution can be used, so the family parameter in glm was set as Gamma. The model was run and the diagnostic plots inspected. Some results from the model fit and the analysis of the deviance are shown in Table 5 and 6. Standard Splus diagnostic plots for the fit are shown in Figure 3. From the deviance residuals plots it can be seen that the right link function as well as the assumed variance function has been chosen. In spite of the right tail being broad the model is considered appropriate. From the analysis of deviance shown in table 6, it can be observed that most of the variation is explained by year and vessel factors (79%). The resulting index is shown in Table 7 and Figure 4. The index declined from 1993 to 1994 and was at low levels until 1997. Since 1998 it gradually increased up to 2006, declining in the two following years. Lack of reliable data for 2009 did not permit to estimated an index for this year.

# 5. EXPLOITATION RATE

Exploitation rate estimated as nominal catches divided by the EU survey biomass index of the same year is shown in Figure 5 and Table 8. This was high in the years 1994-1997 when biomass was generally lower. In the years 1998-2004 the catch rate has been rather stable at a lower level. From 2005 to 2008 despite the exploitation rate remains stable at relative low values (between 1.9-1.5), the UE survey indexes estimated decreased year after year and in 2009 with preliminary exploitation rate around 1.7 the estimated biomass was the second lowest of the historical series in the EU survey.

# 6. RECRUITMENT

The EU survey provided two recruitment indices. The abundance of two years olds obtained in the main trawl since 1996 and the abundance for this age group in the juvenile shrimp bag attached to the gear since 2001 are presented together with the biomass and abundance index for age 3 and older (Table 9). The series is shown since 1996 for the main gear and since 2001 for juvenile bag. The first years of the series showed very small numbers of age 2 but since 2002 the abundance increased. Since 2003 when automatic winches were introduced in the EU bottom trawl survey, the gear was considered to catch much more young shrimp than before. When the number of age 2 in the EU surveys were regressed against 3+ biomass. There was never any fit whether it was lagged by 1, 2 or 3 years. However when the relationship is carried out with the abundance of age 3+ one year later (Figure 6), we can observe a significative correlation ( $R^2 = 0.45$ ).

Also, a series of 2 year olds (numbers/hour) in the commercial fishery have been plotted against the standardized CPUE of 3 + years (Table 10) by lagging 1, 2 or 3 years respectively. The best fit was between no. of age 2 and the CPUE 3+ two years later where  $R^2 = 0.59$  (Fig. 7).

The evolution of these recruitment indices shows a general agreement along the years (Figure 8). In the first tree years of the series (2001-2003) where the juvenile bag was used, the values estimated were very low if they are compared with the obtained for the commercial fishery and main gear in the EU survey. Probably this was due to the bad behaviour of the small bag attached to the main gear in those years. From the picture, the 2001 year-class appears above average in the EU survey main gear and also in the commercial fishery, but hardly seen in the

juvenile bag. The 2002 year-class, 2 year old in 2004 is the biggest seen in all gears and was also very conspicuous as seen in deviations and length frequencies as 3 year olds in 2005 and as 4 year olds in 2006 (Skúladóttir, 2006). The following year-classes (2003-2007) were weak and well below average. In 2009 the value corresponding to age 2 from the commercial fishery in 2009 could not be estimated due to lack of reliable information.

### 7. AGE ASSESSMENTS

Age analysis was carried out on biological samples obtained from a few nations in the past years (1993-2005). From 2006 due to the lack of adequate data from commercial fisheries the mean lengths and weights at age and sex group as well as their proportions in the catches were estimated from EU surveys. This change in the source of samples does not affect significantly the estimates of the age composition based on nominal catches (Casas, 2009) and therefore they can be compared along the years in the historical series.

Table 11 provides results of the age analyses (length and weight at age and sex are listed). This analysis allows the calculation by sex and age group of the number per hour, kg per hour and number caught (based on nominal catch and the CPUE model). It should be noted that there are difficulties in the aging, once shrimp reach carapace lengths of >24 mm. For this reason, it is likely that 6 and 7 year olds are badly defined.

The Tables 12 list the number at age of shrimp caught in the commercial fishery from 1996 to the present corresponding to the nominal catches annually recorded The Table 13 and 14 show on a yearly basis the average lengths and weights at age weighted by the total number of shrimp caught annually.

Table 15 lists the number per hour caught in the commercial fishery. This is also calculated from Table 11 by first calculating proportions of standardized kg/hour for each age and sex class.

# 7. FEMALE INDICES

The biomass indices From EU surveys have been corrected in the years 1988 to 2002 for adjusting for the more efficient research vessel taken into use in 2003 (Casas *et al.* 2004). The spawning stock (female biomass) as determined from the EU survey biomass index (Figure 9 and Table 16) increased rapidly during the years prior to the fishery, from 1989 and 1990 to 1992. This may have been due to a gradual increase in stock size after the cod biomass declined in the area. But this was also a reflection of the very strong 1987 year class, most of which were female during 1992. After that the stock recovered reasonably well although with high annual variability in the last years (historical maximums in 2002 and 2005 were followed by years with lower biomass but at a relative high level). The female biomass estimated in 2009 about 1764 t show a decrease of 74 % with respect to 2008 and it is between the lowest values of biomass recorded in the total of the historical series. This drastic decline of shrimp biomass is likely associated to the increase of the cod stock experimented in the last years (Figures 10 A and B). These figures show the significant and inverse correlation between cod and female shrimp biomass.

A spawning stock biomass (SSB) index was calculated as kg/hr of primiparous (including transitionals) plus multiparous females from the international observer data base and the standardized CPUE model. The female CPUE is presented Table 16. This index was standardized to the mean of the series and plotted (Figure 11). The prominent 1993 value was due to the strong 1987 year-class, but the next year-class appeared to have decreased in strength. The gradual increase between 1998 and 2004 was due to the presence in the fishery of the above average year classes 1996, 1997 and 1999. The strong 2001 and 2002 year classes especially the latter were the cause of the strong increase carried out between 2004 and 2006 where is reached the highest value of the historical series. Since 2003 the incoming year classes were very weak causing the decline of the Female CPUE in the following two years. In 2009 the lack of reliable data did not allow to estimate the corresponding index.

# 8. PRECAUTIONARY APPROACH

In the absence of other suitable methods to indicate a limit reference point for biomass the EU survey biomass female index was used (SCS Doc. 04/12). The point at which a valid index of stock size has declined by 85% from the maximum observed index level provides a proxy for  $B_{lim}$ .

The EU survey of Division 3M provides an index of female shrimp biomass from 1988 to 2009 with a maximum value of 17 091t in 2002 and a similar value of 15 500 in 1992. An 85% decline in this value would give a  $B_{lim} = 2\ 600\ t$ . The female biomass index was below this value only in 1989 and 1990, before the fishery. If this method is accepted to define  $B_{lim}$  the index in 2009 it is well below the limits (Figure 11).

### 9. ANOTHER STUDIES

This exercise is consequence of the request from Fisheries Commission in the 31<sup>st</sup> annual meeting about the possible contribution of fishery catches to changes in stock size of 3M shrimp and the fraction on average, of the year's catches is taken before the execution of the survey.

In order to assess a possible relation between the fishery catches in the months prior to the survey (January to May) and the stock size estimated in that survey, a linear regression was carried out with the catch data by month available from the NAFO Statland 21B. The results of the analysis are shown in the figure 13 and table 17. From that analysis could not be observed any relationship and thus there is no reason to consider the contribution of the fishery catches taken in the months prior to survey to changes in the stock size in 3M shrimp.

# 10. SUMMARY

Catches of shrimp on the Flemish Cap have been maintained at a high level averaging between 1995 and 2005. However since 2006 they have been falling gradually and from the provisional catches reported to October, around 3000 tons, the catch level in 2009 will be probably much lower than 2008.

The CPUE model shows a general declined between 1993 and 1996, increasing the catch rate from 1997 up to 2006. After then the CPUE show a decreasing trend in the following two years. The scarce of data in 2009 as well as the high uncertainty in the allocation of the catches between 3M and 3L did not allow estimating a standardized CPUE for 2009.

In 2009 the exploitation rate estimated for October will be higher than in 2008. From 2005 to 2008 despite the exploitation rate remained stable at relative low values (between 1.9-1.5), the UE survey indexes estimated decreased year after year. In 2009 with preliminary exploitation rate around 1.7 the estimated biomass was the second lowest of the historical series in the EU survey.

The spawning stock biomass from the EU survey also decreased between 1993 and 1994, increased since 1997 to 1998 and stayed stable to 2007. The strong decline of the female biomass index in 2008 and 2009 confirm the decreasing trend of this stock caused by the weak recruitment in the last five years.

The drastic stock decline on Div. 3M shrimp is inversely associated to the rebuilding of the cod stock in 3M Division.

### 10 ACKNOWLEDGEMENT

Appreciation is expressed to those who provided data for inclusion in this paper .

- 11 REFERENCES
- Casas J.M., J. L. Del Rio, J.L., and D. Gonzales Troncoso, 2004. Northern shrimp (<u>Pandalus borealis</u>) on Flemish Cap surveys 2003 and 2004. NAFO SCR Doc. 04/77, Serial No. N5047: 24p.

Casas J.M., 2009. Northern shrimp (*Pandalus borealis*) on Flemish Cap surveys 2009. NAFO SCR Doc. 09/54 Serial No. N5715:

Casas, J.M., 2009. Comparison of Northern shrimp (*Pandalus borealis*) age composition calculated from length distributions in the EU Survey and from commercial samples in 3M Division. NAFO SCR Doc. 09/57 Serial No. N5718:

- Gudmundsdóttir, Á. 2003. A short note on modelling in S-plus the standardized CPUE for northern shrimp (Pandalus borealis) in Division 3M. NAFO SCR Doc. 03/89, Serial No. N4931: 5p.
- Gudmundsdóttir, Á., and A. Nicolajsen 2003. Standardized CPUE indices for shrimp (Pandalus borealis) in Division 3M(Flemish Cap) 1993-2003. NAFO SCR Doc. 03/90, Serial No. N4932: 8p.
- Kimura, D.K. 1980. Likelihood methods for the von Bertalanffy growth curve. U.S. Fish. Bull. 77(4):765-776.
- McCrary, J.A. 1971. Sternal spines as a characteristic for differentiating between females of some Pandalidae. J.Fish. Res. Board Can. 28: 98-100.
- MacDonald P. D. M. and T. J. Pitcher 1979. Age groups from size-frequency data: A versatile and efficient method of analysing distribution mixtures. J.Fish. Res. Board Can. 36: 987-1011.
- NAFO. 2003. Scientific Council Reports, 2003.
- NAFO. 2005. Scientific Council Reports, 2005.
- Parsons, D.G., 1998. The International Fishery for Shrimp (<u>Pandalus borealis</u>) in Division 3M (Flemish Cap), 1993 -1998. NAFO SCR Doc. 98/92, Serial No. N3093: 12p.

Skúladóttir, U., 1997. The Icelandic shrimp fishery (Pandalus borealis Kr.) at Flemish Cap in 1993-1997. NAFO SCR Doc. 97/85, Serial No. N2931: 30p.

Skúladóttir, U., 2006. The Icelandic shrimp fishery (Pandalus borealis Kr.) at Flemish Cap in 1993-2006. NAFO SCR Doc. 97/85, Serial No. N2931: 30p.

Skúladóttir, U., and G. Pétursson 2005 . Assessment of the international fishery for shrimp (Pandalus borealis Kr. ) in division 3M (Flemish Cap), 1993- 2005. NAFO SCR Doc. 05/89, Serial No. N5194: 21p.

Table 1. Annual nominal catches (t) by country of northern shrimp (Pandalus borealis) caught in NAFO Div. 3M.

| Nation            | 1993   | 1994              | 1995   | 1996                | 1997              | 1998   | 1999   | 2000              | 2001               | 2002               | 2003               | 2004               | 2005               | 2006                | 2007               | 2008        | 2009* |
|-------------------|--------|-------------------|--------|---------------------|-------------------|--------|--------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|-------------|-------|
| Canada            | 3724   | 1041              | 970    | 906                 | 807               | 484    | 490    | <sup>2</sup> 618  | 1 295              | 2 16               |                    |                    |                    | 2 10                |                    |             |       |
| Cuba              |        |                   |        |                     |                   |        | 119    | <sup>1</sup> 46   | 1 1037             | 1 1537             | 1 1462             | 969                | 1 964              | <sup>1</sup> 1126 1 | 446                | 11          |       |
| EU/Estonia        |        | 1081              | 2092   | 1900                | 3240              | 5694   | 10835  | 2 13256           | 1 9851             | <sup>2</sup> 14215 | 1 12851            | <sup>1</sup> 13444 | <sup>2</sup> 12009 | 2 8466 2            | 10607 <sup>2</sup> | $10255^{2}$ |       |
| EU/Denmark        | 800    | 400               | 200    |                     |                   | 437    | 235    |                   | 1 93               | 1 359              |                    |                    |                    |                     |                    |             |       |
| EU/Latvia         |        | 300               | 350    | 1940 1              | <b>997</b> 1      | 1191   | 1 3080 | <sup>1</sup> 3105 | 1 2961             | 1 1892             | 1 3533             | 1 3059             | 1 2212             | 1 1330 1            | 1939               | 1285        |       |
| EU/Lithuania      |        | 1225              | 675    | 2900 1              | 1785              | 1 3107 | 1 3370 | <sup>1</sup> 3529 | 1 2701             | 1 3321             | 1 3744             | 1 4802             | 1 3652             | 1 1245 1            | 1992               | 410         | 2247  |
| EU/Poland         |        |                   |        |                     | 824 1             | 148    | 1 894  | <sup>1</sup> 1692 | 1 209              |                    |                    | 1 1158             | 1 458              | 1 224               |                    |             | 2241  |
| EU/Portugal       | 300    |                   | 150    | 1                   | 170               | 1 203  | 1 227  | <sup>1</sup> 289  | <sup>1</sup> 420   | 1 16               |                    | 1 50               |                    |                     |                    |             |       |
| EU/Spain          | 240    | 300               | 158    | 50 <sup>1</sup>     | 423 1             | 912    | 1 1020 | 1 1347            | 1 855              | 1 674              | 1 857              | <sup>2</sup> 1049  | <sup>2</sup> 725   | 2 997               | 768                | 406         |       |
| EU/United Kingdom |        |                   |        |                     |                   |        |        |                   |                    |                    | <sup>1</sup> 547   |                    |                    |                     |                    |             |       |
| Faroe Is.         | 7333   | 6791              | 5993   | 8688                | 7410              | 9368   | 9199   | <sup>2</sup> 7719 | <sup>2</sup> 10228 | 2 8516             | <sup>2</sup> 12676 | <sup>1</sup> 4952  | 1 2457             | 1 1102              | 1 2303             | 1201        | 691   |
| France (SPM)      |        |                   |        |                     | 150               |        |        | <sup>1</sup> 138  | 1 337              | 1 161              |                    | 1                  | 487                |                     | 1 741              |             |       |
| Greenland         | 1 3788 | <sup>1</sup> 2275 | 1 2400 | 1 1107 <sup>1</sup> | 104               | 866    | 1 576  | <sup>1</sup> 1734 |                    | 1 644              | <sup>2</sup> 1990  |                    | 1 12               | 2 1 778             |                    |             |       |
| Iceland           | 2243   | 1 2355            | 7623 1 | 20680 1             | 7197 1            | 6572   | 9277   | <sup>2</sup> 8912 | 2 5265             | 1 5754             | 1 4715             | 1 3567             | 1 4014             | 1 2099              |                    |             |       |
| Japan             |        |                   |        |                     |                   |        |        | <sup>1</sup> 114  | 1 130              | 1 100              | 1 117              |                    |                    |                     |                    |             |       |
| Norway            | 7183   | 8461              | 9533   | 5683 <sup>1</sup>   | 1831 <sup>1</sup> | 1339   | 2975   | <sup>2</sup> 2669 | <sup>1</sup> 12972 | <sup>1</sup> 11833 | <sup>1</sup> 21238 | <sup>1</sup> 11738 | 1 223              | 2 890 1             | 1872               | 321         |       |
| Russia            |        | 350               | 3327   | 4445                | 1090              |        | 1142   | <sup>1</sup> 7070 | <sup>1</sup> 5687  | 1 1176             | 1 3                | 1 654              | 1 266              | 1 46 <sup>1</sup>   | 73                 | 20          | 20    |
| Ukraine           |        |                   |        |                     |                   |        |        |                   | 1 348              |                    | 1 237              | 1 315              |                    | 1 282               |                    |             |       |
| USA               |        |                   |        |                     |                   |        |        | 1 629             |                    |                    |                    |                    |                    |                     |                    |             |       |
| Total             | 25611  | 24579             | 33471  | 48299               | 26028             | 30321  | 43439  | 52867             | 53389              | 50214              | 63970              | 45757              | 27479              | 18595               | 20741              | 12889       | 2958  |

NAFO Statlant 21 A 1

2 \* NIPAG estimates

NIPAG Preliminary to 10 October

| year | No. of obs | Mean CPUE | Std. dev | Min  | Max | CV    |
|------|------------|-----------|----------|------|-----|-------|
| 1993 | 245        | 357       | 44       | 895  | 149 | 0.417 |
| 1994 | 236        | 235       | 10       | 709  | 104 | 0.443 |
| 1995 | 472        | 270       | 48       | 1182 | 129 | 0.477 |
| 1996 | 928        | 227       | 45       | 848  | 114 | 0.503 |
| 1997 | 376        | 286       | 92       | 602  | 97  | 0.337 |
| 1998 | 325        | 374       | 78       | 1316 | 144 | 0.384 |
| 1999 | 359        | 380       | 58       | 837  | 146 | 0.384 |
| 2000 | 377        | 419       | 48       | 1153 | 165 | 0.394 |
| 2001 | 275        | 411       | 59       | 966  | 140 | 0.342 |
| 2002 | 194        | 502       | 25       | 932  | 163 | 0.325 |
| 2003 | 239        | 600       | 129      | 1371 | 234 | 0.390 |
| 2004 | 162        | 564       | 227      | 1425 | 206 | 0.366 |
| 2005 | 126        | 567       | 65       | 1145 | 176 | 0.310 |
| 2006 | 59         | 606       | 56       | 1021 | 228 | 0.377 |
| 2007 | 41         | 599       | 183      | 1353 | 274 | 0.457 |
| 2008 | 23         | 450       | 57       | 683  | 178 | 0.395 |

Table 2. Analysis about the CPUE data

Table 3. Number of data records which are used in the final model fit by year and country.

| Year | CAN | EST | FRO | GRL | ICE | NOR | RUS | SP |
|------|-----|-----|-----|-----|-----|-----|-----|----|
| 1993 | 55  |     |     | 75  | 41  | 74  |     |    |
| 1994 | 38  |     |     | 44  | 50  | 104 |     |    |
| 1995 | 53  |     | 86  | 37  | 172 | 111 | 13  |    |
| 1996 | 27  |     | 236 | 32  | 466 | 65  | 102 |    |
| 1997 | 17  |     | 175 | 7   | 153 | 13  | 11  |    |
| 1998 | 16  |     | 155 | 15  | 130 | 9   |     |    |
| 1999 | 10  |     | 119 | 8   | 178 | 18  | 26  |    |
| 2000 | 8   |     | 121 | 27  | 167 | 19  | 35  |    |
| 2001 | 8   |     |     |     | 127 | 75  | 65  |    |
| 2002 |     |     |     | 15  | 90  | 64  | 25  |    |
| 2003 |     | 88  |     | 13  | 61  | 77  |     |    |
| 2004 |     | 80  |     |     | 32  | 50  |     |    |
| 2005 |     | 82  |     |     | 20  | 2   |     | 22 |
| 2006 |     | 24  |     | 9   | 6   | 2   |     | 18 |
| 2007 |     | 16  |     |     |     | 7   |     | 18 |
| 2008 |     | 10  |     |     |     | 1   |     | 12 |

# Table 4. Results of fitting standard error versus mean CPUE.

Call: lm(formula = std ~ mean, data = table09, na.action = na.exclude) Residuals:

| Min           |        | 1Q    | Mediar | 1       | 3Q     | Max   |
|---------------|--------|-------|--------|---------|--------|-------|
| -36.35        |        | -8.49 | 2.927  |         | 8.204  | 50.79 |
| Coefficients: |        |       |        |         |        |       |
|               | Value  | Std.  | Error  | t value | Pr(> t | )     |
| (Intercept)   | 21.481 | 18.   | 2827   | 1.1750  | 0.259  | 6     |
| cpue          | 0.3365 | 0.    | 0409   | 8.2269  | 0.000  | 0     |

Residual standard error: 21.15 on 14 degrees of freedom Multiple R-Squared: 0.8286

F-statistic: 67.68 on 1 and 14 degrees of freedom, the p-value is 9.875e-007

# Table 5. Results from the multiplicative model. The ship factors are not shown.

Call: glm(formula = cpue ~ year + vessel + month + gear, family = Gamma(link = log), data = standcpue08new, weights = effort, na.action = na.exclude, control = list(epsilon = 0.0001, maxit = 50, trace = F), contrasts = list(year = contr.treatment, vessel = contr.treatment, month = contr.treatment, gear = contr.treatment))

| Deviance R<br>Min | esiduals:<br>1Q | Median     | 3Q       | Max        |             |
|-------------------|-----------------|------------|----------|------------|-------------|
| -21.26481         | -1.939901       | -0.3612635 | 1.296843 | 14.37673   |             |
| 21.20101          | 1.959901        | 0.5012055  | 1.290015 | 11.57075   |             |
| Coefficients      | ç.              |            |          |            |             |
| coefficient       | 3.              | Value      |          | Std. Error | t value     |
| (Intercept)       |                 | 5.9838     | 6928     | 0.07866765 | 76.0651825  |
| year1994          |                 | -0.3576    |          | 0.02185066 | -16.3684339 |
| year1995          |                 | -0.2001    |          | 0.02216925 | -9.0265393  |
| year1996          |                 | -0.3283    |          | 0.02339274 | -14.0373181 |
| year1997          |                 | -0.3137    |          | 0.02548424 | -12.3130168 |
| year1998          |                 | -0.06      | 4253     | 0.02669276 | -2.4071325  |
| year1999          |                 | -0.0298    |          | 0.02639654 | -1.1306882  |
| year2000          |                 | 0.0805     | 2594     | 0.02704489 | 2.9774924   |
| year2001          |                 | 0.0553     | 2185     | 0.03115271 | 1.775828    |
| year2002          |                 | 0.0730     | 7155     | 0.03305226 | 2.2107881   |
| year2003          |                 | 0.2385     | 3936     | 0.03384779 | 7.0474138   |
| year2004          |                 | 0.1476     | 8418     | 0.03540714 | 4.1710277   |
| year2005          |                 | 0.2616     | 6163     | 0.03802487 | 6.8813285   |
| year2006          |                 | 0.4111     | 0657     | 0.04472968 | 9.1909115   |
| year2007          |                 | 0.3105     | 7576     | 0.0507932  | 6.1145144   |
| year2008          |                 | 0.2167     | 7471     | 0.06073321 | 3.5692944   |
| month2            |                 | 0.0262     | 8382     | 0.03419545 | 0.7686348   |
| month3            |                 | 0.0496     | 1195     | 0.03084198 | 1.6085852   |
| month4            |                 | 0.01       | 8926     | 0.02939558 | 0.6438382   |
| month5            |                 | 0.0450     | 8182     | 0.02882823 | 1.5638081   |
| month6            |                 | 0.1099     | 3301     | 0.0284159  | 3.868714    |
| month7            |                 | 0.0317     | 2164     | 0.02841217 | 1.1164806   |
| month8            |                 | -0.0760    | 6857     | 0.02884338 | -2.6372973  |
| month9            |                 | -0.1432    | 4256     | 0.02919238 | -4.9068483  |
| month10           |                 | -0.1246    | 9459     | 0.02946366 | -4.2321486  |
| month11           |                 | -0.1553    |          | 0.03077955 | -5.046735   |
| month12           |                 | -0.1163    |          | 0.0338606  | -3.4366493  |
| gear2             |                 | 0.1777     |          | 0.01842402 | 9.6480311   |
| gear3             |                 | 0.1888     | 9754     | 0.06302473 | 2.9971971   |

Dispersion Parameter for Gamma family taken to be 9.312433

Null Deviance: 215958.2 on 4436 degrees of freedom

Residual Deviance: 39339.98 on 4203 degrees of freedom

Number of Fisher Scoring Iterations: 4

| Source of variation | df  | Deviance | Resid.Df | Resid.Dev | F Value  | Pr(F)   | % explained |
|---------------------|-----|----------|----------|-----------|----------|---------|-------------|
| NULL                |     |          | 4436     | 215958.2  |          | < 0.001 |             |
| year                | 15  | 104591.8 | 4421     | 111366.4  | 748.7608 | < 0.001 | 48.4%       |
| vessel              | 205 | 65990.4  | 4216     | 45376     | 34.5672  | < 0.001 | 30.6%       |
| month               | 11  | 5193.8   | 4205     | 40182.2   | 50.7026  | < 0.001 | 2.4%        |
| gear                | 2   | 842.2    | 4203     | 39340     | 45.2186  | < 0.001 | 0.4%        |

Table 6.- Analysis of deviance table for generalized linear models fitted to shrimp catch rate data from 1993 to 2008 in Flemish Cap.

Table 7. CPUE index by year and the approximate 95% confidence interval

|      |        | Confide   | nce limits |
|------|--------|-----------|------------|
| Year | Index  | upper 95% | Lower 95%  |
| 1993 | 1.0000 | 1.0000    | 1.0000     |
| 1994 | 0.6993 | 0.7299    | 0.6700     |
| 1995 | 0.8186 | 0.8550    | 0.7838     |
| 1996 | 0.7201 | 0.7539    | 0.6878     |
| 1997 | 0.7307 | 0.7681    | 0.6951     |
| 1998 | 0.9378 | 0.9881    | 0.8900     |
| 1999 | 0.9706 | 1.0221    | 0.9217     |
| 2000 | 1.0839 | 1.1429    | 1.0279     |
| 2001 | 1.0569 | 1.1234    | 0.9943     |
| 2002 | 1.0758 | 1.1478    | 1.0083     |
| 2003 | 1.2694 | 1.3565    | 1.1879     |
| 2004 | 1.1591 | 1.2424    | 1.0814     |
| 2005 | 1.2991 | 1.3996    | 1.2058     |
| 2006 | 1.5085 | 1.6467    | 1.3819     |
| 2007 | 1.3642 | 1.5070    | 1.2349     |
| 2008 | 1.2421 | 1.3991    | 1.1027     |

Table 8.- Exploitation Rate of Shrimp (Div. 3M) as Nominal Catches (tons) divided by UE Survey Index (tons).

|       |         | UE Survey | Exploitation |
|-------|---------|-----------|--------------|
|       | Catches | Index     | Rate         |
| 1993  | 25611   | 6923      | 3.7          |
| 1994  | 24579   | 2945      | 8.3          |
| 1995  | 33471   | 4857      | 6.9          |
| 1996  | 48299   | 5132      | 9.4          |
| 1997  | 26028   | 4885      | 5.3          |
| 1998  | 30321   | 11444     | 2.6          |
| 1999  | 43439   | 13669     | 3.2          |
| 2000  | 52867   | 10172     | 5.2          |
| 2001  | 53389   | 13336     | 4.0          |
| 2002  | 50214   | 17091     | 2.9          |
| 2003  | 63970   | 11589     | 5.5          |
| 2004  | 45757   | 12081     | 3.8          |
| 2005  | 27479   | 14381     | 1.9          |
| 2006  | 18162   | 11359     | 1.6          |
| 2007  | 20267   | 12843     | 1.6          |
| 2008  | 12889   | 8630      | 1.5          |
| 2009* | 2958    | 1764      | 1.7          |

\*preliminary nominal catches to 10 October

|      | Age                | e 2          | Age 3 a        | and olders         |
|------|--------------------|--------------|----------------|--------------------|
| Year | Main gear $(10^5)$ | Juvenile bag | Biomass (tons) | Abundance $(10^5)$ |
| 1996 | 3424               |              | 9853           | 13916              |
| 1997 | 629                |              | 7311           | 9832               |
| 1998 | $54968^{*}$        |              | 30266          | 61601              |
| 1999 | 4735               |              | 23861          | 47018              |
| 2000 | 1069               |              | 18813          | 37598              |
| 2001 | 3321               | 1361         | 26633          | 54153              |
| 2002 | 11004              | 2125         | 34216          | 73272              |
| 2003 | 12572              | 0            | 18540          | 34812              |
| 2004 | 27415              | 41818        | 15589          | 25395              |
| 2005 | 1792               | 3741         | 30489          | 93749              |
| 2006 | 582                | 7498         | 16242          | 40403              |
| 2007 | 301                | 3824         | 17007          | 36005              |
| 2008 | 221                | 4969         | 11059          | 21189              |
| 2009 | 1179               | 3011         | 2420           | 4680               |

Table 9.- Estimated recruitment index as number of Age 2 and the Biomass and Abundance Index for age 3 and older in the EU Survey series.

\*1998 mesh size 25 mm was used instead of 35 mm. in EU survey, main gear.

| Table 10 Index of age 2 (numbers/hour) and CPUE 3 + in the commercial fishery . |
|---------------------------------------------------------------------------------|
| Age 2                                                                           |

| Year | Age 2<br>Numbers/hr | CPUE 3+ |
|------|---------------------|---------|
| 1996 | 2602                | 120.4   |
| 1997 | 2144                | 183.4   |
| 1998 | 3331                | 252.6   |
| 1999 | 2660                | 291.1   |
| 2000 | 1108                | 314.5   |
| 2001 | 6911                | 328.4   |
| 2002 | 4569                | 239.0   |
| 2003 | 8642                | 397.2   |
| 2004 | 12559               | 284.7   |
| 2005 | 5477                | 340.6   |
| 2006 | 1689                | 517.0   |
| 2007 | 849                 | 461.5   |
| 2008 | 876                 | 358.5   |

16.8 0.1148 2.772 0.31823 975 13.6 4899 351.8 2 Males 20.7 0.2146 5.225 1.12129 3436 47.9 9158 657.7 Males 3 24.0 0.1156 8.188 0.94653 2901 40.4 4933 354.3 4 Males 26.0 0.2619 10.441 2.73450 8380 116.7 11177 802.6 5 Primip. 26.5 0.2890 11.189 3.23362 9910 138.0 12333 885.7 Multip. 6 +8.35681 Total 1 25611 356.6 42676 3064.7

| 1994    |     |   |      |        |             |           |               |       |          |            |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|
| Sex     | Age |   |      | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|         |     |   |      | by no. | g           | by weight | 24579         | 249.4 |          | (´000´000) |
| Males   |     | 1 |      |        |             |           |               |       |          |            |
| Males   |     | 2 | 16.4 | 0.1817 | 2.576       | 0.46806   | 1668          | 16.9  | 6571     | 647.6      |
| Males   |     | 3 | 20.4 | 0.3629 | 4.998       | 1.81377   | 6465          | 65.6  | 13124    | 1293.5     |
| Males   |     | 4 | 22.9 | 0.0854 | 7.101       | 0.60643   | 2161          | 21.9  | 3089     | 304.4      |
| Primip. |     | 5 | 25.7 | 0.1944 | 10.080      | 1.95955   | 6984          | 70.9  | 7031     | 692.9      |
| Multip. | 6+  |   | 26.9 | 0.1756 | 11.664      | 2.04820   | 7300          | 74.1  | 6351     | 625.9      |
| Total   |     |   |      | 1      |             | 6.89601   | 24579         | 249.4 | 36166    | 3564.2     |

1995 Sex Age Prop. Mean weight Prop. Nominal catch kg/hr No./hour Number 292.0 (`000`000) 33471 by no. by weight g 1 Males 6079 26983 3093.5 2 15.0 0.4516 1.965 0.88739 53.0 Males 1.33637 20.3 0.2714 4.924 9154 79.8 16216 1859.1 Males 3 Primip. 4 22.2 0.0507 6.462 0.32762 2244 19.6 3029 347.3 5 25.3 0.0962 9.611 0.92458 6333 55.2 5748 659.0 Primip. 26.210.840 7774 891.2 0.1301 1.41028 9660 84.3 Multip. 6+ 1.0000 4.88625 33471 292.0 59750 6850.0 Total

| 1996    |     |   |      |        |             |           |               |       |          |            |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|
| Sex     | Age |   |      | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|         |     |   |      | by no. | g           | by weight | 48300         | 256.8 |          | (´000´000) |
| Males   |     | 1 |      |        |             |           |               |       |          | 0.0        |
| Males   |     | 2 | 15.3 | 0.0622 | 2.066       | 0.12860   | 1011          | 5.4   | 2602     | 489.4      |
| Males   |     | 3 | 20.0 | 0.6076 | 4.728       | 2.87283   | 22585         | 120.1 | 25399    | 4776.9     |
| Primip. |     | 3 | 21.4 | 0.0379 | 5.788       | 0.21921   | 1723          | 9.2   | 1583     | 297.7      |
| Primip. |     | 4 | 24.8 | 0.1511 | 9.034       | 1.36509   | 10732         | 57.1  | 6316     | 1187.9     |
| Multip. |     | 3 | 22.2 | 0.0063 | 6.799       | 0.04274   | 336           | 1.8   | 263      | 49.4       |
| Multip. |     | 4 | 24.8 | 0.0474 | 9.296       | 0.44108   | 3468          | 18.4  | 1983     | 373.0      |
| Multip. |     | 5 | 26.6 | 0.0574 | 11.306      | 0.64930   | 5105          | 27.1  | 2401     | 451.5      |
| Multip. |     | 6 | 28.8 | 0.0300 | 14.167      | 0.42486   | 3340          | 17.8  | 1254     | 235.8      |
| Total   |     |   |      | 1      |             | 6.14372   | 48300         | 256.8 | 41801    | 7861.7     |

Table 11.- Results of the age analyses and different indices (No/hr, kg/hr and Number) by sex

Table 11. Continued

| Sex     | Age |   |      | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|
|         |     |   |      | by no. | g           | by weight | 26028         | 260.6 |          | (10001000) |
| Males   |     | 1 | 10.4 | 0.0001 | 0.910       | 0.00020   | 1             | 0.0   | 9        | 0.9        |
| Males   |     | 2 | 15.7 | 0.0522 | 3.201       | 0.16714   | 686           | 6.9   | 2144     | 214.2      |
| Males   |     | 3 | 19.0 | 0.4092 | 4.117       | 1.68462   | 6911          | 69.2  | 16805    | 1678.6     |
| Males   |     | 4 | 22.3 | 0.2089 | 6.633       | 1.38567   | 5684          | 56.9  | 8580     | 857.0      |
| Primip. |     | 3 | 20.6 | 0.0029 | 5.237       | 0.01498   | 61            | 0.6   | 118      | 11.7       |
| Primip. |     | 4 | 24.3 | 0.1724 | 8.390       | 1.44630   | 5933          | 59.4  | 7080     | 707.2      |
| Multip. |     | 3 | 19.1 | 0.0025 | 5.018       | 0.01240   | 51            | 0.5   | 101      | 10.1       |
| Multip. |     | 4 | 24.2 | 0.0488 | 9.570       | 0.46737   | 1917          | 19.2  | 2006     | 200.3      |
| Multip. |     | 5 | 25.6 | 0.0845 | 10.631      | 0.89822   | 3685          | 36.9  | 3470     | 346.6      |
| Multip. |     | 6 | 28.3 | 0.0171 | 14.350      | 0.24558   | 1007          | 10.1  | 703      | 70.2       |
| Multip. |     | 7 | 29.3 | 0.0015 | 15.070      | 0.02232   | 92            | 0.9   | 61       | 6.1        |
| Total   |     |   |      | 1      |             | 6.34481   | 26028         | 260.6 | 41077    | 4102.9     |

| Sex     | Age |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | Kg/hr | No./hour | Number     |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|
|         |     |   | mm   | by no. | g           | by weight | 30321         | 334.5 |          | (´000´000) |
| Males   |     | 2 | 14.9 | 0.0596 | 1.923       | 0.11460   | 581           | 6.4   | 3331     | 302.0      |
| Males   |     | 3 | 18.7 | 0.3462 | 3.868       | 1.33904   | 6786          | 74.9  | 19352    | 1754.5     |
| Males   |     | 4 | 21.2 | 0.2321 | 5.642       | 1.30929   | 6636          | 73.2  | 12972    | 1176.1     |
| Primip. |     | 4 | 23.2 | 0.1399 | 7.355       | 1.02911   | 5216          | 57.5  | 7822     | 709.1      |
| Primip. |     | 5 | 25.9 | 0.0218 | 10.287      | 0.22439   | 1137          | 12.5  | 1219     | 110.6      |
| Multip. |     | 3 | 18.6 | 0.0025 | 4.160       | 0.01020   | 52            | 0.6   | 137      | 12.4       |
| Multip. |     | 4 | 23.5 | 0.0359 | 8.020       | 0.28781   | 1459          | 16.1  | 2006     | 181.9      |
| Multip. |     | 5 | 25.2 | 0.1083 | 9.700       | 1.05035   | 5323          | 58.7  | 6053     | 548.8      |
| Multip. |     | 6 | 26.5 | 0.0484 | 11.150      | 0.53946   | 2734          | 30.2  | 2705     | 245.2      |
| Multip. |     | 7 | 29.1 | 0.0054 | 14.470      | 0.07848   | 398           | 4.4   | 303      | 27.5       |
| Total   |     |   |      | 1      |             | 5.98273   | 30321         | 334.4 | 55901    | 5068.1     |

|         | 1999 |   |      |        |             |           |               |       |          |            |  |  |
|---------|------|---|------|--------|-------------|-----------|---------------|-------|----------|------------|--|--|
| Sex     | Age  |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |  |  |
|         |      |   | mm   | by no. | g           | by weight | 43439         | 346.2 |          | (10001000) |  |  |
| Males   |      | 1 | 6.0  | 0.0001 | 0.122       | 0.00001   | 0             | 0.0   | 6        | 0.7        |  |  |
| Males   |      | 2 | 14.5 | 0.0467 | 1.769       | 0.08268   | 591           | 4.7   | 2660     | 333.8      |  |  |
| Males   |      | 3 | 17.6 | 0.2773 | 3.176       | 0.88073   | 6291          | 50.1  | 15784    | 1980.8     |  |  |
| Males   |      | 4 | 21.0 | 0.2253 | 5.490       | 1.23680   | 8834          | 70.4  | 12823    | 1609.2     |  |  |
| Males   |      | 5 | 22.3 | 0.0003 | 6.560       | 0.00187   | 13            | 0.1   | 16       | 2.0        |  |  |
| Primip. |      | 4 | 22.1 | 0.0758 | 6.348       | 0.48118   | 3437          | 27.4  | 4314     | 541.4      |  |  |
| Primip. |      | 5 | 24.2 | 0.1327 | 8.418       | 1.11680   | 7977          | 63.6  | 7551     | 947.6      |  |  |
| Multip. |      | 3 | 18.2 | 0.0009 | 3.970       | 0.00361   | 26            | 0.2   | 52       | 6.5        |  |  |
| Multip. |      | 4 | 22.0 | 0.0207 | 6.672       | 0.13820   | 987           | 7.9   | 1179     | 148.0      |  |  |
| Multip. |      | 5 | 24.2 | 0.1259 | 8.674       | 1.09238   | 7803          | 62.2  | 7168     | 899.5      |  |  |
| Multip. |      | 6 | 26.4 | 0.0932 | 11.060      | 1.03086   | 7363          | 58.7  | 5305     | 665.8      |  |  |
| Multip. |      | 7 | 29.6 | 0.0011 | 15.171      | 0.01638   | 117           | 0.9   | 61       | 7.7        |  |  |
| Total   |      |   |      | 1      |             | 6.08151   | 43439         | 346.1 | 56920    | 7143.0     |  |  |

| Table 11 | continued |
|----------|-----------|
|          |           |

| 2000 |
|------|

|         |     |   |      |        | 4      | 2000      |               |       |          |            |
|---------|-----|---|------|--------|--------|-----------|---------------|-------|----------|------------|
| Sex     | Age |   | CL   | Prop.  | Weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|         |     |   | mm   | by no. | g      | by weight | 52867         | 386.6 |          | (´000´000) |
| Males   |     | 2 | 13.2 | 0.0157 | 1.326  | 0.02078   | 201           | 1.5   | 1108     | 151.6      |
| Males   |     | 3 | 17.3 | 0.3258 | 3.035  | 0.98868   | 9564          | 69.9  | 23039    | 3151.1     |
| Males   |     | 4 | 20.0 | 0.2457 | 4.692  | 1.15299   | 11153         | 81.5  | 17380    | 2377.0     |
| Males   |     | 5 | 21.9 | 0.0049 | 6.200  | 0.03026   | 293           | 2.1   | 345      | 47.2       |
| Primip. |     | 4 | 21.0 | 0.0776 | 5.458  | 0.42336   | 4095          | 29.9  | 5486     | 750.3      |
| Primip. |     | 5 | 24.2 | 0.0935 | 8.514  | 0.79646   | 7704          | 56.3  | 6616     | 904.9      |
| Multip. |     | 3 | 18.4 | 0.0021 | 4.012  | 0.00854   | 83            | 0.6   | 151      | 20.6       |
| Multip. |     | 4 | 21.9 | 0.0580 | 6.613  | 0.38387   | 3713          | 27.1  | 4105     | 561.5      |
| Multip. |     | 5 | 24.3 | 0.1271 | 8.825  | 1.12131   | 10846         | 79.3  | 8986     | 1229.1     |
| Multip. |     | 6 | 26.3 | 0.0473 | 10.703 | 0.50630   | 4897          | 35.8  | 3346     | 457.6      |
| Multip. |     | 7 | 27.6 | 0.0023 | 14.320 | 0.03289   | 318           | 2.3   | 162      | 22.2       |
| Total   |     |   |      | 1      |        | 5.46543   | 52867         | 386.5 | 70725    | 9673.0     |

| Sex     | Age |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|
|         |     |   | mm   | by no. | g           | by weight | 53389         | 376.9 |          | (´000´000) |
| Males   |     | 2 | 15.2 | 0.1040 | 2.058       | 0.21403   | 2015          | 14.2  | 6911     | 978.9      |
| Males   |     | 3 | 17.8 | 0.1393 | 3.292       | 0.45858   | 4317          | 30.5  | 9257     | 1311.2     |
| Males   |     | 4 | 20.8 | 0.3925 | 5.315       | 2.08614   | 19637         | 138.6 | 26083    | 3694.5     |
| Males   |     | 5 | 21.8 | 0.0095 | 6.081       | 0.05777   | 544           | 3.8   | 631      | 89.4       |
| Primip. |     | 4 | 21.5 | 0.0293 | 5.848       | 0.17135   | 1613          | 11.4  | 1947     | 275.8      |
| Primip. |     | 5 | 24.0 | 0.1147 | 8.204       | 0.94100   | 8857          | 62.5  | 7622     | 1079.7     |
| Multip. |     | 4 | 20.5 | 0.0240 | 5.484       | 0.13179   | 1240          | 8.8   | 1597     | 226.2      |
| Multip. |     | 5 | 23.2 | 0.1111 | 7.769       | 0.86314   | 8125          | 57.4  | 7383     | 1045.8     |
| Multip. |     | 6 | 25.1 | 0.0666 | 9.652       | 0.64282   | 6051          | 42.7  | 4426     | 626.9      |
| Multip. |     | 7 | 26.9 | 0.0090 | 11.701      | 0.10531   | 991           | 7.0   | 598      | 84.7       |
| Total   |     |   |      | 1      |             | 5.67192   | 53389         | 376.9 | 66456    | 9413.2     |

| 0 | n | n | 2 |  |
|---|---|---|---|--|
| 4 | υ | υ | 2 |  |

| Sex     | Age |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|
|         |     |   | mm   | by no. | g           | by weight | 50214         | 383.7 |          | ('000'000) |
| Males   |     | 1 | 12.1 | 0.0003 | 1.011       | 0.00030   | 3             | 0.0   | 23       | 3.0        |
| Males   |     | 2 | 15.4 | 0.0605 | 2.142       | 0.12959   | 1281          | 9.8   | 4569     | 597.9      |
| Males   |     | 3 | 18.1 | 0.5095 | 3.497       | 1.78172   | 17609         | 134.5 | 38474    | 5035.4     |
| Males   |     | 4 | 20.6 | 0.0681 | 5.124       | 0.34894   | 3449          | 26.4  | 5142     | 673.0      |
| Primip. |     | 4 | 20.3 | 0.0458 | 4.940       | 0.22625   | 2236          | 17.1  | 3459     | 452.6      |
| Primip. |     | 5 | 23.0 | 0.0675 | 7.231       | 0.48809   | 4824          | 36.9  | 5097     | 667.1      |
| Multip. |     | 3 | 19.4 | 0.0009 | 4.718       | 0.00425   | 42            | 0.3   | 68       | 8.9        |
| Multip. |     | 4 | 22.2 | 0.0598 | 6.818       | 0.40772   | 4029          | 30.8  | 4516     | 591.0      |
| Multip. |     | 5 | 24.1 | 0.1430 | 8.600       | 1.22980   | 12154         | 92.9  | 10798    | 1413.3     |
| Multip. |     | 6 | 25.7 | 0.0430 | 10.266      | 0.44144   | 4363          | 33.3  | 3247     | 425.0      |
| Multip. |     | 7 | 28.3 | 0.0017 | 13.359      | 0.02271   | 224           | 1.7   | 128      | 16.8       |
| Total   |     |   |      | 1      |             | 5.08082   | 50214         | 383.7 | 75521    | 9884.0     |

Table 11 continued

| 2003 |  |
|------|--|

|         |     |    |      |        | -           | 2005      |               |       |          |            |
|---------|-----|----|------|--------|-------------|-----------|---------------|-------|----------|------------|
| Sex     | Age | CL |      | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |
|         |     | mm |      | by no. | g           | by weight | 63970         | 452.6 |          | (´000`000) |
| Males   |     | 1  | 12.1 | 0.0086 | 1.020       | 0.00875   | 96            | 0.7   | 667      | 94.3       |
| Males   |     | 2  | 15.8 | 0.1111 | 2.303       | 0.25586   | 2812          | 19.9  | 8642     | 1221.1     |
| Males   |     | 3  | 18.4 | 0.1222 | 3.658       | 0.44702   | 4913          | 34.8  | 9506     | 1343.2     |
| Males   |     | 4  | 20.5 | 0.3638 | 5.062       | 1.84139   | 20240         | 143.2 | 28296    | 3998.3     |
| Primip. |     | 4  | 21.7 | 0.0855 | 6.052       | 0.51737   | 5687          | 40.2  | 6650     | 939.6      |
| Primip. |     | 5  | 24.2 | 0.0554 | 8.347       | 0.46263   | 5085          | 36.0  | 4311     | 609.2      |
| Multip. |     | 3  | 20.0 | 0.0004 | 4.678       | 0.00198   | 22            | 0.2   | 33       | 4.6        |
| Multip. |     | 4  | 22.0 | 0.0409 | 6.653       | 0.27199   | 2990          | 21.2  | 3180     | 449.4      |
| Multip. |     | 5  | 24.3 | 0.1358 | 8.833       | 1.19913   | 13180         | 93.3  | 10560    | 1492.2     |
| Multip. |     | 6  | 26.0 | 0.0753 | 10.622      | 0.79948   | 8787          | 62.2  | 5855     | 827.3      |
| Multip. |     | 7  | 27.9 | 0.0011 | 12.885      | 0.01437   | 158           | 1.1   | 87       | 12.3       |
| Total   |     |    |      | 1      |             | 5.81996   | 63970         | 452.7 | 77786    | 10991.5    |

| Sex     | Age |   | CL   | Prop.  | Mean weight        | Prop.   | Nominal catch | kg/hr | No./hour | Number     |
|---------|-----|---|------|--------|--------------------|---------|---------------|-------|----------|------------|
|         |     |   | mm   | by no. | by no. g by weight |         | 45757         | 413.6 |          | (´000´000) |
| Males   |     | 1 |      |        |                    |         |               |       |          |            |
| Males   |     | 2 | 14.4 | 0.1583 | 1.720              | 0.27228 | 2391          | 21.6  | 12559    | 1390.1     |
| Males   |     | 3 | 18.4 | 0.3719 | 3.631              | 1.35037 | 11858         | 107.1 | 29504    | 3265.7     |
| Males   |     | 4 | 21.1 | 0.1082 | 5.529              | 0.59824 | 5253          | 47.5  | 8584     | 950.1      |
| Males   |     | 5 | 21.5 | 0.0164 | 5.867              | 0.09622 | 845           | 7.6   | 1301     | 144.0      |
| Primip. |     | 4 | 20.8 | 0.0091 | 5.327              | 0.04848 | 426           | 3.8   | 722      | 79.9       |
| Primip. |     | 5 | 23.4 | 0.1657 | 7.618              | 1.26230 | 11085         | 100.1 | 13146    | 1455.0     |
| Multip. |     | 4 | 21.6 | 0.0158 | 6.296              | 0.09948 | 874           | 7.9   | 1253     | 138.7      |
| Multip. |     | 5 | 24.3 | 0.0993 | 8.756              | 0.86947 | 7635          | 69.0  | 7878     | 872.0      |
| Multip. |     | 6 | 26.5 | 0.0548 | 11.126             | 0.60970 | 5354          | 48.4  | 4347     | 481.2      |
| Multip. |     | 7 | 28.9 | 0.0003 | 14.199             | 0.00426 | 37            | 0.3   | 24       | 2.6        |
| Total   |     |   |      | 1      |                    | 5.21079 | 45757         | 413.4 | 79318    | 8779.4     |

| 2003    |     |   |      |        |               |         |               |       |          |            |  |  |
|---------|-----|---|------|--------|---------------|---------|---------------|-------|----------|------------|--|--|
| Sex     | Age |   | CL   | Prop.  | Mean weight   | Prop.   | Nominal catch | kg/hr | No./hour | Number     |  |  |
|         |     |   | mm   | by no. | by no. g by w |         | 27479         | 463.4 |          | ('000'000) |  |  |
| Males   |     | 1 |      |        |               |         |               |       |          |            |  |  |
| Males   |     | 2 | 15.7 | 0.0607 | 2.229         | 0.13530 | 724           | 12.2  | 5477     | 324.9      |  |  |
| Males   |     | 3 | 17.5 | 0.3794 | 3.038         | 1.15262 | 6169          | 104.0 | 34234    | 2030.5     |  |  |
| Males   |     | 4 | 20.0 | 0.1287 | 4.689         | 0.60347 | 3230          | 54.5  | 11613    | 688.8      |  |  |
| Primip. |     | 3 | 19.9 | 0.0153 | 4.689         | 0.07174 | 384           | 6.5   | 1381     | 81.9       |  |  |
| Primip. |     | 4 | 21.9 | 0.1893 | 6.206         | 1.17480 | 6287          | 106.0 | 17081    | 1013.1     |  |  |
| Primip. |     | 5 | 23.5 | 0.0550 | 7.405         | 0.40728 | 2180          | 36.7  | 4963     | 294.4      |  |  |
| Multip. |     | 4 | 22.4 | 0.0264 | 6.830         | 0.18031 | 965           | 16.3  | 2382     | 141.3      |  |  |
| Multip. |     | 5 | 24.3 | 0.1090 | 8.952         | 0.97577 | 5222          | 88.0  | 9835     | 583.4      |  |  |
| Multip. |     | 6 | 26.2 | 0.0322 | 11.552        | 0.37197 | 1991          | 33.6  | 2905     | 172.3      |  |  |
| Multip. |     | 7 | 26.9 | 0.0053 | 11.552        | 0.06123 | 328           | 5.5   | 478      | 28.4       |  |  |
| Total   |     |   |      | 1      |               | 5.13448 | 27479         | 463.3 | 90350    | 5358.8     |  |  |

Table 11. Continued

|         |     |   |      |        |             | 2006      |               |       |          |           |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|-----------|
| Sex     | Age |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number    |
|         |     |   | mm   | by no. | g           | by weight | 18162         | 537.6 |          | (´000´000 |
| Males   |     | 1 |      |        |             |           |               |       |          |           |
| Males   |     | 2 | 12.6 | 0.0142 | 1.136       | 0.01613   | 65            | 1.9   | 1689     | 57.       |
| Males   |     | 3 | 15.6 | 0.0616 | 2.128       | 0.13110   | 527           | 15.6  | 7330     | 247.      |
| Males   |     | 4 | 17.6 | 0.2887 | 3.047       | 0.87985   | 3534          | 104.7 | 34356    | 1159.     |
| Males   |     | 5 | 19.7 | 0.0629 | 4.188       | 0.26343   | 1058          | 31.3  | 7486     | 252.      |
| Primip. |     | 3 | 15.9 | 0.0089 | 2.401       | 0.02129   | 86            | 2.5   | 1055     | 35.       |
| Primip. |     | 4 | 18.6 | 0.1548 | 4.082       | 0.63207   | 2539          | 75.2  | 18423    | 622.      |
| Primip. |     | 5 | 20.5 | 0.1408 | 5.639       | 0.79388   | 3189          | 94.5  | 16751    | 565.      |
| Primip. |     | 6 | 22.9 | 0.0366 | 8.276       | 0.30299   | 1217          | 36.1  | 4357     | 147.      |
| Multip. |     | 3 | 17.5 | 0.0028 | 2.900       | 0.00819   | 33            | 1.0   | 336      | 11.       |
| Multip. |     | 4 | 19.6 | 0.0318 | 4.046       | 0.12853   | 516           | 15.3  | 3780     | 127.      |
| Multip. |     | 5 | 21.9 | 0.0903 | 5.651       | 0.51018   | 2049          | 60.7  | 10742    | 362.      |
| Multip. |     | 6 | 24.0 | 0.0908 | 7.454       | 0.67692   | 2719          | 80.5  | 10806    | 364.      |
| Multip. |     | 7 | 26.3 | 0.0158 | 9.904       | 0.15659   | 629           | 18.6  | 1881     | 63.       |
| Total   |     |   |      | 1      |             | 4.52115   | 18162         | 538.0 | 118991   | 4017.     |

|         | 2007 |   |      |        |             |           |               |       |          |            |  |  |  |
|---------|------|---|------|--------|-------------|-----------|---------------|-------|----------|------------|--|--|--|
| Sex     | Age  |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |  |  |  |
|         |      |   | mm   | by no. | g           | by weight | 20267         | 487.5 |          | ('000'000) |  |  |  |
| Males   |      | 1 |      |        |             |           |               |       |          |            |  |  |  |
| Males   |      | 2 | 12.5 | 0.0082 | 1.278       | 0.01054   | 45            | 1.1   | 849      | 35.4       |  |  |  |
| Males   |      | 3 | 15.3 | 0.1026 | 2.176       | 0.22320   | 958           | 23.0  | 10565    | 440.1      |  |  |  |
| Males   |      | 4 | 18.9 | 0.2402 | 3.854       | 0.92556   | 3971          | 95.3  | 24736    | 1030.4     |  |  |  |
| Primip. |      | 3 | 16.6 | 0.0033 | 2.659       | 0.00876   | 38            | 0.9   | 339      | 14.1       |  |  |  |
| Primip. |      | 4 | 19.1 | 0.0953 | 3.962       | 0.37763   | 1620          | 38.9  | 9817     | 409.0      |  |  |  |
| Primip. |      | 5 | 20.8 | 0.1728 | 5.018       | 0.86690   | 3719          | 89.3  | 17795    | 741.3      |  |  |  |
| Primip. |      | 6 | 23.1 | 0.0457 | 6.710       | 0.30680   | 1316          | 31.6  | 4709     | 196.2      |  |  |  |
| Multip. |      | 5 | 20.5 | 0.1798 | 4.891       | 0.87941   | 3773          | 90.6  | 18519    | 771.4      |  |  |  |
| Multip. |      | 6 | 23.1 | 0.1166 | 6.917       | 0.80673   | 3461          | 83.1  | 12013    | 500.4      |  |  |  |
| Multip. |      | 7 | 25.2 | 0.0355 | 8.973       | 0.31822   | 1365          | 32.8  | 3653     | 152.2      |  |  |  |
| Total   |      |   |      | 1      |             | 4.72375   | 20267         | 486.5 | 102995   | 4290.4     |  |  |  |

| 2008    |     |   |      |        |             |           |               |       |          |            |  |  |
|---------|-----|---|------|--------|-------------|-----------|---------------|-------|----------|------------|--|--|
| Sex     | Age |   | CL   | Prop.  | Mean weight | Prop.     | Nominal catch | kg/hr | No./hour | Number     |  |  |
|         |     |   | mm   | by no. | g           | by weight | 12889         | 443.1 |          | (´000´000) |  |  |
| Males   |     | 1 |      |        |             |           |               |       |          |            |  |  |
| Males   |     | 2 | 13.4 | 0.0103 | 1.510       | 0.01550   | 39            | 1.3   | 876      | 25.5       |  |  |
| Males   |     | 3 | 17.4 | 0.2362 | 3.091       | 0.73025   | 1815          | 62.4  | 20174    | 587.0      |  |  |
| Males   |     | 4 | 19.6 | 0.0940 | 4.331       | 0.40731   | 1012          | 34.8  | 8031     | 233.7      |  |  |
| Primip. |     | 3 | 18.1 | 0.0415 | 3.471       | 0.14422   | 358           | 12.3  | 3548     | 103.2      |  |  |
| Primip. |     | 4 | 20.9 | 0.1328 | 5.160       | 0.68522   | 1703          | 58.5  | 11340    | 330.0      |  |  |
| Primip. |     | 5 | 23.0 | 0.1435 | 6.782       | 0.97332   | 2419          | 83.1  | 12256    | 356.6      |  |  |
| Multip. |     | 3 | 19.7 | 0.0228 | 4.359       | 0.09933   | 247           | 8.5   | 1946     | 56.6       |  |  |
| Multip. |     | 4 | 21.8 | 0.1741 | 5.791       | 1.00811   | 2505          | 86.1  | 14865    | 432.5      |  |  |
| Multip. |     | 5 | 23.9 | 0.1259 | 7.476       | 0.94096   | 2338          | 80.4  | 10749    | 312.8      |  |  |
| Multip. |     | 6 | 26.2 | 0.0189 | 9.675       | 0.18280   | 454           | 15.6  | 1614     | 47.0       |  |  |
| Multip. |     | 7 |      |        |             |           |               |       |          |            |  |  |
| Total   |     |   |      | 1      |             | 5.18702   | 12889         | 443.0 | 85399    | 2484.9     |  |  |

16

| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003  | 2004 | 2005 | 2006 | 2007 | 2008 |
|-----|------|------|------|------|------|------|------|-------|------|------|------|------|------|
| 1   |      | 1    |      | 1    |      |      | 3    | 94    |      |      |      |      |      |
| 2   | 489  | 214  | 302  | 334  | 152  | 979  | 598  | 1221  | 1390 | 325  | 57   | 35   | 25   |
| 3   | 5124 | 1700 | 1767 | 1987 | 3172 | 1311 | 5044 | 1348  | 3266 | 2112 | 294  | 454  | 747  |
| 4   | 1561 | 1764 | 2067 | 2299 | 3689 | 4197 | 1717 | 5387  | 1169 | 1843 | 1909 | 1439 | 996  |
| 5   | 451  | 347  | 659  | 1849 | 2181 | 2215 | 2080 | 2101  | 2471 | 878  | 1181 | 1513 | 669  |
| 6   | 236  | 70   | 245  | 666  | 458  | 627  | 425  | 827   | 481  | 172  | 512  | 697  | 47   |
| 7   |      | 6    | 27   | 8    | 22   | 85   | 17   | 12    | 3    | 28   | 64   | 152  |      |
|     | 7862 | 4103 | 5068 | 7143 | 9673 | 9413 | 9884 | 10991 | 8779 | 5359 | 4017 | 4290 | 2485 |

Table 12. Number (10<sup>6</sup>) of shrimp caught annually, based on the ageing of international samples in the period January to September (1996-05) and EU surveys samples (2006-08).

Table 13. Shrimp Mean length (oblique carapace length mm) at age

| Age | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006* | 2007  | 2008  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1   |       | 10.44 |       | 6.00  |       |       | 12.05 | 12.09 |       |       |       |       |       |
| 2   | 15.25 | 15.73 | 14.90 | 14.49 | 13.16 | 15.23 | 15.43 | 15.81 | 14.36 | 15.70 | 12.59 | 12.52 | 13.43 |
| 3   | 20.13 | 19.05 | 18.75 | 17.58 | 17.32 | 17.78 | 18.14 | 18.42 | 18.36 | 17.58 | 15.71 | 15.29 | 17.65 |
| 4   | 24.79 | 23.30 | 22.09 | 21.34 | 20.49 | 20.85 | 21.05 | 20.83 | 21.13 | 21.21 | 18.08 | 18.93 | 20.98 |
| 5   | 26.60 | 25.56 | 25.29 | 24.22 | 24.21 | 23.56 | 23.77 | 24.28 | 23.62 | 24.07 | 21.00 | 20.65 | 23.43 |
| 6   | 28.85 | 28.33 | 26.47 | 26.42 | 26.32 | 25.13 | 25.69 | 26.01 | 26.45 | 26.24 | 23.65 | 23.07 | 26.19 |
| 7   |       | 29.28 | 29.07 | 29.57 | 27.64 | 26.93 | 28.25 | 27.88 | 28.87 | 26.90 | 26.31 | 25.19 |       |

\* Since 2006 the mean length at age is estimated from EU survey

Table 14. Shrimp Mean weight at age for the period January to September based on international data base.

| Age | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006* | 2007 | 2008 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| 1   |       | 0.91  |       | 0.12  |       |       | 1.01  | 1.02  |       |       |       |      |      |
| 2   | 2.07  | 3.20  | 1.92  | 1.77  | 1.33  | 2.06  | 2.14  | 2.30  | 1.72  | 2.23  | 1.14  | 1.28 | 1.51 |
| 3   | 4.81  | 4.13  | 3.87  | 3.18  | 3.04  | 3.29  | 3.50  | 3.66  | 3.63  | 3.10  | 2.19  | 2.19 | 3.24 |
| 4   | 9.10  | 7.67  | 6.44  | 5.77  | 5.14  | 5.36  | 5.66  | 5.37  | 5.61  | 5.69  | 3.45  | 3.88 | 5.24 |
| 5   | 11.31 | 10.63 | 9.80  | 8.54  | 8.64  | 7.91  | 8.16  | 8.69  | 7.92  | 8.43  | 5.64  | 4.95 | 7.11 |
| 6   | 14.17 | 14.35 | 11.15 | 11.06 | 10.70 | 9.65  | 10.27 | 10.62 | 11.13 | 11.55 | 7.69  | 6.86 | 9.67 |
| 7   | 0.00  | 15.07 | 14.47 | 15.17 | 14.32 | 11.70 | 13.36 | 12.89 | 14.20 | 11.55 | 9.90  | 8.97 |      |

\* Since 2006 the weight at age is estimated from EU survey

Table 15. Number of shrimp caught per hour (Standardized CPUE) annually, based on the ageing of international samples in the period January to September (1996-05) and EU surveys samples (2006-08).

| Ag<br>e | 1996      | 1997      | 1998      | 1999      | 2000      | 2001  | 2002  | 2003  | 2004  | 2005  | 2006   | 2007   | 2008  | Mean  |
|---------|-----------|-----------|-----------|-----------|-----------|-------|-------|-------|-------|-------|--------|--------|-------|-------|
| 1       |           | 9         |           | 6         |           |       | 23    | 667   |       |       |        |        |       |       |
| 2       | 2602      | 2144      | 3331      | 2660      | 1108      | 6911  | 4569  | 8642  | 12559 | 5477  | 1689   | 849    | 876   | 4109  |
| 3       | 2724<br>5 | 1702<br>4 | 1948<br>9 | 1583<br>6 | 2319<br>0 | 9257  | 38542 | 9539  | 29504 | 35615 | 8721   | 10904  | 25668 | 20810 |
| 4       | 8300      | 1766<br>5 | 2280<br>0 | 1831<br>6 | 2697<br>1 | 29627 | 13117 | 38126 | 10559 | 31076 | 56559  | 34553  | 34236 | 26300 |
| 5       | 2401      | 3470      | 7273      | 1473<br>6 | 1594<br>8 | 15637 | 15896 | 14871 | 22325 | 14798 | 34979  | 36314  | 23005 | 17050 |
| 6       | 1254      | 703       | 2705      | 5305      | 3346      | 4426  | 3247  | 5855  | 4347  | 2905  | 15162  | 16722  | 1614  | 5199  |
| 7       | 0         | 61        | 303       | 61        | 162       | 598   | 128   | 87    | 24    | 478   | 1881   | 3653   |       | 620   |
|         | 4180<br>1 | 4106<br>8 | 5590<br>1 | 5691<br>4 | 7072<br>5 | 66456 | 75498 | 77119 | 79318 | 90350 | 118991 | 102995 | 85399 | 74089 |

| Year | EU survey | Standarized  |
|------|-----------|--------------|
| Teur | Biomass   | CPUE Kg/hour |
| 1988 | 4525      |              |
| 1989 | 1359      |              |
| 1990 | 1363      |              |
| 1991 | 6365      |              |
| 1992 | 15472     |              |
| 1993 | 6923      | 254.7        |
| 1994 | 2945      | 144.9        |
| 1995 | 4857      | 159.1        |
| 1996 | 5132      | 131.3        |
| 1997 | 4885      | 127.6        |
| 1998 | 11444     | 180.0        |
| 1999 | 13669     | 220.8        |
| 2000 | 10172     | 231.5        |
| 2001 | 13336     | 189.8        |
| 2002 | 17091     | 213.0        |
| 2003 | 11589     | 254.1        |
| 2004 | 12081     | 229.6        |
| 2005 | 14381     | 292.6        |
| 2006 | 11359     | 384.4        |
| 2007 | 12843     | 367.1        |
| 2008 | 8630      | 344.5        |
| 2009 | 1764      |              |

Table 16.- Female biomass Indices from the EU survey, and thecommercial fishery standardized CPUE.

Table 17.- Shrimp Female biomass Indexes from the EU survey, Annual, partial commercial catches from January to May and its percentage in the annual commercial catches as are reported to the NAFO Statland 21B.

| Year  | Shrimp female biomass (t) | Commercial catches (t) |         |     |  |  |
|-------|---------------------------|------------------------|---------|-----|--|--|
| I cai | EU Survey Index           | Annual                 | Jan-May | %   |  |  |
| 1994  | 2945                      | 21537                  | 6318    | 29% |  |  |
| 1995  | 4857                      | 33071                  | 7481    | 23% |  |  |
| 1996  | 5132                      | 44615                  | 14881   | 33% |  |  |
| 1997  | 4885                      | 23221                  | 6732    | 29% |  |  |
| 1998  | 11444                     | 30035                  | 7956    | 26% |  |  |
| 1999  | 13669                     | 43144                  | 11548   | 27% |  |  |
| 2000  | 10172                     | 48734                  | 18673   | 38% |  |  |
| 2001  | 13336                     | 50755                  | 17377   | 34% |  |  |
| 2002  | 17091                     | 42965                  | 14912   | 35% |  |  |
| 2003  | 11589                     | 57530                  | 19198   | 33% |  |  |
| 2004  | 12081                     | 36509                  | 9133    | 25% |  |  |
| 2005  | 14381                     | 26688                  | 11592   | 43% |  |  |
| 2006  | 11359                     | 14065                  | 6467    | 46% |  |  |
| 2007  | 12843                     | 15131                  | 2610    | 17% |  |  |
| 2008  | 8630                      | 2832                   | 1098    | 39% |  |  |

Average 32%

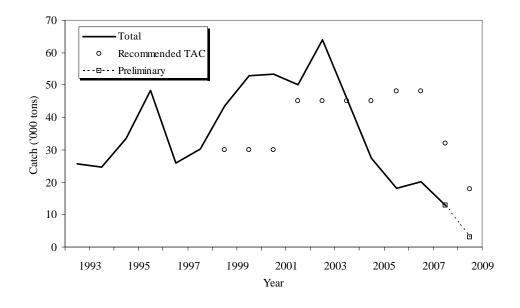
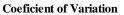




Fig.1. Shrimp in Div. 3M: catch.



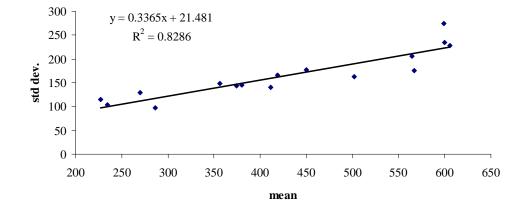



Fig. 2. Coefficient of variation around the annual mean CPUE.

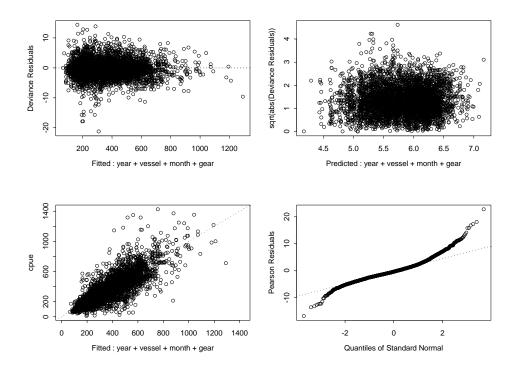



Fig.3. Plots of the generalized linear model of CPUE predicted by year, vessel, month and gear.

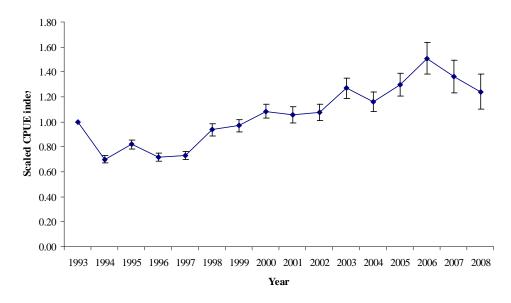



Fig. 4. Standardized CPUE series for shrimp in 3M Division, scaled to CPUE in 1993 with approximate 95% confidence limits.

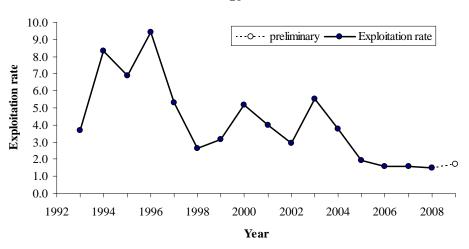



Fig. 5. Exploitation rates as nominal catch divided by the EU survey biomass index of the same year.

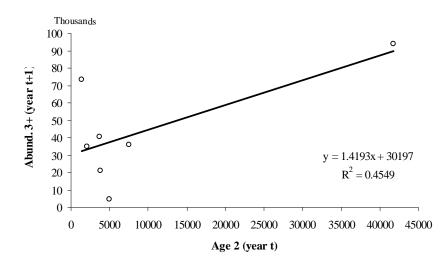



Fig. 6. Relationship from the EU Survey between the number of age 2 estimated and the number of age 3 and older one year later .

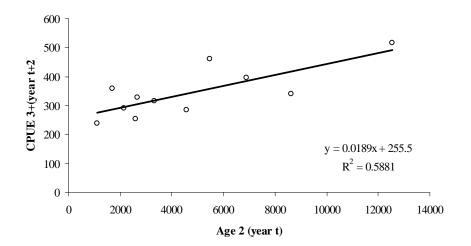



Fig. 7. No./hour of 2 year olds in the commercial fishery and standardized kg/hour (CPUE 3+) lagged by 2 years.

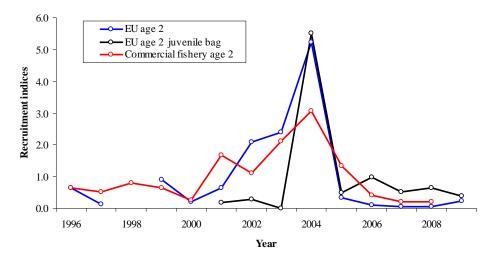



Fig. 8. Recruitment indices (number of 2 years old) from the commercial fishery and EU Survey. Each series was standardized to its mean.

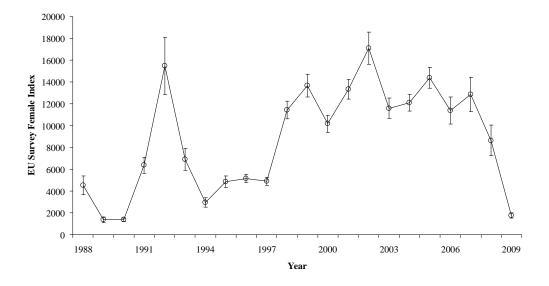
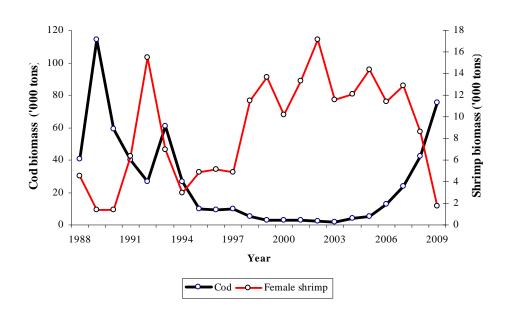




Fig. 9. Shrimp in Div. 3M: female biomass index from EU surveys, 1988-2009.



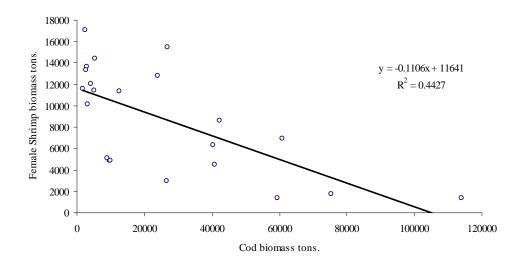



Figure 10. A) EU survey cod biomass (blcak line) and female shrimp biomass (red line) in the years 1988-2009 on Flemish Cap. B) Relationship from cod biomass and female shrimp biomass from EU Survey indexes estimated in the years 1988-2009 on Flemish Cap.

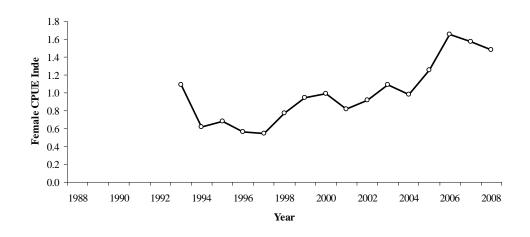



Fig. 11. Shrimp in Div. 3M: standardized female CPUE, 1993-2008. The series was standardized to the mean of the series.

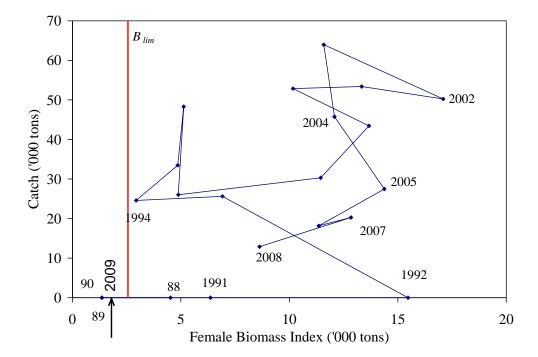



Fig. 12. Catch plotted against female biomass index from EU survey. Line denoting  $B_{lim}$  is drawn where biomass is 85% lower than the maximum point in 2002. The preliminary female biomass index for 2009 is estimated at 1764 t to 10 October 2009 and is shown by the arrow on the x-axis.

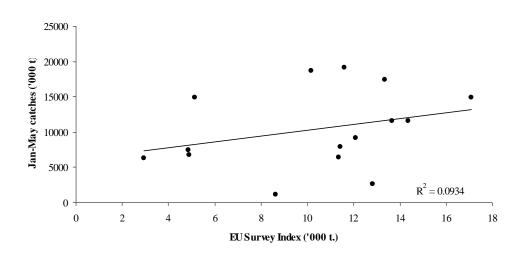



Fig. 13. Relationship from commercial catches taken between January and May and the UE survey series indexes from 1993 to 2006 years.