NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N5792 NAFO SCR Doc.10/34

SCIENTIFIC COUNCIL MEETING - JUNE 2010

Assessment of the Greenland Halibut Stock Component in NAFO Subarea 0 + Division 1A Offshore + Divisions 1B-1F

O.A. Jørgensen DTU-Aqua, Technical University of Denmark, Charlottenlund Slot, DK 2920 Charlottenlund, Denmark

Abstract

The paper presents the background and the input parameters from research surveys and the commercial fishery to the assessment of the Greenland halibut stock component in NAFO Subarea 0 + Div. 1A offshore + Div. 1B-1F. Catches peaked at 18.000 tons in 1992 but have been stable around 10.000 tons during 1993-2000. Catches increased to 13,800 tons in 2001 and further to 18,700 tons in 2003 primarily due to increases in catches in Div. 0A and 1A. Catches have remained at that level in 2004 and 2005. During 2006-2009 catches have been around 24,000 tons (24,800 tons in 2009). Catches increased due to increased effort in Div. 0A and Div. 1AB. Survey trawlable biomass in Div. 1CD increased between 2003 and 2005, but decreased slightly during 2006-2007 but increased to a record high level in 2008. The biomass decreased in 2009 to a level at about average of the time series. The offshore biomass in the Greenland shrimp survey has been gradually decreasing since 2004, and the biomass also decreased between 2008 and 2009 and is now slightly below the average of the time series. The recruitment of the 2002-2006 year class in the entire survey area has been stable but the recruitment of the 2007 and 2008 year classes have been gradually deceasing and the 2008 year class is the lowest level seen since the 1997 year class. The decline in recruitment was mainly seen in Disko Bay. A recruitment index for the off shore nursery areas showed that the 2008 year class was a little below average. A standardized CPUE series from Div. 1AB increased between 2008 and 2009 and is now at the level in 2005 and 2006. A standardized CPUE series from Div. 0B has been increasing since 2002 and was the highest on record in 2009. In Div. 1CD standardized catch rates have been increasing since 1997 and the CPUE also increased slightly between 2008 and 2009 and is now the highest seen since 1989. The combined catch rate for Div. 1CD+0B has showed very little variation during the period 1988-2004, but with an increasing trend since then and the 2009 estimate is the highest seen since 1989.

1. TAC, description of the fishery and nominal catches.

TAC

Between 1979 and 1994 a TAC was set at 25,000 tons for SA 0+1, including Div. 1A inshore. In 1994 it was decided to make separate assessments for the inshore area in Div. 1A and for SA 0 + Div. 1A offshore + Div.1B-1F. From 1995-2009 the advised TAC for the latter area was 11,000 tons. In 2000 there was set an additional TAC of 4,000 tons for Div. 0A+1AB for 2001. This TAC was in 2002 increased to 8,000 tons for 2003. Total advised TAC for 2004 and 2005 remained at 19,000 tons. In 2006 the advised TAC in Div. 0A+1AB was increased with further 5,000 tons to 13,000 tons. Total advised TAC remained at that level. - 24,000 tons - in 2008 and 2009.

Catches in SA 0 + Div. 1A offshore + Div.1B-1F

During the period 1982-1989 nominal catches of Greenland halibut in SA 0 + Div. 1A offshore + Div.1B-1F fluctuated between 300 and 4,500 tons. Catches increased from 2,927 tons in 1989 to 11,633 tons in 1990. Catches stayed at that level in 1991 but increased again in 1992 to 18,457 tons. During 1993-2000 catches have fluctuated between 8,250 and 11,750 tons. Catches increased to 13,760 tons in 2001 and further to 19,716 tons in 2005. In

2006 catches increased to 24,164, remained at that level in 2007 but decreased slightly to 22,071 tons in 2008. Catches increased again to 24,805 tons in 2009 (Fig. 1).

The increase in catches from 1989 to 1990 was due to a new trawl fishery by Canada and Norway and increased effort by Russia and Faeroe Islands in Div. 0B, while the increase from 1991 to 1992 was caused by a further increase in effort by Russia in Div. 0B and an increase in fishing activity in SA 1. The increase in catches between 2000 and 2003 and from 2005 to 2006 was primarily due to an in increase in effort in Div. 0A and Div. 1A. The distribution of catches between Div. 0A and Div. AB and Div. 0B and Div.1C-F has been stable in recent years.

Catches in SA 0

In 1983 annual catches in SA 0 were about 4,500 tons. Catches then dropped to a level of 1,000 tons or lower, where they remained until they increased from 1,087 tons in 1989 to 9,753 tons in 1990. Catches decreased in 1991 to 8,745 tons, to increase again in 1992 to 12,788 tons. Catches then decreased gradually to 3,233 tons in 1995 and fluctuated between 3,924 and 5,438 tons between 1996 and 2000. Until 2000 almost all catches in SA 0 were taken in Div. 0B. In 2001 a commercial fishery started in Div. 0A. Catches in SA 0 increased to 8,107 tons in 2001 and further to 9,201 tons in 2003 and stayed at that level in 2004 and 2005. Catches increased to 12,319 in 2006 but decreased slightly to 11,489 tons in 2007 and further to 10,432 tons in 2008. Catches increased again to 12,400 tons in 2009. (Table 1).

The increase in catches seen since 2000 was mainly due to an increased effort in Div. 0A where catches increased from a level of about 300 ton, where they have been since 1996 (trial fishery not officially reported), to 3,073 tons in 2001 and further to 4,142 tons in 2003. Catches stayed at that level in 2004 and 2005. In 2006 catches increased to 6,634 tons due to increased effort, but decreased to 6,173 tons in 2007 and further to 5,257 tons in 2008. Catches increased again in 2009 to 6,593 tons (Table 1).

The catches in Div. 0A in 2009 were taken by trawl (1,436 tons) and twin trawl (2,928 tons), while 2,229 tons was taken by gill net. The single trawl and gill net catches were at the same level as in 2008 while the twin trawl catches increased by about 1,700 tons. The long lines fishery in the area has apparently stopped. The fishery was prosecuted by Canadian vessels.

Catches in Div. 0B 2009 amounted to 5,807 tons which is an increase from 5,175 tons in 2008 and at the level seen in recent years. Offshore gillnetters took 1,515 tons while single- and double trawlers took 613 tons and 3,393 tons, respectively. A small longline fishery took 102 tons and 185 tons were reported from inshore Cumberland Sound. All catches were taken by Canadian vessels.

Catches in SA1

The catches in Subarea 1 (Div. offshore 1A + Div. 1B-1F) were below 2,500 tons during 1982-1991. In 1992 catches increased to 5,669, decreased to 3,870 tons in 1993 to increase again in 1994 to the 1992 level. During 1995-1999 catches were around 4,500-5,000 tons. Catches increased to 5,728 tons in 2000, stayed at that level in 2001 and increased gradually to 9,495 tons in 2003 and stayed at this level in 2004 and 2005. Catches increased to 11,945 tons in 2006 due to increased effort by Greenland in Div. 1AB. and stayed at that level in 2007 and 2008. In 2009 catches amounted to 12,405 tons Almost all catches have been taken offshore (Table 2). The inshore catches amounted to 251 tons in 2009.

Catches in Div. 1AB (mainly in Div. 1A) increased gradually from 575 tons in 2001 to 4,007 tons in 2003 and stayed at that level in 2004-2005. Catches increased again in 2006 to 6,223 and stayed at that level during 2007-2009 (6,735 tons in 2009). All catches were taken off shore by trawlers from Faeroe Islands, Russia (SCS 10/05) and Greenland (SCS 10/12).

Catches in Div 1CD have been stable around 5,600 tons in recent years and was 5,670 tons in 2009. Catches were taken by vessels from Greenland (SCS 10/12), Norway, EU-Germany (SCS 10/08), Russia (SCS 10/05) and Faeroe Islands. Almost all catches offshore were taken by trawl except about 20 tons taken by a longliner. 251 tons were taken inshore in Div. 1B-1F, mainly by gill net.

Reported discard in then trawl fishery is small, normally < 1%.

2. Input data

2.1 Research trawl survey

Div. 1C-1D GHL-survey

Since 1997 Greenland has conducted stratified random bottom trawl surveys in September-October for Greenland halibut in NAFO Div. 1C-D at depth between 400 and 1500 m. In 2009 a total 68 hauls were made (SCR 10/11). The biomass and abundance of Greenland halibut in Div. 1C-D decreased from 83 465 tons and 72.004*106 individuals in 2008 to 70 996 tons and 62.507*106, respectively (Fig. 2ab). The biomass estimate from 2009 is about average for the time series, while the abundance is some what below. The reduction in biomass was primarily seen in Div. 1D 1001-1200 m but minor reductions in biomass were also seen in all strata in Div. 1C. The mean catch per km² swept decreased from 1.60 in 2008, which is the highest in the time series to 1.36 tons per km² in 2009 (Fig. 2c). The overall length distribution in Div. 1CD was totally dominated by a mode at 50 cm where the mode use to be at 47-49 cm.

Canadian deep sea survey in Baffin Bay (Div. 0A)

Canada has conducted surveys in the southern part of Div. 0A in 1999, 2001, 2004, 2006 and 2008. The biomass has increased gradually from 68,700 tons via 81,000 tons to 86, 200 tons in 2004. The biomass decreased to 52,271 tons in 2006 (Fig. 2d). However, the survey coverage was not complete and two of the four strata missed fell within the depths 1001-1500 m and accounted for 11,000 – 13,000 tons of biomass in previous surveys. Therefore, the 2006 estimates are considered to be lower than the most recent surveys but comparable to the estimate from 1999. Biomass and abundance were in 2008 estimated to be 77182 tons (S.E. 8465) and 1.16 x 10⁸ (S.E. 1.1 x 10⁷), respectively. Mean biomass per tow was 1.67 t/ km², higher than in 2006 and 1999 but lower than was observed in 2001 and 2004. Mean abundance per tow was 2598 per km², an increase over estimates in 2004 and 2006 but lower than was observed in 1999 and 2001. The overall length distribution ranged from 6 cm to 99 cm with a relatively flat top on the distribution (the mode stretched between 33 cm and 39 cm) and is most similar to that seen in 2006 and 1999. (SCR 09/26).

Greenland shrimp-survey

Since 1988 annual trawl surveys with a shrimp trawl have been conducted off West Greenland in July-September. The survey covers the area between 59°N and 72°30'N (Div. 1A-1F), from the 3-mile limit to the 600-m depth contour line. The survey area was restratified in 2004 based on better information about depths. All biomass and abundance indices have been recalculated. The recalculation did not change the trends in the development of the different stocks. The trawl was changed in 2005 but the data has been adjusted for that.

Estimated total trawlable biomass of Greenland halibut in the offshore areas (not including Disko Bay) has fluctuated between 9,258 and 31,100 tons during 1992 - 2008. In 2009 the biomass was estimated as 16,868 tons which is a decreased compared to 20,519 tons in 2008, and about 1,000 tons below average for the time series, which dates back to 1992. The abundance was estimated at 275 mill. which is close to the average for the time series. The decrease in biomass was primarily seen in Div. 1AN (North of 70° N). As in almost all years most of the abundance was comprised of one-year-old fish (SCR 10/30).

In the inshore Disko Bay the biomass was estimated at 9,458 tons, which is slightly above the estimate in 2008 but the second lowest level seen since 2002 and is well below the level seen during 2003-2006. The abundance was estimated as 71*10⁶ in 2009 compared to 50*10⁶ in 2008. Despite the increase the estimate it is the second lowest seen since 1994.

Recruitment

A recruitment index was provided from the Greenland shrimp trawl survey. By means of the Petersen-method ages 1, 2 and 3+ were separated in the survey catches. The number of one-year-old fish in the total survey area including

Disko Bay increased gradually from 1996 to a peak of 500 million in 2000. The number of one-year old fish estimated in 2009 was 226 mill compared to 251 mill in 2008 and 337 mill. in 2007. The estimate of the 2008 year is slightly below the average of the times series. The decline between 2007 and 2008 was caused by the decline in abundance in inshore Disko Bay, while decline between 2008 and 2009 was caused by a decline in abundance in Div. 1AN (Fig. 3).

Further, a recruitment index was provided from the off shore nursery area in Div. 1AS-1B. Catches were standardized as catch in number per hour as described in Bech (1995). Data were plotted by year classes to visualize the relative year class strength and development in relative abundance (Fig. 4). In recent years the allocation of stations in the shrimp trawl survey has been changed in order to minimize the variance in the estimation of biomass and abundance of shrimp. To minimize the effect of that the CPUE index has been recalculated using stations > 300 m only. This generally increases the mean number per hour but do not change the trend in the index.

The recruitment index declined since the relatively large 1991 year-class, but the recruitment has been above the level in the 1980'. The recruitment increased again with the 1995-year class, which was the largest on record. The 1996 year-class seemed to be small but the recruitment has increased gradually until the 2000 year-class. Until the 2006 year class then the recruitment has been around or a little above average. The 2007 year class was below average (412 per hr). The recruitment of the 2008 year-class was estimated as 420 age-one caught per hour, some what below the average for the time series (551 no per hr) (SCR 10/30).

In Disko Bay the recruitment has been good in recent years although the recruitment of year classes 2002-2005 has been gradually decreasing. The recruitment increased again and the 2006 year class was the third largest on record. In 2008, the recruitment of the 2007 year class was the lowest seen since 1993. The recruitment increased slightly in 2009 but is the lowest seen since 1996 apart from the 2007 year class.

Generally there is a steep decline between CPUE at age 1 and age 2 and 3+ which also was observed in the 2009 survey. Further, it has been noted, that the year-classes estimated to be a very strong year-class at age 1 have not shown up in as a particularly strong year-classes at age 5-8 in the fishery catches or in the 1CD survey for Greenland halibut.

In order to get better information about age groups 2-5 (app. 20-42cm), and hence better information about the recruitment to the fishery, a number of fixed stations (8-11) at depths > 600 m in Div. 1AB have been fished annually since 2006. In 2009 in total 1607 Greenland halibut were caught at 11 stations with depths between 677 and 948 m. The length ranged between 11 and 76 cm with a dominance of fish between 21 and 45 cm. This corresponds roughly to the ages 2-5, the ages which generally speaking are missing in the shrimp survey and the survey for Greenland halibut in Div. 1CD. The ages 3-5 are well represented in the catches in all years but the age distribution shows no clear trends in recruitment and it is hard to follow cohorts. Further, the catchability seems to have increased in the 2009 survey. Ages are estimated using an age-length key from 1CD. The 2008 age distribution is estimated by the 2009 key.

SSB/Recruitment

The relation between the spawning stock in numbers (age 10+) in Div. 1CD, estimated from the joint Japan/Greenland survey and the Greenland halibut survey and recruitment, given as the number of fish age 1 in the <u>total</u> survey area, estimated from the Greenland shrimp trawl survey, is shown in Fig. 5. The over all recruitment of the 2007 year-class was the second lowest seen since the mid 90'. The decline in recruitment is caused by a decline in recruitment in inshore Disko Bay. Note that there was no survey in 1996. There was no aging of Greenland halibut from the 2008 survey and the plot has not been not updated.

2.2 Commercial fishery data.

Length distribution

SA 0

Length distributions were available from the gill net, single trawl and twin trawl fishery in Div.0A and single and twin trawl fishery in Div.0B.

The catch in the gill net fishery in Div. 0A was dominated by a mode at 63 cm, similar to that seen in previous years. The length distributions in the single and twin trawl fishery were very similar with modes at 47 cm (Fig. 6a) where the mode use to be around 48 cm.

The length distributions in the single and twin trawl fishery in Div. 0B were very similar with modes around 48-50 cm, for both types of gear, as seen in recent years (Fig. 6b).

SA1

Length frequencies were available from Greenland and Russian trawl fisheries in Div. 1A (SCS 10/05) and, from Greenland, Russian (SCS 10/05) and Norwegian trawl fisheries in Div. 1D together with a sample from a small Norwegian longlinfishery.

In Div. 1A. the mode was at 51 cm in the Greenland fishery where it was at 44-46 cm in 2008 (Fig. 7). The Russian catch composition showed a mode at 44-48 cm where the mode was at 50 cm in 2008 (Fig. 9). In recent years the trawl catches have been dominated by fish on 44-52 cm (Fig 7).

In Div. 1D the catches by Russia, Norway and Greenland showed clear modes around 49-54 cm (Fig. 8 and 9) (SCR 10/05). The mode in catches has been within this range for several years but thee was a tendency towards slightly larger fish especially in the Russian fishery than seen in previous years. The majority of the catches in the small (20 tons) Norwegian longline fishery in Div. 1D was between 40 and 80 cm.

Age distribution

Catch at age was available from the Russian trawl fishery in Div. 1AD based on a combined Div. 1A+1D key and a combined Div. 1A+D length distribution with the majority of the samples from Div.1D. Age readings were based on scales. The catches were dominated by age 8 (Fig 10). In recent years the catches have been dominated by age 7. The reason for the increase in age is probably the increase in the size of the fish in the Russian catches in Div. 1D (SCR 10/05).

No catch-at-age information was available from SA0, and the catch-at-age and mean-weight-at-age, in Table 3 and 4, respectively, has not been updated.

Catch rate

The fleets used for standardization of catch rates are grouped according to NAFO's protocol:

Code for country.

- 2 CAN-MQ Canada Maritimes & Quebec
- 3 CAN-N Canada Newfoundland
- 5 FRO Faroe Islands
- 6 GRL Denmark Greenland
- 7 E/DNK Denmark Mainland
- 8 E/FRA-M France Mainland

- 9 FRA-SP France St. Pierre et Miquelon
- 10 E/DEU Federal Republic of Germany
- 14 JPN Japan
- 15 NOR Norway
- 16 E/POL Poland
- 18 ROM Romania
- 19 E/ESP Spain
- 20 SUN Union Soviet Socialist Republics
- 27 CAN-M Canada Maritimes
- 28 CAN-Q Canada Quebec
- 31 E/LVA Latvia
- 32 E/EST Estonia
- 33 E/LTU Lithuania
- 34 RUS Russia
- 38 EU European Union
- 39 CAN Canada
- 40 CAN-CA Canada Central & Arctic

All vessels fishing in SA1 have been given the code 6 (Greenland).

Code for Trawl Gear:

Bottom otter trawl (charters),8,OTB*
Bottom otter trawl (side or stern not specified),10,OTB
Bottom otter trawl,12,OTB-2
Otter twin trawl,192,OTT

Code for Tonnage:

- 0 Not known
- 2 0-49 9
- 3 50-149.9
- 4 150-499.9
- 5 500-999.9
- 6 1000-1999.9
- 7 2000 and over

Ex. Code 401927 is 40: Canada Central & Arctic, 192: Otter twin trawl, 7: Over 2000 Gross Tonnage

Div. 0A

No data from 2009.

The General Linear Model used to standardize trawl catch rates for Div. 0B was applied to data from Div. 0A in 2008. Vessel/gear classes with fewer than 5 occurrences in the database were removed as were records where catches (t) and hours fished were less than 10. The standardized CPUE index declined slightly in 2007 but increased again (Fig. 12a. This increase could also be seen in the un-standardized catch rates for both single and twin trawl gears (Fig. 11a). Trawl gear catch rates have been relatively stable over the past 8 years (Fig. 12a) (Appendix 1).

Div. 0B

There have been frequent vessel changes in this fishery over the years and the catch from single and double trawl gear was often aggregated as "otter trawl" catch when this gear was first introduced to the fishery in the early 2000s. Very few of the vessels operating in the fishery in 2009 have been in the fishery for more than 3 years. A standardized catch rate is produced using a General Linear Model. The model was updated in 2010 with the 2009 data. Catches (t) and hours fished with values less than 10 were removed. The overall CPUE index increased to the highest observed level in 2009 (Fig. 12c). The increase was seen for single trawlers while the CPUE for twin

trawlers decreased (Fig. 11b). The standardized catch rates for the past 5 years are higher than those seen in the early 2000s and have returned to levels observed in the early-mid 1990s (Fig. 12c). (Appendix 4).

SA1

Un-standardized catch rates were available for the Greenland trawl fishery in Div. 1A and 1D (SCS 10/12), and the EU-German fishery in Div. 1D (SCS 10/08). Further, catch rates were available from logbooks submitted to the Greenland authorities. Standardized catch rates were available from the trawl fishery in Div. 1AB and 1CD. Until 2008 the fleets in the catch rate analysis have been grouped by nation, but information about gross tonnage is now available in the Greenland logbook database and the fleets are grouped based on size and gear according to NAFO's protocol. This has not changed the trends in the CPUE series but the SE and CV of the estimates have been reduced significantly. In the GLM model catches (t) and hours fished with values less than 10 are removed.

Div 1AB

Un-standardized catch rates from large (>2000 GT) trawlers in Div 1A have been relatively stable since 2005 around 0.93 ton/hr. CPUE for trawlers 1000-2000 Gross Tons single trawlers has been increasing since 2006 and is now the highest in the time series (Fig.11c).

Standardized catch rate series, based on logbook data from the Greenland authorities, were available for the offshore trawl fishery in Div. 1AB for the period 2002-2009. Standardized catch rates in Div. 1AB has been declining in the last two years and was in 2008 at the level seen in 2006. In 2009 standardized catchrates increased again to the 2005-2006 level, but generally the catch rates have been rather constant (Fig. 12a, Appendix 2).

Div. 1CD

In Div. 1CD the EU-German catch rates have been increasing gradually since 2004 and is now the highest in the time series (875.2 kg/hr), that dates back to 1996. The un-standardized catch rates for large single trawlers increased slightly, while they decreased slightly for large twin trawlers between 2008 and 2009. The catch rates for these two fleets, that takes the majority of the catches are among the highest in the time series. The high catch rates for > 2000 GT single trawlers in 1988 and 1989 is from a single large vessel (4000 GT) and the decrease in catch rates in 2007 for large > 2000 GT twin trawlers was caused by a significant decrease in catch rates from one out of two vessel. Further, the estimate for > 2000 GT single trawlers in 2007 is based on one vessel new in the fishery (Fig.11d).

Standardized catch rate series, based on logbook data from the Greenland authorities, were available for the offshore trawl fishery in Div. 1CD for the period 1988-2009 (Fig.12b). Standardized catch rates in Div. 1CD decreased gradually from 1989-1997 but have shown an increasing trend since then and the catch rates also increased slightly between 2008 and 2009 (Appendix 5).

Combined Div. 0A-1AB

The combined Div. 0A+1AB) standardized CPUE series increased slightly between 2007 and 2008, but has been stable since 2001 (Fig. 12a) (Appendix 3). The plot was not updated due to lack of data from 0A in 2009.

Combined Div. 0B-1CD

The combined (Div. 0B+1CD) standardized CPUE series has been stable in the period 1990-2001, decreased somewhat in 2002 but has increased again since then, and was in 2006 at the highest level seen since 1989. CPUE decreased very slightly in 2007, but increased significantly in 2008 and increased further to the highest level seen since 1989 (The high catch rates seen in 1988 and 1989 is from a single very large trawler fishing in Div. 1CD) (Fig. 12d) (Appendix 6).

It is not known how the technical development of fishing gear, etc. has influenced the catch rates. There are indications that the coding of gear type in the log books is not always reliable, which also can influence the estimation of the catch rates. Further, due to the frequency of fleet changes in the fishery in both SA0 and SA1 and change in fishing grounds in Div. 0A and 1A, both the <u>un-standardized</u> and the <u>standardized</u> indices of CPUE should, however, be <u>interpreted</u> with caution.

3. Assessment

3.1 Yield per Recruit Analysis.

The level of total mortality has in 1994-1996 been estimated by means of catch-curves using data from the offshore longline fishery in Div. 1D. Z was estimated from regression on ages 15-21. A relative F-at-age was derived from the catch curve analysis, where the trawl, longline and gillnet catches were weighed and scaled to the estimated stock composition. In all three years STACFIS considered that the estimation of Z was based on too limited samples and represented too small a part of the fishery and that the outcome of the catch curve analysis was too uncertain to be used in the yield per recruit analysis. No age frequencies were available from the longline fishery in Div. 1D in 2009 fishery, and the catches only represented < 1 % of the total catches in the assessment area, hence no catch-curve analysis were made.

3.2 XSA.

Extended Survivors Analysis

An XSA has been run unsuccessfully several times during the 1990'ies, using a survey series covering 1987-1995 as tuning. STAFIS considered the XSA's unsuitable for an analytic assessment due to high log-catchability residuals and S.E.'s and systematic shift in the residuals by year. Further, a retrospective plot of F_{bar} showed poor convergence. In 1999 the XSA analyses was rerun including the latest two years surveys (1997-1998, new vessel and gear) but the outcome of the analysis did not improve.

An XSA analysis was run using the stock data for SA 0+1, calibrated with trawl survey data (age 5-15) from the Greenland deep sea surveys (1997-2001) in Div. 1CD. The assessment results are considered to be provisional due to problems with the catch-at-age data and the short time series, the assessment is, however, considered to reflect the dynamics in the stock. The rate of exploitation has been relative stable in recent years between 0.2-0.3 (F_{bar} 7-13). The input parameters to the analysis and the outcome of the analysis is given in (SCR 02/68)

The XSA was run again in 2003 with the 2002 survey and catch data and updated catch data from 2001 (very small changes). The assessment results are considered to be provisional due to problems with the catch-at-age data and the short time series. The assessment is, however, considered to some extend to reflect the dynamics in the stock. The rate of exploitation has been relatively stable in recent years between 0.2-0.3 (F_{bar} 7-13). The summary of the XSA is given in SCR (03/54).

The XSA was not run this year as no catch-at-age data were available for 2003-2009.

3.3 Spawning stock/recruitment relations.

A spawning stock/recruitment plot based on the available observations from the joint Japan/Greenland survey and the Greenland survey is shown in Fig.5. No further analysis of spawning stock recruitment relationships have been made due to few observations distributed on two different surveys, poor estimate of spawning stock biomass (survey trawls only take a very small proportion of the mature fish, poor estimates of ages of old fish, the survey covers only a restricted part of the area covered by the assessment, and knife edge maturity ogive was applied). Further, the age of the recruits is poorly estimated (the Petersen method). The plot was not updated because there was no aging of Greenland halibut in the 2008 survey.

<u>3.4 ASPIC</u>

ASPIC was run in 1999 with standardized CPUE data and a biomass index as inputs. Three CPUE series were available, one series covering Div. 0B during the period 1990-1998, one covering Div. 1CD during the period 1987-1998 and a series combining the two data sets. The biomass index was from 1CD and covered the period 1987-1995 and 1997-1998. Several runs showed that the combined CPUE series from Div. 0B+1CD fitted the total catch data best in terms of r² and "total objective function". Runs with biomass alone gave relatively bad fits in terms of "total

objective function" and r^2 and the modeled population trajectory declining drastically over the period. Runs with the CPUE series from 0B gave unrealisticly high B_{msy} and negative r^2 . The run with the combined CPUE series showed, however, that sensitivity analysis should be run, because "the B1-ratio constraint term contributed to loss". Several runs with different realistic values for the constraint did not solve the problem. Further, the coverage index and nearness index was equal in all runs. Several runs with different constraints on r and MSY were tried but it did not change the outcome of the analysis. Removing the three first years from the input data gave negative r^2 . To get measures of variance the run with the combined CPUE series was bootstrapped (500 re-samplings).

The results showed that estimated fishing mortalities 1987-1998 have been less than the (bias-reduced) estimate of F_{msy} (0.22) except for one year (1992). A number of essential parameters are quite imprecisely estimated (r, q, F_{msy}), and it is considered that the estimates of MSY and F_{msy} were not precise enough to be used.

The input parameters from 2000-2006 (catches, survey biomass index, and CPUE index) have varied little compared to 1999. An ASPIC was run in 2009, but the outcome of the analysis did not change significantly from the analysis in 1999, mainly because there is very little contrast in the input data and the data series are relative short..

4. Conclusion

Since catches peaked with 18,000 tons in 1992 they have been stable at around 10,000 tons until 2000. Since then catches have gradually increased to 18,696 tons in 2003 and they stayed at that level during 2004-2005. The TAC was increased by 5,000 tons in 2006 and catches increased to 24,164 and the TAC has hence been taken. The increase in catches has been due to increased effort in Div. 0A and Div. 1A. Catches stayed at that level in 2007, -23,416 tons. But decreased slightly to 22,380 tons in 2008. Catches increased to 24,805 tons in 2009.

The standardized CPUE series for Div. 1AB increased between 2008 and 2009 and is at the high level seen 2005-2006. Length frequencies in the fishery in Div 0A and Div. 1AB been stable in recent years

The biomass in Div. 1CD increased between 2003 and 2005, but decreased slightly during 2006-2007 but increased to a record high level in 2008. The biomass decreased in 2009 to a level about the average for the time series.

The offshore biomass in the Greenland shrimp survey has been gradually decreasing since 2004, and the biomass also decreased between 2008 and 2009 and is now slightly below the average of the time series

The recruitment of the 2002-2006 year class in the entire survey area has been stable but the recruitment of the 2007 and 2008 year classes have been gradually deceasing and the 2008 year class is the lowest level seen since the 1997 year class. The decline in recruitment was mainly seen in Disko Bay.

A recruitment index for the off shore nursery areas showed that the 2008 year class was a little below average.

Length compositions in the commercial catches have been stable in recent years.

A standardized CPUE series from Div. 0B has been increasing since 2002 and was the highest on record in 2009. In Div 1CD standardized catch rates have been increasing since 1997 and the CPUE also increased slightly between 2008 and 2009 and is now the highest seen since 1989. The combined catch rate for Div. 1CD+0B has showed very little variation during the period 1988-2004, but with an increasing trend since then and the 2009 estimate is the highest seen since 1989.

5. Biological reference points

Yield per recruit analysis or other age-based methods are not available, for estimating biological reference points. Biomass indices and CPUE series are relatively short and show little variability and are not useful for estimating reference points.

6. References

Anon. 2010. Denmark/Greenland Research Report for 2009. NAFO SCS Doc. 10/12.

Bech, G. 1995. Recruitment of Greenland halibut at West Greenland. NAFO SCR Doc. 95/19.

Jørgensen O.A.. 2010. Survey for Greenland Halibut in NAFO Divisions 1C-1D, 2009. NAFO SCR Doc. 10/11.

Stein M., H. Fock. And A. Akimova. 2010. German research report for 2009. NAFO SCS Doc. 10/08.

Skryabin I. A., and M.V. Pochtar. 2010. Russian Research Report for 2009. NAFO SCS Doc. 10/05.

Templeman N.D. 2010 Canadian Research Report for 2009 Newfoundland and Labrador Region. NAFO SCS 10/10

Nygaard R., K. Sünksen O.A. Jørgensen. 2010. Biomass and Abundance of Demersal Fish Stocks off West Greenland Estimated from the Greenland shrimp survey, 1988-2009. NAFO SCR Doc. 10/30.

Table 1. Greenland halibut catches (metric tons) by year and country for Subarea 0 (Split on Div. 0A and 0B) from 1987 to 2009. Minor (300 ton or less) catches from Div. 0A are included in some of the 0B catches prior to 2001.

											Yea	ır											
Count.	87	88	89	90	91	92	93	94	95	96	97	98	99	00e	01°	02 ^d	03 ^f	4	5	6	7	8	9
0A																							
CAN							681		82	576	3		517		2628	3561	4142	3751	4209	6634	6173	5257	6593
POL															445								
TOT 0A							681		82	576	3		517		3073	3561	4142	3751	4209	6634	6173	5257	6593
0B																							
CAN		2	180	844	395	2624	592	402	1859	2354	3868	3924	4267	5438	5034	3910	5059	5771	5789	5585	5326	5175	5807 ^g
EST							631																
FRO	388	963	596	2252	2401	463	1038			578	452												
JAP				113	232	337	252	600	1031	500													
LAV							84																
NOR			282	5016 ^b	3959		373																
RUS		59	29	1528	1758	9364	4229 ^a	3674	261	600													
TOT 0B	388	1024	1087	9753	8745	12788	7199	4676	3151	4032	4320	3924	4267	5438	5034	3910	5059	5771	5789	5585	5326	5175	5807
TOT 0AB	388	1024	1087	9753	8745	12788	7880	4676	3233	4608	4323	3924	4784	5438	8107	7471	9201	9522	9998	12219	11499	10432	12400

^a The Russian catch is reported as area unknown, but has previously been reported from Div. 0B ^b Double reported as 10031 tons ^d Excluding 782 tons reported by error ^e STACFIS estimate

f excluding 2 tons reported by error g Including 185 tons from inshore Cumberland Sound

Table 2. Greenland halibut catches (metric tons) by year and country for Subarea 1 (Split on Div. 1AB and Div. 1CD) from 1987 to 2009. The Greenland catches are excl. inshore catches in Div. 1A. Offshore catches in Div. 1A prior to 2001 are negligible.

Coun.	87	88	89	90	91	92	93	94	95	96	97	98	99ª	0	1	2	3 ^g	4	5	6	7	8	9
1A	AB																						
GRL															$340^{\rm c}$	1619 ^c	3558°	3500°	3363 ^{bc}	5530 ^{bc}	5596 ^{bc}	5524 ^{bc}	6094 ^{bc}
RUS															85	279	259	241	549	565	575	570	517
FRO														96	150	150	117	153	125	128	125	149	124
EU																	73 ^e	141 ^e					
TOT 1AB														96	575	2048	4007	3908	4037	6223	6296	6243	6735
1C	CD																						
GRL	1646	605	540	841	933	191	186	872	1399	1876	2312	2295	2529	2659	2012	2284	2059	2102	2380^{b}	2430 ^b	1805 ^b	1480 ^b	1458 ^b
FRO				54	123	151	128	780			127	125	116	147	150	150	135	150	149	147	150	184	149
JPN	855	1576	1300	985	673	2895	1161	820	323														
NOR					611	2432	2344	3119	2472	1785	1893	1338	1360	1590	1550	1734	1423	1364	1456 ^b	1379	1441	1452 ^b	1501
RUS							5		296	254		543	552	792	829	654	1328	1214	1147	1222	689	763	1056
EU							46	266	527	455	446	350	330	444 ^b	537 ^b	536	543 ^d	665 ^f	549	544	1516	1517	1511
TOT 1CD	2501	2181	1840	1880	2340	5669	3870	5857	5017	4370	4778	4651	4887	5632	5078	5358	5488	5495	5681	5722	5601	5396	5670
Total	2501	2181	1840	1880	2340	5669	3870	5857	5017	4370	4778	4651	4887	5728	5653	7406	9495	9403	9718	11945	11897	11639	12405

^a Excluding 7603 tons reported by error ^b Reported to the Greenland Fisheries License Control Authority

^c Offshore catches

^d Including 2 tons taken in an experimental fishery

^e Spanish research fishery

f Includes 131 tons taken in Spanish research fishery

^g Excludes 1366 tons reported from Div. 1A by error

Table 3. Catch-at-age in numbers. Not updated for 2003 - 2008.

YEAR	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE																
5	2	1	1	4	20	53	241	254	152	151	41	71	262	415	69	570
6	31	29	36	87	318	678	651	862	522	530	311	372	1092	1106	978	1975
7	182	190	244	592	1742	2967	2422	2472	1628	1818	1556	677	1759	1677	3212	4252
8	296	354	409	1711	2679	4311	2356	1692	940	1575	2110	1187	1174	1144	1802	1791
9	193	245	212	1356	1418	2604	1048	954	558	660	1042	900	672	772	1154	617
10	77	115	75	711	533	951	590	294	259	306	438	572	375	501	776	476
11	40	80	47	359	221	398	224	183	228	160	232	422	234	443	503	347
12	18	61	48	195	144	231	130	159	188	127	118	205	184	291	273	149
13	10	58	44	189	108	158	72	125	104	64	96	153	172	178	101	209
14	9	46	42	115	60	85	59	58	80	57	21	98	95	68	50	75
15	6	35	26	67	36	45	37	55	85	39	13	19	61	75	21	168
16	3	15	12	17	6	23	26	34	41	36	12	4	37	17	10	74
17	4	4	1	3	2	1	4	10	18	13	0	0	18	4	5	23
+gp	2	1	0	0	0	0	2	7	10	22	0	0	7	6	3	49
TOT	873	1234	1197	5406	7287	12505	7862	7159	4813	5558	5994	4688	6166	6717	8957	10917
TONS	1295	2605	2207	10540	10982	18070	11423	10144	8270	8982	9101	8693	9691	10689	13184	15136

Table 4. Catch weights at age (kg) Not updated for 2003-2008.

	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
AGE																
5	0.29	0.29	0.29	0.33	0.34	0.33	0.58	0.43	0.49	0.52	0.36	0.50	0.54	0.53	0.48	0.48
6	0.51	0.51	0.51	0.54	0.54	0.56	0.72	0.62	0.66	0.69	0.55	0.74	0.70	0.72	0.67	0.70
7	0.74	0.74	0.74	0.79	0.79	0.80	0.96	0.91	0.94	0.94	0.86	1.00	0.98	1.00	0.91	0.96
8	1.08	1.08	1.08	1.10	1.12	1.13	1.26	1.26	1.34	1.38	1.27	1.24	1.28	1.29	1.30	1.30
9	1.41	1.42	1.42	1.52	1.57	1.59	1.80	1.72	1.81	1.91	1.83	1.54	1.66	1.71	1.76	1.85
10	1.97	2.05	2.00	2.11	2.27	2.28	1.43	2.19	2.37	2.48	2.38	2.22	2.25	2.26	2.29	2.20
11	2.58	2.80	2.68	2.94	3.22	3.02	3.25	2.73	2.89	3.18	3.01	3.08	2.74	2.84	2.91	2.82
12	3.52	3.88	3.73	3.90	4.24	4.02	4.10	3.43	3.62	4.04	3.84	3.84	3.68	3.59	3.51	3.32
13	4.64	5.01	4.87	4.96	5.50	5.33	5.26	4.48	4.44	5.05	4.93	4.74	4.73	4.23	4.31	3.93
14	5.79	6.16	6.20	6.26	6.82	6.76	6.17	5.75	5.61	5.95	5.69	6.04	5.58	5.19	5.60	5.20
15	6.61	7.44	7.65	7.96	8.33	7.76	7.42	6.58	6.65	7.34	6.79	6.60	6.68	5.85	6.09	5.38
16	7.99	8.88	9.36	9.90	9.89	8.58	8.04	7.36	7.77	8.64	8.00	13.45	7.75	7.32	7.08	7.02
17	9.56	9.86	9.56	11.86	9.56	11.95	9.24	9.42	10.19	9.18			9.08	5.60	8.94	8.61
+gp		11.33					10.25	11.15	11.00	11.10			11.10	9.00	11.22	10.97

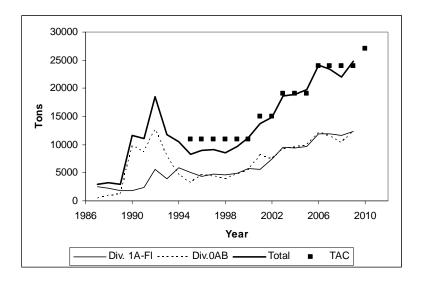


Fig. 1. Catches in SA0 and Div. 1A offshore + Div. 1B-1F and recommended TAC. For TAC before 1995 see text.

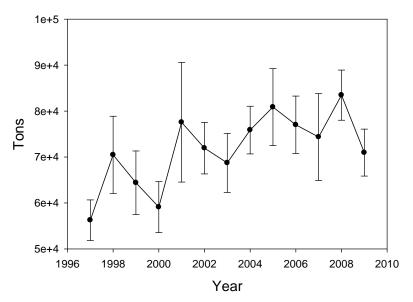


Fig 2a. Biomass with S.E. from the Greenland deep sea survey in Div. 1CD.

Abundance

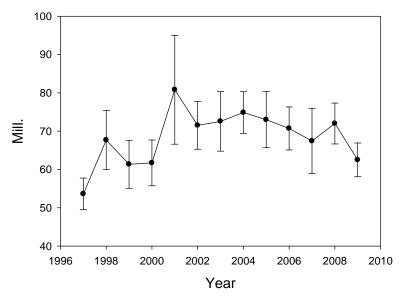


Fig 2b. Abundance with S.E. from the Greenland deep sea survey in 1CD.

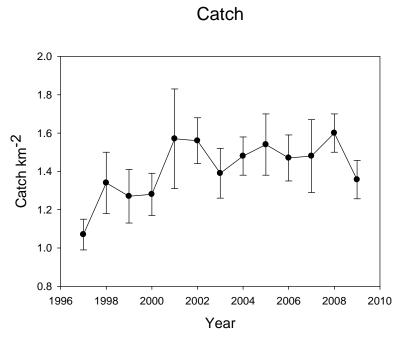


Fig 2c. Mean catch per km² swept with S.E. in the Greenland deep sea survey in Div. 1CD.

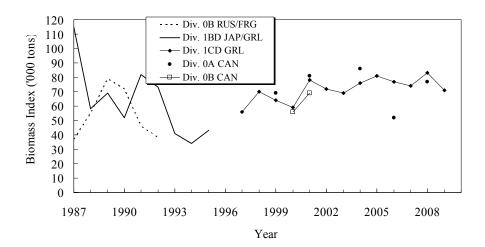


Fig. 2d. Biomass estimates from various surveys in SA 0 and 1. Note that the survey in Div. 0A in 2006 had incomplete coverage (see text).

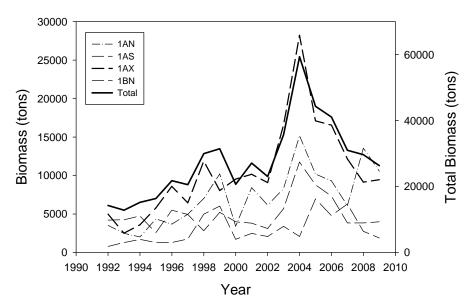


Fig. 2e. Biomass estimates from the Greenland shrimp survey by most important Divisions and in total. Div. 1AX is inshore Disko Bay.

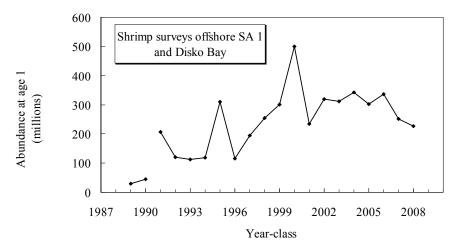


Fig.3. Abundance of age-one Greenland halibut in the entire area covered by the Greenland shrimp survey including inshore Disko Bay and Div. 1AN (North of 70°N)

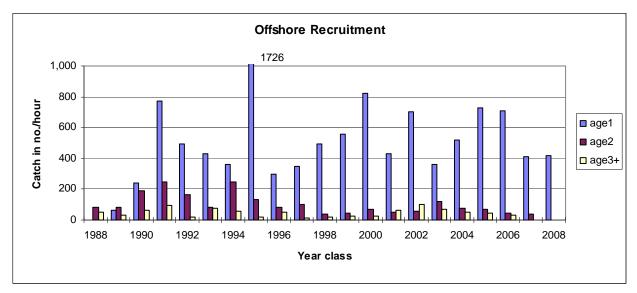


Fig. 4. Year-class strength of Greenland halibut of ages 1-3+ in number per hour trawled in the offshore nursery area (Div 1AS-1B, depths 300-600 m).

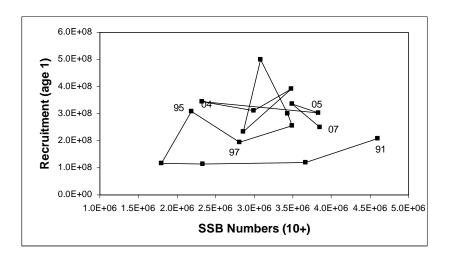


Fig. 5. Spawning stock in numbers (ages 10+ in Div.1CD from the joint Japan/Greenland survey and the Greenland survey (1997-2007) plotted vs. number of fish age 1 the following year estimated from the Greenland shrimp trawl survey including the Disko Bay. Figures denote year class. Note there was no deep sea survey in 1996. Not updated,- no age data from the 2008 1CD survey.

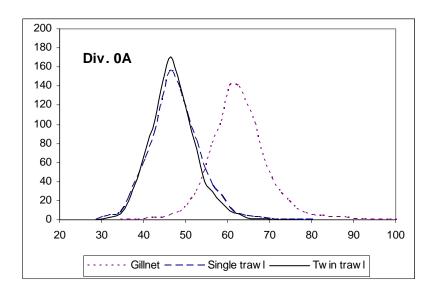


Fig.6a. Length distribution from the fishery in Div 0A in 2009 in per mill., 2 cm groups

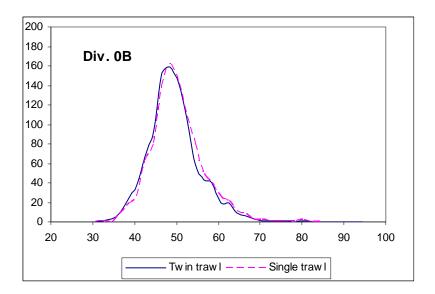


Fig.6b. Length distribution by gear from the fishery in Div 0B 2009 in per mill., 2 cm groups

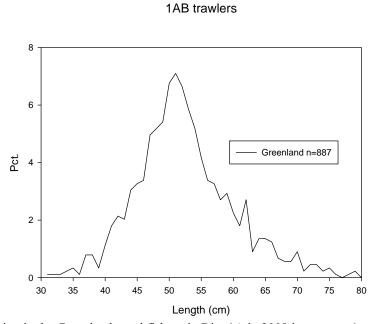


Fig. 7. Length distribution in the Greenland trawl fishery in Div. 1A in 2009 in percent, 1-cm groups.

1CD trawlers

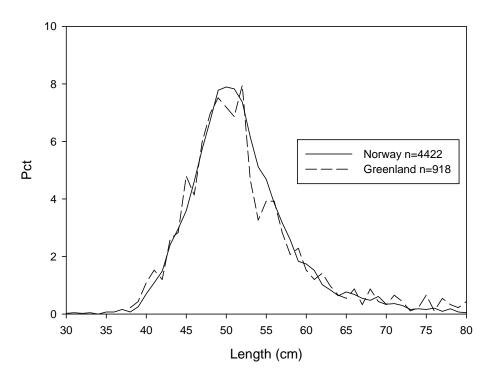


Fig. 8. Length distribution in the Norway and Greenland trawl fishery in Div. 1D in 2009 in percent, 1-cm groups.

Russian trawlers

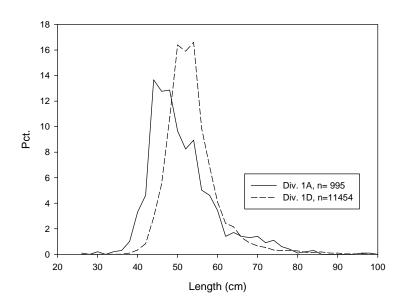


Fig. 9. Length distribution from the Russian Trawl fishery in Div. 1A and 1D in 2009, in percent, 2-cm groups.

Russian trawlers Div. 1A + Div. 1D

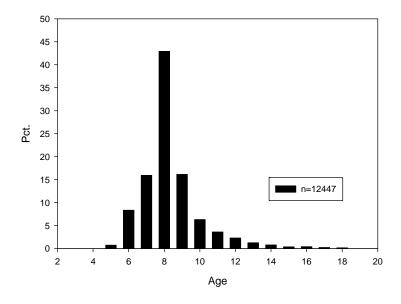


Fig. 10. Age distribution in the Russian trawl fishery in Div. 1AD combiened.

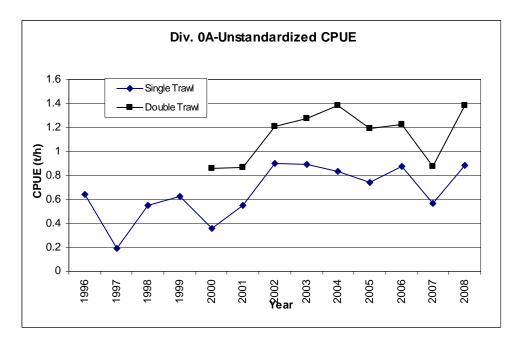


Fig. 11a. Un-standardized CPUE from the trawl fishery in Div. 0A. No data from 20009

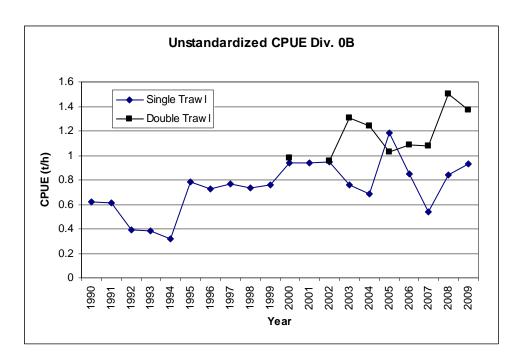


Fig. 11b. Un-standardized CPUE from the trawl fishery in Div. 0B

Unstandardized CPUE Div. 1AB

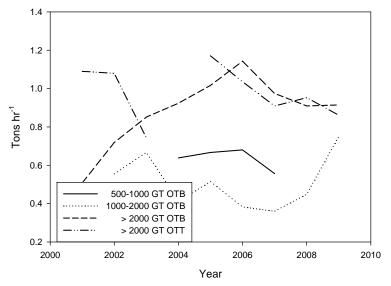


Fig. 11c. Unstandardized trawl CPUE series from Div. 1AB.

Unstandardized CPUE Div. 1CD

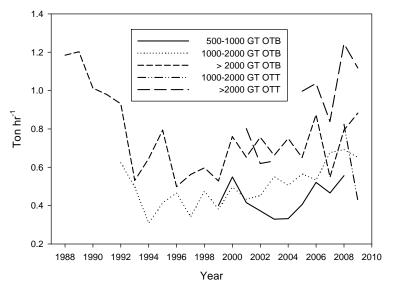
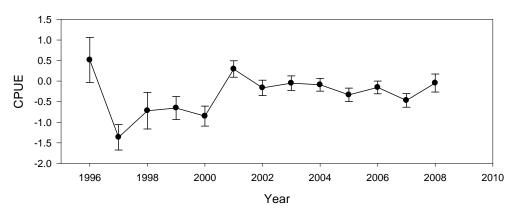
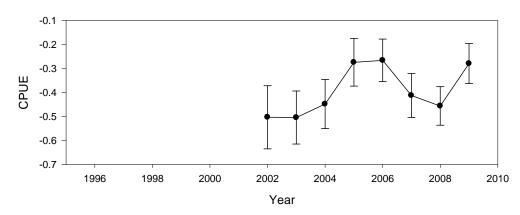




Fig. 11d. Unstandardized catch rates from different fleets fishing in Div. 1CD.

1AB trawlers

0A + 1AB trawlers

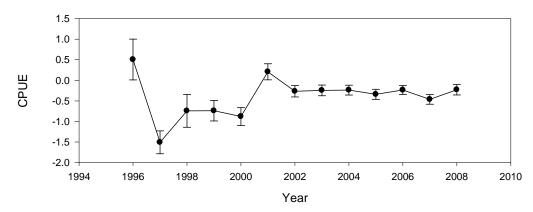


Fig 12a. Standardized CPUE series from trawlers in 0A, Div. 1AB and 0B+1AB combined with +/- S.E. No data from Div. 0A in 2009.

1CD trawlers

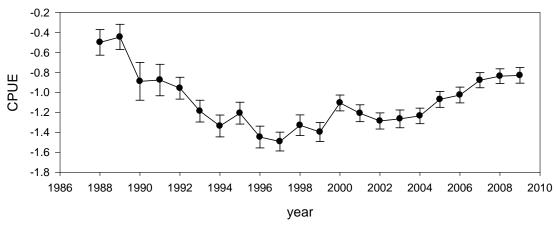


Fig. 12b. Standardized trawl CPUE index from trawlers in Div. 1CD with +/- S.E.. Grouped by tonnage class according to NAFO's classification.

0B trawlers 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year

Fig 12c. Standardized CPUE series from trawlers in Div. 0B with +/- S.E.

0B+1CD trawlers

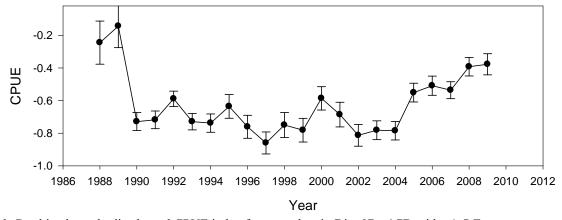


Fig. 12d. Combined standardized trawl CPUE index from trawlers in Div. 0B +1CD with +/- S.E.

Appendix 1. Standardized CPUE index from trawlers in Div. 0A. No data from 2009.

Greenland	halibut,	0A	trawlers				1	
				16:33	Monday,	June	8,	2009

The GLM Procedure										
Class Level Information										
Class	Levels	Values								
year	13	1996 1997 1998 1999 2000 2001 2002 2003 2004 2009 2007 2008	5 2006							
md	6	7 8 9 10 11 12								
kode	18	2126 2127 5127 15127 16127 21926 21927 31126 319 31927 32125 33126 40126 40127 51926 51927 401926								
		umber of Observations Read 130 umber of Observations Used 130								
		Greenland halibut, OA trawlers 16:33 Monday, June	2 8, 2009							
		The GLM Procedure								
Dependent	Variable:	lcph								
Source		Sum of DF Squares Mean Square F Value	Pr > F							
Model		34 22.40096486 0.65885191 3.73	<.0001							
Error		95 16.76224123 0.17644464								
Corrected	d Total	129 39.16320609								
	R-Square	e Coeff Var Root MSE lcph Mean								
	0.571990	0 -294.8160 0.420053 -0.142480								
Source		DF Type I SS Mean Square F Value	Pr > F							
year md kode		5 3.15679896 0.63135979 3.58	<.0001 0.0052 0.0002							
Source		DF Type III SS Mean Square F Value								
year md kode		5 2.00646829 0.40129366 2.27	0.0004 0.0532 0.0002							
Parameter		Standard Estimate Error t Value Pr	> t							
Intercept year year year year year year year year	1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 7	0.560232115 B 0.62076247 0.90 -1.318715571 B 0.37478584 -3.52 -0.673261074 B 0.47913536 -1.41 -0.608113453 B 0.32815757 -1.85 -0.804184239 B 0.30392721 -2.65 0.340026370 B 0.32526192 1.05 -0.117180991 B 0.27481512 -0.43 -0.002757069 B 0.25984866 -0.01 -0.41570537 B 0.25682637 -0.16 -0.288218968 B 0.25333071 -1.14 -0.106165176 B 0.20254910 -0.52 -0.423339830 B 0.18546878 -2.28 0.000000000 B -0.408868687 B 0.34260133 -1.19	0.0107 0.3691 0.0007 0.1632 0.0670 0.0095 0.2985 0.6708 0.9916 0.8718 0.2581 0.6014 0.0247 0.2357 0.0476							

Greenland halibut, OA trawlers $$\rm 3$$ 16:33 Monday, June 8, 2009

The GLM Procedure

Dependent Variable: lcph

				Standard		
Parameter		Estimate		Error	t Value	Pr > t
md	9	-0.575856793	В	0.30717265	-1.87	0.0639
md	10	-0.534774263	В	0.30123821	-1.78	0.0791
md	11	-0.761233098	В	0.29770213	-2.56	0.0121
md	12	0.00000000	В	•		•
kode	2126	-0.343114347	В	0.23464012	-1.46	0.1470
kode	2127	-0.235699577	В	0.19162267	-1.23	0.2217
kode	5127	-1.344778107	В	0.52773852	-2.55	0.0124
kode	15127	0.291597913	В	0.37176249	0.78	0.4348
kode	16127	-1.380467046	В	0.39079041	-3.53	0.0006
kode	21926	0.030035740	В	0.37905450	0.08	0.9370
kode	21927	-0.001170231	В	0.19824801	-0.01	0.9953
kode	31126	-0.895884730	В	0.42524032	-2.11	0.0378
kode	31926	0.029020806	В	0.25763672	0.11	0.9106
kode	31927	-0.174370181	В	0.23981099	-0.73	0.4689
kode	32125	-1.433448848	В	0.39079041	-3.67	0.0004
kode	33126	-1.317529797	В	0.42572915	-3.09	0.0026
kode	40126	-0.433035628	В	0.29741394	-1.46	0.1487
kode	40127	-0.447346398	В	0.16885894	-2.65	0.0094
kode	51926	0.441124089	В	0.46745557	0.94	0.3477
kode	51927	-0.834808181	В	0.39079041	-2.14	0.0352
kode	401926	0.170141545	В	0.25293894	0.67	0.5028
kode	401927	0.000000000	В	•	•	•

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Greenland halibut, OA trawlers $$\rm 4$$ 16:33 Monday, June 8, 2009

year	lcph LSMEAN	Standard Error	Pr > t
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	0.51436616 -1.36458153 -0.71912703 -0.65397941 -0.85005019 0.29416041 -0.16304695 -0.04862302 -0.08743649 -0.33408492 -0.15203113 -0.46920579	0.54636966 0.30888849 0.44539329 0.27733620 0.24243981 0.20007443 0.18747259 0.17729344 0.15579809 0.16376230 0.15448083 0.16523495	0.3489 <.0001 0.1097 0.0204 0.0007 0.1448 0.3867 0.7845 0.5760 0.0441 0.3275
2008	-0.04586596	0.21913768	0.8347

Appendix 2. Standardized CPUE index from trawlers in Div. 1AB

Greenland halibut, 1AB trawlers

2587 10:44 Wednesday, May 26, 2010

The GLM Procedure

Class Level Information

Class	Levels	Values
year	8	2002 2003 2004 2005 2006 2007 2008 2009
MD	7	6 7 8 9 10 11 12
kode	5	6125 6126 6127 61926 61927

Number of Observations Read Number of Observations Used 94 94

Greenland halibut, 1AB trawlers \$2588\$\$10:44 Wednesday, May 26, 2010

28

The GLM Procedure

Dependent Va	ariable:]	lcph						
Source		DF		Sum of quares	Mean	Square	F Valu	ue Pr > F
Model		17	7.61	218176	0.44	777540	7.0	03 <.0001
Error		76	4.84	424822	0.06	374011		
Corrected T	Total	93	12.45	642998				
	R-Square	Coeff	Var	Root	MSE	lcph	Mean	
	0.611105	-83.0	8223	0.252	2468	-0.3	03877	
Source		DF	Тур	e I SS	Mean	Square	F Valu	ue Pr > F
year MD kode		7 6 4	1.27	489471 577446 151259	0.21	784210 262908 287815		34 0.0057
Source		DF	Type	III SS	Mean	Square	F Valu	ue Pr > F
year MD kode		7 6 4	1.63	232121 587291 151259	0.27	747446 264549 287815		28 0.0009
Parameter		Estima	ate	St	tandard Error		Value	Pr > t
year 2 year 2 year 2 year 2 year 2 year 2	2002 2003 2004 2005 2006 2007 2008 2009	0.2661014 2234682 2247755 1686331 0.0053181 0.0133203 1329380 1766030 0.00000000	676 B 568 B 444 B 407 B 448 B 708 B 823 B 000 B	0.13 0.13 0.10 0.10 0.10 0.09	3068147 3302245 1282163 0650423 0482618 0298497 9814388 9355758		0.95 -1.68 -1.99 -1.58 0.05 0.13 -1.35 -1.89	0.3461 0.0971 0.0499 0.1175 0.9597 0.8974 0.1796 0.0629
MD 7 MD 8 MD 9 MD 1 MD 1	7 3	5058750 3189991 2551453 0964701 0403548 0.0000000	657 B 304 B 872 B 136 B 364 B	0.28 0.27 0.27 0.27	7793615 8198682 7189752 7027411 7037084 7192285		-1.79 -1.17 -0.94 -0.36 -0.15	0.0768 0.2444 0.3481 0.7222 0.8824

Greenland halibut, 1AB trawlers $$2589$\\ 10:44$ Wednesday, May 26, 2010

The GLM Procedure

Dependent Variable: lcph

Paramet	er	Estimate	Standard Error	t Value	Pr > t
1 41 400	01	2501	22101	o varao	101
kode	6125	4412638398 B	0.08912284	-4.95	<.0001
kode	6126	6366339891 B	0.08048604	-7.91	<.0001
kode	6127	0581491643 B	0.07514110	-0.77	0.4414
kode	61926	4777712412 B	0.12523557	-3.81	0.0003
kode	61927	0.0000000000 B			•

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Greenland halibut, 1AB trawlers \$2590\$\$10:44 Wednesday, May 26, 2010

year	lcph LSMEAN	Standard Error	Pr > t
2002 2003 2004 2005 2006 2007 2008 2009	-0.50311317 -0.50442046 -0.44827805 -0.27432677 -0.26632456 -0.41258298 -0.45624799 -0.27964491	0.13156344 0.11052093 0.10236994 0.09921692 0.08867166 0.09162142 0.08018436 0.08353839	0.0003 <.0001 <.0001 0.0071 0.0036 <.0001 <.0001

Appendix 3. Standardized CPUE index from trawlers in Div. 0A+1AB. Not updated due to lack of data from 0A in 2009.

Greenland halibut, OA+1AB trawlers

9 16:33 Monday, June 8, 2009

The GLM Procedure

		1110 021 110004410
		Class Level Information
Class	Levels	Values
year	13	1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
MD	7	6 7 8 9 10 11 12
kode	23	2126 2127 5127 6125 6126 6127 15127 16127 21926 21927 31126 31926 31927 32125 33126 40126 40127 51926 51927 61926 61927 401926 401927
		umber of Observations Read 208 umber of Observations Used 208
		Greenland halibut, OA+1AB trawlers 10 16:33 Monday, June 8, 2009
		The GLM Procedure
Dependent V	ariable:	lcph
Source		Sum of DF Squares Mean Square F Value Pr > F

Dependenc (variabic.	LOPII						
			Su	m of				
Source		DF	Squ	ares	Mean	Square	F Val	lue Pr > F
Model		40	28.8027	5903	0.72	006898	5.	.07 <.0001
Error		167	23.7200	7144	0.14	203636		
Corrected	Total	207	52.5228	3048				
	R-Square	Coeff	Var	Root	MSE	lcph	Mean	
	0.548386	-179.8	3871	0.376	5877	-0.2	09508	
Source		DF	Type	I SS	Mean	Square	F Val	lue Pr > F
year MD kode		12 6 22	6.7264 2.7168 19.3594	3603	0.45	054143 280601 997390	3.	.95 <.0001 .19 0.0055 .20 <.0001
Source		DF	Type II	I SS	Mean	Square	F Val	lue Pr > F
year MD kode		12 6 22	6.3282 1.8456 19.3594	1859	0.30	735372 760310 997390	2.	.71 <.0001 .17 0.0487 .20 <.0001
Parameter		Estima	ate	St	andard Error		Value	Pr > t
year 1 year 1 year 2		0.6930594 0.7338399 -1.277683' -0.5140322 -0.5105844' -0.6512920 0.4360555 -0.037434' -0.0159066' -0.0092924' -0.1110222' -0.0070688' 0.235024' 0.0000000 -0.6300286' -0.4867668	171 B 1737 B 214 B 172 B 1555 B 1522 B 123 B 1536 B 178 B 1848 B 195 B 1732 B 1000 B	0.53 0.29 0.40 0.25 0.22 0.25 0.15 0.13 0.12	1353454 3468148 9465666 3379242 26552939 2826424 2255184 2255184 2274896 2730975 2714269 1218328 5139110 1513846		2.85 1.37 -4.34 -1.27 -1.99 -2.85 1.73 -0.12 -0.12 -0.07 -0.87 -0.06 -2.10 -1.40 -1.99	0.0050 0.1718 <.0001 0.2048 0.0049 0.0861 0.8067 0.9068 0.9429 0.3844 0.9520 0.0377

Greenland halibut, 0A+1AB trawlers \$11\$\$16:33 Monday, June 8, 2009

The GLM Procedure

Dependent Variable: lcph

				Standard		- 1.1
Parameter		Estimate		Error	t Value	Pr > t
MD	8	-0.578091986	В	0.22926348	-2.52	0.0126
MD	9	-0.503528647	В	0.22444172	-2.24	0.0262
MD	10	-0.390764962	В	0.22245462	-1.76	0.0808
MD	11	-0.575486471	В	0.22128644	-2.60	0.0101
MD	12	0.000000000	В	•		
kode	2126	-0.337754718	В	0.16532452	-2.04	0.0426
kode	2127	-0.281634364	В	0.14919704	-1.89	0.0608
kode	5127	-1.440931668	В	0.46294349	-3.11	0.0022
kode	6125	-0.561839284	В	0.14914184	-3.77	0.0002
kode	6126	-0.929800719	В	0.14764022	-6.30	<.0001
kode	6127	-0.282757695	_	0.13901907	-2.03	0.0435
kode	15127	0.287554621	_	0.28921270	0.99	0.3215
kode	16127	-1.424902003	В	0.33893470	-4.20	<.0001
kode	21926	0.018501935	_	0.30597684	0.06	0.9519
kode	21927	-0.023986610	В	0.15240803	-0.16	0.8751
kode	31126	-0.882882693	_	0.33919955	-2.60	0.0101
kode	31926	0.036700052		0.18562091	0.20	0.8435
kode	31927	-0.188547061		0.18570380	-1.02	0.3114
kode	32125	-1.477883806	В	0.33893470	-4.36	<.0001
kode	33126	-1.336105453	В	0.37127966	-3.60	0.0004
kode	40126	-0.439250670	В	0.25317993	-1.73	0.0846
kode	40127	-0.469306428	В	0.15120440	-3.10	0.0022
kode	51926	0.477545751	_	0.40379295	1.18	0.2386
kode	51927	-0.879243139	В	0.33893470	-2.59	0.0103
kode	61926	-0.708380028	В	0.25015807	-2.83	0.0052
kode	61927	-0.138164849	В	0.13987039	-0.99	0.3247
kode	401926	0.179452878	В	0.21170071	0.85	0.3978
kode	401927	0.000000000	В		•	

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Greenland halibut, 0A+1AB trawlers \$12\$\$16:33 Monday, June 8, 2009

year	lcph LSMEAN	Standard Error	Pr > t
1996	0.50508079	0.49626193	0.3103
1997	-1.50644212	0.27831717	<.0001
1998	-0.74279060	0.39803348	0.0638
1999	-0.73934285	0.24862152	0.0034
2000	-0.88005044	0.21663612	<.0001
2001	0.20729714	0.19536378	0.2902
2002	-0.26619250	0.13819425	0.0558
2003	-0.24466502	0.13052176	0.0626
2004	-0.23805086	0.11942326	0.0479
2005	-0.33978073	0.12169189	0.0058
2006	-0.23582648	0.10805642	0.0305
2007	-0.46378311	0.11652049	0.0001
2008	-0.22875838	0.12663105	0.0726

Appendix 4. Standardized CPUE index from trawlers in Div. 0B

0.806107 -41.46004

Greenland halibut, OB trawlers 49 14:01 Monday, June 7, 2010

The GLM Procedure

Class Level Information

Class	Levels	Values
year	20	1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
md	12	1 2 3 4 5 6 7 8 9 10 11 12
kode	12	2126 2127 3125 5126 5127 14124 15126 15127 20126 20127 21926 21927

Number of Observations Read 520 Number of Observations Used 520

Greenland halibut, 0B+1CD trawlers $$50$\\14:01$ Monday, June 7, 2010

32

The GLM Procedure

Dependent Variable: lcph

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	41	137.2815673	3.3483309	48.47	<.0001
Error	478	33.0204322	0.0690804		
Corrected Total	519	170.3019994			
R-Square	Coeff	Var Root	MSE lcph	Mean	

0.262832

-0.633939

Source	DF	Type I SS	Mean Square	F Value	Pr > F
year	19	86.09247192	4.53118273	65.59	<.0001
md	11	9.07580659	0.82507333	11.94	<.0001
kode	11	42.11328876	3.82848080	55.42	<.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
year	19	5.40393183	0.28441746	4.12	<.0001
md	11	7.36937974	0.66994361	9.70	<.0001
kode	11	42.11328876	3.82848080	55.42	<.0001

				Standard		
Parameter	-	Estimate		Error	t Value	Pr > t
Intercept		0.479680263		0.10189008	4.71	<.0001
year	1990	-0.354947236	В	0.11573441	-3.07	0.0023
year	1991	-0.369070491	В	0.11557348	-3.19	0.0015
year	1992	-0.239883795	В	0.11088446	-2.16	0.0310
year	1993	-0.358687762	В	0.11433377	-3.14	0.0018
year	1994	-0.375927019	В	0.11842764	-3.17	0.0016
year	1995	-0.196923097	В	0.13505237	-1.46	0.1455
year	1996	-0.258397111	В	0.12758987	-2.03	0.0434
year	1997	-0.284995565	В	0.12723601	-2.24	0.0256
year	1998	-0.274052496	В	0.13192662	-2.08	0.0383
year	1999	-0.344672726	В	0.12954479	-2.66	0.0081
year	2000	-0.361084597	В	0.15451272	-2.34	0.0199
year	2001	-0.420215455	В	0.18335145	-2.29	0.0223
year	2002	-0.681123317	В	0.13911505	-4.90	<.0001
year	2003	-0.539820098	В	0.11074784	-4.87	<.0001
year	2004	-0.535524204	В	0.11048019	-4.85	<.0001

Greenland halibut, OB trawlers $$51$\\14:01$ Monday, June 7, 2010

The GLM Procedure

Dependent Variable: lcph

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Greenland halibut, OB+1CD trawlers $$52$\\14:01$ Monday, June 7, 2010

year	lcph LSMEAN	Standard Error	Pr > t
1990	-0.39727023	0.06042428	<.0001
1991	-0.41139348	0.06078684	<.0001
1992	-0.28220679	0.05622687	<.0001
1993	-0.40101075	0.06039496	<.0001
1994	-0.41825001	0.06747646	<.0001
1995	-0.23924609	0.09194579	0.0096
1996	-0.30072010	0.08642130	0.0005
1997	-0.32731856	0.09029930	0.0003
1998	-0.31637549	0.10264809	0.0022
1999	-0.38699572	0.10208415	0.0002
2000	-0.40340759	0.12867367	0.0018
2001	-0.46253845	0.16306283	0.0048
2002	-0.72344631	0.11517100	<.0001
2003	-0.58214309	0.07640626	<.0001
2004	-0.57784720	0.07938543	<.0001
2005	-0.24712143	0.08203467	0.0027
2006	-0.31678998	0.08712801	0.0003
2007	-0.41811085	0.06838220	<.0001
2008	-0.14622154	0.08415543	0.0829
2009	-0.04232299	0.10537683	0.6881

Appendix 5. Standardized CPUE index for trawlers in Div.1CD.

Greenland halibut, 1CD trawlers

2591 10:44 Wednesday, May 26, 2010

The GLM Procedure

Class Level Information

Class	Levels	Values
year	22	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
MD	12	1 2 3 4 5 6 7 8 9 10 11 12
kode	6	6124 6125 6126 6127 61926 61927
		Tumber of Observations Read 236 Tumber of Observations Used 236

trawlers 2592 10:44 Wednesday, May 26, 2010 Greenland halibut, 1CD trawlers

34

The GLM Procedure

Dependent V	/ariable: 1	lcph						
Source		DF		um of lares	Mean	Square	F Value	e Pr > F
Model		37	45.2542	29068	1.22	308894	19.2	1 <.0001
Error		198	12.6048	31131	0.06	366066		
Corrected	Total	235	57.8591	.0199				
	R-Square	Coeff	Var	Root	MSE	lcph	Mean	
	0.782146	-43.83	1807	0.252	2311	-0.5	75814	
Source		DF	Туре	I SS	Mean	Square	F Value	e Pr > F
year MD kode		21 11 5	15.8441 9.8588 19.5512	34792	0.89	448556 625890 024920	11.89 14.08 61.42	3 <.0001
Source		DF	Type II	I SS	Mean	Square	F Value	e Pr > F
year MD kode		21 11 5	11.1442 6.6024 19.5512	10945	0.60	068041 021904 024920		3 <.0001
Parameter		Estima	ate	St	andard Error	t '	Value	Pr > t
Intercept year year year year year year year year	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002	0.282474 0.330455 0.384767; -0.0591089 -0.127791 -0.356947; -0.505894; -0.616342; -0.661119; -0.498499; -0.566553; -0.274858; -0.378419; -0.455471	233 B 310 B 715 B 532 B 198 B 534 B 337 B 571 B 089 B 489 B 327 B 158 B 579 B	0.14 0.19 0.16 0.11 0.11 0.12 0.11 0.11 0.10 0.10	0021944 4509805 4005127 9529385 55516620 1886755 1979369 2058105 1932089 1977171 0702242 1466798 0797179 0253721 9899744		2.82 2.28 2.75 -0.30 -0.28 -1.08 -2.98 -4.20 -3.16 -5.15 -6.18 -4.35 -5.25 -2.68 -3.82 -4.71	0.0053 0.0238 0.0066 0.7625 0.7821 0.2837 0.0032 <.0001 0.0018 <.0001 <.0001 <.0001 0.0080 0.0080 0.0002 <.0001

Greenland halibut, 1CD trawlers 10:44 Wednesday, May 26, 2010

The GLM Procedure

Dependent Variable: lcph

				Standard	_	
Paramete:	r	Estimate		Error	t Value	Pr > t
year	2003	-0.434991456	В	0.10281149	-4.23	<.0001
year	2003	-0.404744119	_	0.10201119	-4.17	<.0001
year	2005	-0.239867202	_	0.09532721	-2.52	0.0127
year	2006	-0.196001022	_	0.09554460	-2.05	0.0415
year	2007	-0.048027535		0.09721602	-0.49	0.6218
year	2008	-0.006910047		0.09188482	-0.08	0.9401
year	2009	0.000000000				
MD	1	-0.534731210		0.11308918	-4.73	<.0001
MD	2	-1.008729514	В	0.13289843	-7.59	<.0001
MD	3	-0.942069096	В	0.26885966	-3.50	0.0006
MD	4	-0.458501422	В	0.19950923	-2.30	0.0226
MD	5	-0.341584190	В	0.12191936	-2.80	0.0056
MD	6	-0.562223485	В	0.10774694	-5.22	<.0001
MD	7	-0.513531303	В	0.08880673	-5.78	<.0001
MD	8	-0.337593704	В	0.07412619	-4.55	<.0001
MD	9	-0.186505526	В	0.06508376	-2.87	0.0046
MD	10	-0.223038646	В	0.06175059	-3.61	0.0004
MD	11	-0.160560393	В	0.06233524	-2.58	0.0107
MD	12	0.000000000	В	•	•	•
kode	6124	-2.555836624	В	0.17458702	-14.64	<.0001
kode	6125	-0.539634703	В	0.07163199	-7.53	<.0001
kode	6126	-0.452522932	_	0.06670188	-6.78	<.0001
kode	6127	-0.124997029	_	0.06847692	-1.83	0.0694
kode	61926	-0.368836738		0.15015389	-2.46	0.0149
kode	61927	0.000000000	В			

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Greenland halibut, 1CD trawlers 2594 10:44 Wednesday, May 26, 2010

year	lcph LSMEAN	Standard Error	Pr > t
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	-0.49979732 -0.44548474 -0.88936127 -0.87600219 -0.95804375 -1.18720009 -1.33614689 -1.20762313 -1.44659464 -1.49137204 -1.32875238 -1.39680571 -1.10511123 -1.20867228 -1.28572364 -1.26524401 -1.23499667 -1.07011976 -1.02625358 -0.87828009 -0.83716260	0.12830534 0.12665754 0.18839236 0.15701242 0.10950102 0.10898566 0.10923887 0.10894635 0.10894635 0.10885501 0.09415589 0.10366150 0.09586980 0.077897841 0.08423624 0.08055784 0.08862280 0.07748539 0.07748539 0.07752942 0.07752942	0.0001 0.0005 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001
2009	-0.83025255	0.07832197	<.0001

Appendix 6. Combined Standardized CPUE index for trawlers in Div. 1CD and Div. 0B.

Greenland halibut, OB+1CD trawlers 53 14:01 Monday, June 7, 2010

					_	LIVOI MC	maay, o	aric /	, 2010
		Т	he GLM Pr	ocedu	re				
		Clas	s Level I	nform	ation				
Class	Levels	Values							
year	22	1988 1989 1999 2000							
MD	12	1 2 3 4 5	6 7 8 9 1	.0 11	12				
kode	18	2126 2127 15126 1512							4
Number of Observations Read 756 Number of Observations Used 756									
		Greenland	halibut,	0B+1C			onday, J	une 7	54 , 2010
		Т	he GLM Pr	ocedu	re				
Dependent V	/ariable:	lcph							
Source		DF		ım of ıares	Mear	n Square	e F Val	ue P	r > F
Model		49	174.352	9120	3.	5582227	46.	22 <	.0001
Error		706	54.356	6225	0.	0769924	Į		
Corrected	Total	755	228.709	5345					
	R-Squar	e Coeff	Var	Root	MSE	lcph	Mean		

R-Square	Coeff Var	Root MSE	lcph Mean
0.762333	-45.05968	0.277475	-0.615794

DF

Source

year	21	74.19830144	3.53325245	45.89	<.0001
MD	11	16.92761806	1.53887437	19.99	<.0001
kode	17	83.22699250	4.89570544	63.59	<.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
year	21	11.00397321	0.52399872	6.81	<.0001
MD	11	7.81752645	0.71068422	9.23	<.0001
kode	17	83.22699250	4.89570544	63.59	<.0001

Type I SS Mean Square F Value Pr > F

Paramete	r	Estimate	Standard Error	t Value	Pr > t
Intercep year year year year year year	1988 1989 1990 1991 1992 1993 1994	0.204124371 B 0.132476789 B 0.233597148 B -0.351438782 B -0.340417044 B -0.211830267 B -0.351630388 B -0.360695234 B	0.09008822 0.14371625 0.14239277 0.08159850 0.08157153 0.07543330 0.07783533 0.08168168	2.27 0.92 1.64 -4.31 -4.17 -2.81 -4.52	0.0238 0.3570 0.1013 <.0001 <.0001 <.00051 <.0001
year year year year year year year year	1995 1996 1997 1998 1999 2000 2001 2002	-0.258544226 B -0.383227034 B -0.482260343 B -0.372372615 B -0.404109983 B -0.208797248 B -0.308734764 B -0.435732823 B	0.09229235 0.08955482 0.08669672 0.09196198 0.08867754 0.09098882 0.09106983 0.08407193	-2.80 -4.28 -5.56 -4.05 -4.5 -2.29 -3.39 -5.18	0.0052 <.0001 <.0001 <.0001 <.0001 0.0220 0.0007 <.0001

Greenland halibut, OB+1CD trawlers

14:01 Monday, June 7, 2010

The GLM Procedure

Dependent Variable: lcph

Parameter		Estimate		Standard Error	t Value	Pr > t
year year year year year year year	2003 2004 2005 2006 2007 2008 2009	-0.404415345 -0.407593392 -0.173786617 -0.131533178 -0.159163239 -0.014865278 0.000000000	B B B	0.07774713 0.07679537 0.07793636 0.077990841 0.07842788 0.07458323	-5.20 -5.31 -2.23 -1.65 -2.03 -0.20	<.0001 <.0001 0.0261 0.1002 0.0428 0.8421
MD MD MD MD MD MD MD MD	1 2 3 4 5 6	-0.283373425 -0.606764814 -0.375420911 0.003917519 0.188176767 -0.171442500 -0.285151270	B B B	0.07863800 0.11649667 0.20787374 0.08584996 0.06312008 0.06270325 0.05146602	-3.60 -5.21 -1.81 0.05 2.98 -2.73 -5.54	0.0003 <.0001 0.0713 0.9636 0.0030 0.0064 <.0001
MD MD MD MD MD kode	8 9 10 11 12 2126	-0.26313127 -0.169954796 -0.182893800 -0.228531699 -0.125076855 0.000000000 -0.297603628	B B B B	0.04629269 0.04308604 0.04126433 0.04199041	-5.54 -3.67 -4.24 -5.54 -2.98 -3.19	0.0003 <.0001 <.0001 0.0030
kode kode kode kode kode kode	2127 3125 5126 5127 6124 6125 6126	-0.072345744 -1.022793017 -0.061862783 0.048897661 -2.554748671 -0.647678750 -0.490439986	B B B	0.07046330 0.11622580 0.13367235 0.08566639 0.18586407 0.07593849 0.07090011	-1.03 -8.80 -0.46 0.57 -13.75 -8.53 -6.92	0.3049 <.0001 0.6437 0.5683 <.0001 <.0001
kode kode kode kode kode kode kode	6127 14124 15126 15127 20126 20127 21926 21927	-0.131258739	B B B B B B	0.07210610 0.09320510 0.09726055 0.11819311 0.07940294 0.08749222 0.12583839 0.07908051 0.16022577	-1.82 -5.84 2.02 1.46 -10.70 -9.93 1.50 3.41	0.0691 <.0001 0.0437 0.1443 <.0001 <.0001 0.1351 0.0007
kode kode	61926 61927	0.000000000		. 10022577	-2.80	0.0053

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Greenland halibut, 0B+1CD trawlers $$56$\\14:01$ Monday, June 7, 2010

		Qb 3 3	
		Standard	
year	lcph LSMEAN	Error	Pr > t
1000	0.04405040	0 12010060	0 0640
1988	-0.24497049	0.13218868	0.0643
1989	-0.14385013	0.13173739	0.2752
1990	-0.72888606	0.05505672	<.0001
1991	-0.71786432	0.05424083	<.0001
1992	-0.58927754	0.04714032	<.0001
1993	-0.72907766	0.05052831	<.0001
1994	-0.73814251	0.05603196	<.0001
1995	-0.63599150	0.07271980	<.0001
1996	-0.76067431	0.07057162	<.0001
1997	-0.85970762	0.06759807	<.0001
1998	-0.74981989	0.07601769	<.0001
1999	-0.78155726	0.07238255	<.0001
2000	-0.58624452	0.07138597	<.0001
2001	-0.68618204	0.07540352	<.0001
2002	-0.81318010	0.06640056	<.0001
2003	-0.78186262	0.05762733	<.0001
2004	-0.78504067	0.05639375	<.0001
2005	-0.55123389	0.05749164	<.0001
2006	-0.50898045	0.05867387	<.0001
2007	-0.53661052	0.05206166	<.0001
2008	-0.39231255	0.05691392	<.0001
2009	-0.37744728	0.06471016	<.0001