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Abstract 
 

Delineating spatial management units is a necessary element for implementing ecosystem approaches to 
fisheries management. This study aimed to define spatially coherent ecological units (ecoregions) on the 
Newfoundland-Labrador (NL) Shelves using both physical and biological data which can serve as the basis for 
defining spatial management units (e.g. “management ecosystems”). The methods used were similar to previous 
studies in the US Northeast Atlantic continental Shelf and the Canadian Scotian Shelf in order to maintain 
consistency and a degree of comparability between results. Datasets were analyzed and classified using principal 
components analysis and k-means clustering. The clustering results were mapped in order to examine spatial 
distributions of the clusters. Results indicated that the physical variables (bathymetry, primary production, sea 
surface temperature) dominated the principal component analysis (PCA) signal when included in the analysis. Five 
major clusters (NL Shelf, Grand Banks, Southeast Shoal, Continental Slope, and nearshore) were typically identified 
on the classified maps. However, results varied based on the different PCA runs used in the clustering exercise. 
Features characterized at different spatial scales became apparent in the results with the inclusion of coral datasets. 
Including corals into the analysis created “patches” on the resulting maps, while the exclusion of corals from the 
analysis resulted in smoother and more continuous representation of the clusters on the maps.  
 

1. Introduction 
 
 Ecosystem approaches to fisheries (EAF) are essentially place-based approaches; they aim to provide 
management provisions and advice encompassing multiple stocks which inhabit a common and geographically-
defined area. These “ecosystem management” units, and the scale at which they are defined, ideally would capture 
the core of a functional ecosystem, though other considerations should also be taken into account in defining them 
(e.g. jurisdictional boundaries and legal issues, main fisheries and fleets, operational issues regarding surveillance 
and enforcement, etc). A necessary starting point in the process of defining “ecosystem management” units is the 
delineation of ecosystem boundaries and identification of major ecosystem subunits (ecoregions) (Fogarty and 
Keith, 2009, Zwanenburg et al., 2010).  
 
The Scientific Council (SC) of the of the Northwest Atlantic Fisheries Organization (NAFO) had tasked its Working 
Group on Ecosystem Approaches to Fisheries Management (WGEAFM) to development a suitable framework that 
could allow NAFO to implement an EAF tailored to the needs and characteristics of the organization. The 
identification and delineation of ecoregions, as well as ecosystem-level management units, has been a topic of study 
by WGEAFM since its creation (NAFO 2008), but this also became a key element within the recently developed 
“Roadmap to EAF” (NAFO 2010).  
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Within WGEAFM, previously discussed work regarding ecoregion identification and delineation includes the US 
Northeast Atlantic Continental Shelf, and the Canadian Scotian Shelf (NAFO 2008, 2010, Fogarty and Keith, 2009, 
Zwanenburg et al. 2010). However, other regions within the NAFO Convention Area, like the Newfoundland and 
Labrador Shelves and the Flemish Cap, still remain without studies of this type.  
 
The Newfoundland and Labrador Shelves have been identified as one of the twelve major marine biogeographic 
units by Fisheries and Oceans Canada (DFO 2009), but more detailed comparisons with the results from the US 
Northeast Atlantic Continental Shelf, and the Canadian Scotian Shelf would require the identification and 
delineation of ecoregions following similar-enough protocols and data. 
 
In this context, the aim of this study is, using similar methods as previous studies (Fogarty and Keith, 2009, 
Zwanenburg et al., 2010) to extend the body of work on ecoregion identification and delineation to the Canadian 
Newfoundland and Labrador (NL) shelves (Figure 1). More precisely, this work analyzes biological and physical 
datasets collected from 1995 – 2007 for the purpose of delineating ecoregions using both statistical and geospatial 
techniques.  
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Figure 1. NAFO areas of interest for the assessment of Newfoundland Ecoregions (2J3KLNO).  The major 
bathymetric zones showing the Northeast Newfoundland Shelf, Grand Banks, Flemish Cap as well as the Southeast 
Shoal region at the tail of the Grand Banks. 
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2. Methods 

 
The method employed in this project (Figure 2) follows that of Fogarty and Keith (2009) and Zwanenburg 

et al. (2010) as closely as possible to maintain consistency among the three studies. The first step in the methods was 
to acquire all the datasets to be used in the analysis. Most of the data were not continuous surfaces, but rather vector 
point database format, and therefore had to be interpolated to a common gridded surface. Once all the data were 
represented as continuous surfaces they had to be made spatially comparable (i.e. perfectly overlapping cells of the 
same size); therefore, all raster datasets were aligned, resampled, and/or aggregated to a standard 20 km grid. Before 
the datasets were used in multivariate analyses, all were standardized to a common scale (mean = 0; s.d. = 1). 
Following these steps, the data were analyzed using principal component analysis (PCA) and then classified and 
mapped using k-means clustering.  
 

 
Figure 2: Flowchart of the analysis method.  

2.1 Data Inputs and Processing 
 

This section outlines the input variables used for the PCA and clustering analysis (Table 1) summarizing 
the initial data format (type), source, units, and temporal period. Any variables that were originally vector datasets 
were converted into continuous raster surfaces using appropriate interpolation methods (Goulet et al., 2010). These 
vector datasets were all provided by various Fisheries and Oceans Canada (DFO) surveys (Goulet et al., 2010).  
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The GEBCO (General Bathymetric Chart of the Oceans) bathymetry dataset was downloaded from the 
GEBCO website (www.gebco.net). GEBCO is composed of an international group of experts who work on the 
development of bathymetric datasets and operates under the auspices of the International Hydrographic Organization 
(IHO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO. 

  
The geology dataset was not made available at the time this work was done and was not included in the 

analysis. 
 
Sea surface temperature dataset was provided by NOAA. Sea surface temperatures were measured daily 

using AVHRR Satellite starting in 1985 (for more information see 
www.nodc.noaa.gov/SatelliteData/pathfinder4km/).  

 
DFO’s Bedford Institute of Oceanography (BIO) provided the chlorophyll a (Chl-a) and primary 

production (PP) datasets. The original Chl-a datasets were acquired from the SeaWiFS (Sea Viewing Wide Field of 
View Sensor) satellite sensor mounted on the Orbview-2 satellite operated by GeoEye (GeoEye, 2010). The Chl-a 
estimates are derived using the OC4.v4 algorithm (O’Reilly et al., 2000). PP estimates were derived from the Chl-a 
datasets (Platt et al. 2009). The PP image is the average over all years (98-04) and the four Chl-a datasets are 
seasonal averages (spring, summer, fall, winter) over all years (97-07). To maintain consistency, the four Chl-a 
seasonal averages were averaged to produce a single Chl-a dataset, matching the PP dataset.  

 
The grid size of these datasets differ even though PP was derived from Chl-a. Until 2004, the Chl-a dataset 

was provided in a 1.5 km grid size and this was the data used to create the PP dataset. However, after 2004 the Chl-a 
the grid size was increased to 4 km, which is why the Chl-a gird size is 4 km.   

 
Richness was estimated as the number of taxa per demersal or pelagic tow.  Diversity was represented 

using Shannon’s Evenness Index ( Spp
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Table 1: The variables used as input for the PCA and clustering analysis showing their original data type, source, 
units, and time period. 

Variable Original 
Data Type Data Source Units Period 

Physiographic Variables 
Bathymetry Raster GEBCO One Minute Grid Meters (m) N/A 
Surficial 
Seabed 
Geology 

Raster Natural Resources 
Canada Mean Grain Size N/A 

Biological Variables 

Zooplankton 
Biomass Vector DFO Juvenile Fish (0-

group) Surveys 

g (Dry Weight) (Each 
sample averaged over all 

years)1 
94-99 (Summer) 

Chlorophyll-a Raster SeaWiFS Satellite (4 km 
grid) mg/m3(Seasonal average) 97-07 

Primary 
Production Raster SeaWiFS Satellite (1.5 km 

grid) mg/m3/year (Cumulative) 98-04 

Nekton 
Biomass Vector DFO Juvenile Fish (0-

group) Surveys 

kg/Standard Tow (Each 
sample averaged over all 

years)3 
94-99 (Summer) 

Nekton 
Diversity Vector DFO Juvenile Fish (0-

group) Surveys 

Shannon’s Evenness 
Index (Each sample 

averaged over all years) 
94-99 (Summer) 

Nekton 
Richness Vector DFO Juvenile Fish (0-

group) Surveys 

Count/Standard Tow 
(Each sample averaged 

over all years) 
94-99 (Summer) 

Demersal Fish 
Biomass Vector DFO MSS kg/Standard Tow2 95-07 (Spring and 

Fall) 
Demersal Fish 
Diversity Vector DFO MSS Shannon’s Evenness 

Index 
95-07 (Spring and 

Fall) 
Demersal Fish 
Richness Vector DFO MSS Count/Standard Tow 95-07 (Spring and 

Fall) 
Cold Water 
Coral Biomass Vector DFO MSS kg/Standard Tow2 02-05 (Spring and 

Fall) 
Cold Water 
Coral 
Presence/Abse
nce 

Vector DFO MSS Individual Specimen 
Count 

02-07 (Spring and 
Fall) 

Cold Water 
Coral Diversity Vector DFO MSS Shannon’s Evenness  

Index 
02-07 (Spring and 

Fall) 
Cold Water 
Coral Richness Vector DFO MSS Count/Standard Tow2 02-07 (Spring and 

Fall) 
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1. g (dry weight) standardized for each locale (i.e. sample location) based on the ratio of total dry weight per 
volume filtered water.   

2. kg/standard tow and count/standard tow for the multi-species survey dataset means that if the trawl was 
below or above 15 minutes (which is the standard trawl time) the catch numbers were linearly adjusted to 
15 minutes.  

3. Kg/standard tow and count/standard tow for the nekton dataset means that if the trawl was below or above 
15 minutes (which is the standard trawl time) the catch numbers were linearly adjusted to 15 minutes.  

  
 

Table 2 provides a comparison of the datasets used in “ecoregions” delineation projects in the US (Fogarty and 
Keith, 2009) and Canada (Zwanenburg et al., 2010). As highlighted in the table, not all of the variables and/or 
datasets were consistent among these studies. Both Scotian Shelf and US studies used 10’ latitude x 10’ longitude 
grids, which equals approximately 18 km depending on latitude. However, this report on the NL shelf used 20 km 
grids because this was the grid size most appropriate for the development of interpolated surfaces (Goulet et al., 
2010). The different grid sizes can be made comparable by simply using the resample tool in ArcGIS but the close 
proximity of grid sizes should not have a substantial impact on the overall estimation of ecoregions because of their 
dimensions should far exceed those of the grid size.  
 

Oceanographic Variables 
Sea Surface 
Temperature Raster NOAA AVHRR Satellite 

Nominal 4 km Grid 
Degrees (°C) (Annual 

Average)  85-01 

Sea Surface & 
Bottom 
Temperature 

Vector DFO MEDS Surveys Degrees (°C) 94-04 (Fall) 
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Table 2: Comparison of data used in different projects for the delineation of regional ecosystem units (modified 
from Zwanenburg et al., 2010). 

Variable U.S.A. Data  
(Fogarty and Keith, 2009) 

Canadian Data  
Scotian Shelf  

(Zwanenburg et al., 2010) 

Canadian Data  
NL Shelf 

Physiographic Variables 

Bathymetry National geophysical data 
center, meters 

CHS Atlantic bathymetry 
data, meters 

GEBCO bathymetry, 
meters 

Surficial 
Geology 

Benthic grab, mean grain 
size 

GSC surficial geology, 
classified sediment types N/A 

Biological Variables 

Chlorophyll 

Ratio of shipboard 
measurements of surface to 

subsurface chlorophyll, 
dimensionless 

Satellite derived estimates 
of chlorophyll-a using 

SeaWiFS, mg/m3 

Satellite derived estimates 
of chlorophyll-a using 

SeaWiFS, mg/m3 

Primary 
Production 

Satellite derived estimates 
of primary production 

using SeaWiFS, gC/m2/yr 

Satellite derived estimates 
of primary production 

using SeaWiFS, mg/m2/yr 

Satellite derived estimates 
of primary production 

using SeaWiFS, mg/m2/yr  

Zooplankton 
ECOMON plankton 

sampling, displacement 
volume Cc 100/m3 

Zooplankton wet weight 
data from the AZMP 

program is substituted 

DFO Juvenile (0-Group) 
fish surveys, dry weight (g) 

Benthic 
Biomass Benthic grab/sled, g/m2 N/A N/A 

Nekton 
Biomass   

DFO Juvenile (0-Group) 
fish surveys, kg/standard 

tow 

Nekton 
Diversity N/A N/A 

DFO Juvenile (0-Group) 
fish surveys, Shannon’s 
diversity evenness index 

Nekton 
Richness   

DFO Juvenile (0-Group) 
fish surveys, # unique 

species/tow 
Demersal 
Biomass 

NEFSC Groundfish survey, 
kg/tow 

DFO Groundfish Survey, 
kg/tow 

DFO multi species surveys, 
kg/standard tow 

Demersal 
Diversity N/A N/A 

DFO multi species surveys, 
Shannon’s diversity 

evenness index 

Demersal 
Richness 

NEFSC Groundfish survey, 
mean # species/tow 

DFO Groundfish Survey, 
kg/tow 

DFO multi species surveys, 
# unique species/standard 

tow 
Deep Water 

Coral Presence Benthic grab/sled ERD coral database DFO multi species surveys, 
individual specimen count 

Cold Water 
Coral Biomass N/A N/A DFO multi species survey, 

kg/standard tow 

Cold Water 
Coral Diversity N/A N/A 

DFO multi species surveys, 
Shannon’s diversity 

evenness index 
Cold Water 

Coral Richness N/A N/A DFO multi species surveys, 
count/standard tow 

Marine 
Mammal 
Presence 

Aerial/shipboard sighting 
program 

MarWhale data obtained 
from VDC N/A 

Sea Turtle 
Presence 

Aerial/shipboard sighting 
program 

MarWhale data obtained 
from VDC N/A 
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Oceanographic Variables 
Bottom 

Temperature N/A BIO’s Hydrographic 
Database, 0C DFO MEDS Surveys, 0C 

Bottom 
Temperature 

Span 
N/A BIO’s Hydrographic 

Database, 0C N/A 

Sea Surface 
Temperature Satellite SeaWiFS, 0C BIO’s Hydrographic 

Database, 0C Satellite SeaWiFS, 0C 

Sea Surface 
Temperature 

Span 
Satellite SeaWiFS, 0C BIO’s Hydrographic 

Database, 0C N/A 

Water Column 
Stratification 

Shipboard hydrographic 
measurements, sigma-t 

units 

BIO’s Hydrographic 
Database, mixed layer 

depth (m) 
N/A 

 
Zooplankton, nekton, demersal, and bottom temperature raster datasets were all interpolated using ordinary 

kriging (Goulet et al., 2010). Note that the nekton biomass dataset had extreme outliers removed before interpolation 
(Goulet et al., 2010). The cell size of the interpolated surfaces was dependent on the spatial distribution of samples 
from the original datasets, ranging from 2 km to 20 km. Both the zooplankton and nekton datasets were interpolated 
to a 20 km grid to match the resolution of the surveys, but the demersal and bottom temperature datasets were denser 
and interpolated to grids of 2 km or 2.5 km depending on the dataset (Goulet et al., 2010). To maintain consistency 
between the raster and vector datasets, all surfaces were converted to a 20 km grid using the aggregate tool in 
ArcGIS (ESRI, 2008). The value assigned to each 20 km cell was calculated by taking the mean values of all the 
original 2 km, or 2.5 km, cells within the larger 20 km cell. Certain datasets (sea surface temperature, primary 
production, Chl-a, and bathymetry) could not be brought to a 20 km grid using the aggregate tool as they were not 
an integer factor of 20, which is a requirement of the aggregate tool (ESRI, 2008). Therefore, to calculate the mean 
values of these variables within each 20 km cell the datasets were resampled, using the nearest neighbour algorithm, 
to create a raster that was an integer factor of 20. The factor value of 20 that was closest to the original cell size was 
used, for example, the sea surface temperature raster had a cell size of ~4.8 km so it was resampled to a 5 km cell 
size. Once this was completed, the resampled raster was aggregated into 20 km cells using the aggregate tool.  

 
Another important process that had to be done with the vector datasets was to “clip” out the land from the 

datasets. Including the land in these datasets would create biases in the statistics of measurements. First the land 
polygon was converted to a raster grid of the same cell size as the interpolated data (20 km). A reclassification was 
then done on the land raster to change the raster value of land to no data and the value of water to 1. Doing this 
creates a water mask that can be multiplied by the satellite images to produce a product that only represents the 
portion of the images taken over the ocean. To ensure that water mask actually represented water along the coastal 
areas, a 20 km buffer from the coastline was performed on the land polygon.  

 
The coral datasets were not originally interpolated because of the large number of observations that 

recorded no coral catch. Therefore the coral raster datasets were actually mean values within each 20 km x 20 km 
cell (Goulet et al., 2010). However, there were cells within these raster datasets that had a no data value, as opposed 
to zero values, and would result in a no data value in the PCA analysis. Therefore, a focal mean based on a 3x3 cell 
window was calculated for each no data cell in order to fill in these gaps and create a continuous surface.  

 
 All the data were standardized to a mean of 0 and standard deviation of 1 ([x – mean (x)] / s.d.; 
Zwanenburg et al. 2010). The Raster Calculator inside ArcGIS was used to perform this calculation on the raster 
datasets.  

2.2 Analysis Methods 
  

Principal components analysis (PCA) is often performed on high-dimensional data to eliminate 
redundancy, find patterns, emphasize variance within the variables, and improve interpretation (ESRI, 2008). 
Essentially, PCA transforms the data in multivariate space to a new multivariate space whose axis are rotated so that 
the greatest variance is explained by the first principal component, the second principal component (orthogonal to 
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the first) explains the second greatest variance, and so on. The first three or four principal components typically 
explain the most variance and by analyzing only these components, one reduces the number of dimensions without 
much loss of information. PCA was first performed on the normalized datasets using all sixteen available variables 
(all runs exclude geology as these data are not yet available). A second run of PCA was performed excluding the 
nekton and zooplankton datasets. These datasets had the smallest number of samples and the smallest spatial extent. 
By excluding these variables one can examine how these datasets may have influenced the analysis. Based on the 
results of the first two PCA analyses we determined that the sea surface temperature, primary production, and 
bathymetry dominated the signal. Therefore, a third run of PCA excluded these datasets along with excluding again 
the nekton and zooplankton datasets. The third run of PCA was done again (3B), this time also removing the only 
other remaining physical variable, bottom temperature. A fourth run of PCA was done excluding just bathymetry, 
sea surface temperature, and primary production while leaving in the nekton and zooplankton datasets (Table 3).  
Finally, a fifth run excluded information pertaining to corals; the high ratio of absence to presence data in the coral 
datasets (Goulet et al., 2010) may be a strong factor in determining the amount of variance explained by the PCA 
analysis. 
 

Table 3: Variables used (marked with an X) in the three different runs of PCA.  

Variables Run #1 Run #2 Run #3 Run #3B Run #4 Run #5 
Bathymetry X X    X 
Surficial Seabed Geology N/A N/A N/A N/A N/A N/A 
Zooplankton Biomass X    X  
Chlorophyll-a X X X X X X 
Primary Production X X    X 
Nekton Biomass X    X  
Nekton Diversity X    X  
Nekton Richness X    X  
Demersal Fish Biomass X X X X X X 
Demersal Fish Diversity X X X X X X 
Demersal Fish Richness X X X X X X 
Cold Water Coral Biomass X X X X X  
Cold Water Coral 
Presence/Absence 

X X X X X  

Cold Water Coral Diversity X X X X X  
Cold Water Coral Richness X X X X X  
Sea Surface Temperature X X    X 
Bottom Temperature X X X  X X 

 
 The PCA results were used in a k-means clustering procedure to classify the data. K-means clustering is an 
unsupervised classification technique, meaning there is no prior knowledge on what information classes exist in the 
data. An information class is a similar grouping of values that are known to belong to a specific class, for example, 
in satellite imagery classification a class may be defined as a meaningful grouping of locations representing real 
world objects such as water or forest. A cluster, on the other hand, is simply a statistical grouping in the data with 
similar attribute values in multivariate space with no knowledge on what that cluster represents in the real world. 
These clusters must be interpreted into meaningful classes by the user.   

The raster outputs of the first four principal components from the ArcGIS PCA analysis were used as input 
into k-means clustering using the algorithm of Legendre (2001). The number of clusters we investigated ranged 
from 2 to 10. Legendre’s (2001) algorithm provides the optimal number of clusters as determined by the Calinksi-
Harabasz (C-H) statistic, and the count of observations within each cluster. The C-H statistic is calculated for 
different number of clusters using the following equation (Legendre, 2001): 
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C-H = [R2/(K – 1)]/[(1 – R2)/(n – K)] 
 
R2 = (SST – SSE)/SST 
SST = total sum of squared distances 
SSE = sum of squared distances of the objects to their group’s own centroids 
K = number of groups 
 
The number of clusters that yields the highest C-H criterion corresponds to the most compact set of clusters, or 
optimal number of groups (Legendre, 2001). The output from the k-means clustering was then mapped to visualize 
the distribution of clusters from each run.  

3. Results  
 
 Table 4 to Table 9 present the results of the different PCA runs (see Table 3 for the input variables used in 
each run). Figure 3 to Figure 7 show plots of the first 3 principal components against each other for PCA runs #2, 
#3, #3B, #4, and #5. PCA run #5 provided the most rapid rise in explained variance. This run did not include the 
coral datasets; therefore, the high ratio of absence to presence data in the coral datasets (Goulet et al., 2010) may be 
a strong factor in determining the amount of variance explained by the PCA analysis. PCA runs #3 and #3B also 
provided a rapid rise in explained variance as these runs had the fewest variables and little or no physical variables.  
 

Physical variables (i.e. primary production, sea surface temperature, and bathymetry) dominated the signal 
on the first two principal components in runs #1, #2, and #5 (Table 4, , Table 5, Table 9, Figure 3, and Figure 7). In 
run #1, variables related to corals and demersal surveys loaded on PC3, with fish more abundant in areas of low 
coral abundance and presence, and with demersal biomass and diversity in opposition to one another (Table 4).  
There were strong loadings of bathymetry on PC2 and PC3 of run #2 suggests some non-linearity in the influence of 
this variable on the overall multivariate variance (Table 5).  We also note a positive loading of coral variables on 
PC2 and a negative loading on PC3, again suggesting that non-linear relationships among variables may be at play. 

 
In PCA run #3 (Table 6) and #3B (Table 7) the first principal component (PC) is dominated by coral 

percent presence, diversity, and richness, while the second PC represents the influence of demersal biomass, 
diversity, and bottom temperature, with biomass correlated with bottom temperature and in opposition to diversity 
(Table 6 and Table 7).  A possible interaction between coral distributions and catches from demersal surveys is most 
apparent on PC3 and PC4. 

 
PCA run #4 had all the variables included except sea surface temperature, primary production, and 

bathymetry, and yielded the same general pattern as runs #3 and #3B (Table 8). We also note a weaker contribution 
of nekton variables on PC2, with biomass, diversity and richness loading inversely to those of demersal biomass. 

 
PCA run #5 represented the information with the greatest spatial coverage.  Sea surface temperature and 

primary production were positively correlated and in opposition to bathymetry on PC1 (Table 9).  Bathymetry had a 
strong negative loading on PC2, as did primary production, while there was a weak positive loading of demersal 
richness.  PC3 was dominated by positive loadings of demersal biomass and bottom temperature and a somewhat 
weaker negative loading of demersal diversity. 
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Table 4: PCA Run #1 results of the first six principal components. Cells shaded in grey highlight the higher 
eigenvector scores.  

Variable PC1 PC2 PC3 PC4 PC5 PC6 
       

Eigenvalues 1.286 0.939 0.810 0.657 0.341 0.280 
Explained Variance (Percent) 25 18 15 13 6 5 

Cumulative Variance 25 43 58 71 77 82 
       

Bathymetry -0.276 -0.711 -0.330 0.422 -0.030 -0.013 
Bottom Temp -0.119 0.163 0.228 0.369 -0.006 -0.166 

Coral % Presence -0.143 0.280 -0.370 0.119 0.235 0.086 
Coral Biomass -0.055 0.124 -0.102 0.113 -0.152 0.925 
Coral Diversity -0.123 0.302 -0.348 0.192 0.114 -0.190 
Coral Richness -0.149 0.335 -0.413 0.181 0.193 -0.058 
Chlorophyll-a -0.073 -0.131 -0.022 0.149 -0.125 -0.026 

Demersal Biomass -0.070 0.074 0.330 0.398 0.356 -0.018 
Demersal Diversity 0.126 0.062 -0.348 -0.132 -0.535 -0.156 
Demersal Richness -0.220 0.258 0.030 0.177 -0.543 -0.190 

Nekton Biomass 0.033 -0.017 -0.173 -0.154 -0.009 0.009 
Nekton Diversity -0.136 0.079 0.221 0.194 -0.188 0.049 
Nekton Richness -0.128 0.075 0.170 0.134 -0.245 0.062 

Primary Production 0.554 -0.155 -0.140 0.425 -0.103 -0.002 
Sea Surface Temp 0.642 0.187 0.013 0.260 -0.007 0.005 

Zooplankton Biomass -0.138 0.086 0.202 0.180 -0.202 0.037 
 
 

Table 5: PCA Run #2 results of the first six principal components. Cells shaded in grey highlight the higher 
eigenvector scores. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
       

Eigenvalues 1.241 0.930 0.747 0.572 0.325 0.280 
Explained Variance (Percent) 27 20 16 12 7 6 

Cumulative Variance 27 47 63 75 82 88 
       

Bathymetry -0.333 -0.658 -0.538 0.188 -0.042 -0.007 
Bottom Temp -0.080 0.127 0.102 0.556 -0.249 -0.106 

Coral % Presence -0.155 0.333 -0.341 -0.011 0.312 0.055 
Coral Biomass -0.052 0.135 -0.122 0.076 -0.190 0.950 
Coral Diversity -0.130 0.349 -0.347 0.079 0.094 -0.187 
Coral Richness -0.160 0.392 -0.396 0.040 0.225 -0.074 
Chlorophyll-a -0.073 -0.131 -0.100 0.097 -0.088 -0.041 

Demersal Biomass -0.029 0.022 0.177 0.647 0.134 0.023 
Demersal Diversity 0.094 0.108 -0.273 -0.329 -0.593 -0.105 
Demersal Richness -0.189 0.253 -0.007 0.202 -0.604 -0.168 
Primary Production 0.558 -0.186 -0.394 0.194 -0.029 -0.024 
Sea Surface Temp 0.672 0.134 -0.144 0.167 0.012 0.000 
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Table 6: PCA Run #3 results of the first six principal components. Cells shaded in grey highlight the higher 
eigenvector scores. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
       

Eigenvalues 0.803 0.552 0.299 0.257 0.163 0.151 
Explained Variance (Percent) 33 23 13 11 7 6 

Cumulative Variance 33 56 69 80 87 93 
       

Bottom Temp 0.126 -0.563 -0.244 -0.095 0.200 -0.107 
Coral % Presence 0.495 0.084 0.314 0.051 -0.198 0.224 

Coral Biomass 0.194 -0.038 -0.179 0.954 0.007 -0.047 
Coral Diversity 0.508 0.015 0.100 -0.180 0.232 -0.300 
Coral Richness 0.576 0.058 0.230 -0.072 0.014 -0.035 
Chlorophyll-a -0.004 -0.060 -0.051 -0.032 -0.715 -0.691 

Demersal Biomass -0.008 -0.649 0.143 0.035 0.267 -0.222 
Demersal Diversity 0.155 0.425 -0.592 -0.090 0.373 -0.343 
Demersal Richness 0.296 -0.255 -0.611 -0.175 -0.380 0.448 

 
 

Table 7: PCA Run #3B results of the first six principal components. Cells shaded in grey highlight the higher 
eigenvector scores. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
       

Eigenvalues 0.796 0.414 0.274 0.249 0.157 0.147 
Explained Variance (Percent) 37 19 13 12 7 7 

Cumulative Variance 37  56 69 81 88 95 
       

Chlorophyll-a -0.009 -0.066 -0.085 -0.105 -0.940 -0.303 
Coral % Presence 0.505 -0.067 0.255 0.166 -0.155 0.413 

Coral Biomass 0.191 -0.080 -0.586 0.771 -0.019 -0.048 
Coral Diversity 0.509 -0.061 0.147 -0.134 0.135 -0.480 
Coral Richness 0.582 -0.070 0.223 0.018 -0.014 -0.022 

Demersal Biomass -0.063 -0.728 -0.103 -0.081 0.225 -0.422 
Demersal Diversity 0.184 0.647 -0.295 -0.143 0.150 -0.418 
Demersal Richness 0.270 -0.164 -0.644 -0.567 0.001 0.389 
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Table 8: PCA Run #4 results of the first six principal components. Cells shaded in grey highlight the higher 
eigenvector scores. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
       

Eigenvalues 0.812 0.724 0.317 0.268 0.256 0.154 
Explained Variance (Percent) 28 25 11 9 9 5 

Cumulative Variance 28 53 64 73 82 87 
       

Coral % Presence -0.464 0.191 0.215 -0.250 0.073 0.057 
Bottom Temperature -0.208 -0.397 0.070 0.483 -0.141 -0.015 

Coral Richness -0.544 0.196 0.197 -0.120 -0.064 -0.020 
Coral Biomass -0.196 0.011 -0.111 0.218 0.939 -0.033 
Coral Diversity -0.483 0.150 0.139 0.032 -0.187 -0.097 
Chlorophyll-a -0.015 -0.075 -0.097 -0.103 -0.018 -0.969 

Demersal Biomass -0.085 -0.471 0.427 0.337 -0.001 -0.071 
Demersal Diversity -0.073 0.394 -0.479 0.441 -0.132 -0.103 
Demersal Richness -0.352 -0.203 -0.536 0.187 -0.180 0.162 

Nekton Biomass 0.012 0.224 -0.029 -0.015 0.009 0.003 
Nekton Diversity -0.110 -0.330 -0.207 -0.293 0.033 0.026 
Nekton Richness -0.105 -0.259 -0.276 -0.349 0.043 0.029 

Zooplankton Biomass -0.120 -0.309 -0.223 -0.283 0.021 0.049 
 
 

Table 9: PCA Run #5 results of the first six principal components. Cells shaded in grey highlight the higher 
eigenvector scores. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
       

Eigenvalues 1.213 0.839 0.571 0.373 0.156 0.126 
Explained Variance (Percent) 36 25 17 11 5 4 

Cumulative Variance 36 61 78 89 94 98 
       

Bathymetry -0.397 -0.822 0.158 -0.106 0.256 0.208 
Bottom Temperature -0.065 0.165 0.545 -0.294 0.172 -0.182 

Chlorophyll-a -0.087 -0.158 0.089 -0.090 -0.628 -0.516 
Demersal Biomass -0.035 0.113 0.666 0.114 0.222 -0.293 
Demersal Diversity 0.127 -0.072 -0.386 -0.626 0.390 -0.504 
Demersal Richness -0.146 0.224 0.158 -0.692 -0.316 0.506 
Primary Production 0.551 -0.448 0.170 -0.092 -0.379 -0.034 

Sea Surface Temperature 0.699 -0.052 0.155 -0.051 0.256 0.246 
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Figure 3: Plots of the first 3 principal components from run #2.  
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Figure 4: Plots of the first 3 principal components from run #3. 
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Figure 5: Plots of the first 3 principal components from run #3B. 
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Figure 6: Plots of the first 3 principal components from run #4. 
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Figure 7: Plots of the first 3 principal components from run #5. 

 
 The first four PCs were used in an unsupervised k-means clustering algorithm to classify each cell to a 
specific cluster. The optimal number of clusters for the first four PCs for each PCA run was determined using the 
Calinski-Harabasz statistic (Legendre, 2001). The optimal number of clusters for PCA run #3 and #3B was six, five 
for run #2 and #5, and two for run #4 (Figure 8). The results of PCA run #1 were not mapped because the spatial 
extent was relatively small as a result of the inclusion of the nekton and zooplankton datasets, and the optimal 
number of cluster is only two which does not convey much information. The spatial distribution of k-means 
clustering results for four, five, and six clusters for runs 2 to 5 are mapped in Figure 10 to Figure 13. Presenting this 
range of clusters was chosen to reflect the jump from three to four clusters in Figure 8 and the maximum number of 
optimal clusters.  
 

The numerical assignment of cluster classes are not comparable between different runs of k-means 
clustering (e.g. run #2 and run #3) or between different numbers of clusters within the same k-means run (e.g. run #2 
with five clusters and run #2 with six clusters) (Figure 9). This is because k-means is an unsupervised classification 
algorithm with no prior knowledge on what information classes the clusters may represent. However, by examining 
the spatial distribution of the clusters between different k-means runs or between different numbers of cluster for the 
same k-means run, one can infer that certain clusters represent the same class on different maps. For example, in 
Figure 10 cluster 1 for the k-means run with four clusters, cluster 2 for the run with five clusters, and cluster 1 for 
the run with six clusters, all seem to cover the same area and are likely representing the same class.  
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Figure 8: Plot of the Calinski-Harabasz statistic for each number of clusters. Maximum values indicate the optimal 
number of clusters. 
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Figure 9: Frequency of occurrence for each cluster from the k--means clustering analysis. PCA runs #2, #3, #3B, 
and #5 are shown. PCA run #4 is not shown as the optimal number of clusters was two. The clusters are ordered 
from highest occurrence to lowest. Note that the cluster numbers are not comparable between the different runs or 
for different number of clusters as k-means clustering is an unsupervised classification.  

 
 There are some common outcomes to all analyses that differ in the spatial extent of the different clusters 
identified from the analysis among PCA runs (Figure 10 to Figure 13).  First, the area of the northeast 
Newfoundland Shelf and the southeast Shoal cluster together irrespective of the variables included in the analysis, 
except in runs #2 and #5 with 5 or 6 clusters (Figure 10, Figure 13).  These latter analyses reveal when the relative 
contribution of physical variables over biological indicators becomes most apparent in the PCA analysis by 
distinguishing the northeast Newfoundland Shelf from the Southeast Shoal.  Second, the area of the northern and 
western Grand Banks tends to form a distinct cluster which includes the coastal areas of the northeast Newfoundland 
Shelf except when a large number of clusters are used in runs #2, #3B and #5 in which coastal areas appear as a 
distinct cluster.  Finally, the area of the continental slope also forms a distinct cluster in all runs.  The spatial extent 
of the cluster is narrowest off Labrador and northern Newfoundland and broadest in the area of Orphan Knoll, the 
nose of the Grand Banks and Flemish Pass.  However, many rasters on the continental shelf (single rasters and small 
groups) were assigned to this cluster.  This may reflect in the presence or absence of corals in some parts of the 
Newfoundland region, as demonstrated by the absence of rasters assigned to the slope cluster when corals are 
removed from the analysis in run#5 (Figure 13).  In all analyses, allowance of 6 clusters results in greater resolution 
of the marginal areas near the coast and along the continental slope.   
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Figure 10: Map of k-means clustering results of the first four principal components of PCA run #2 with nekton and 
zooplankton datasets removed. 
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Figure 11: Map of k-means clustering results of the first four principal components of PCA run #3 with nekton, 
zooplankton, and physical datasets (except bottom temperature) removed. 
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Figure 12: Map of k-means clustering results of the first four principal components of PCA run #5 with nekton, 
zooplankton, and coral datasets removed. 
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Figure 13: Map of k-means clustering results of the first four principal components of PCA run #5 with nekton, 
zooplankton, and all coral datasets removed. 
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4. Discussion 
 
 This research has applied, as closely as possible, the same methods used to define Ecoregions on both the 
Canadian Scotian Shelf (Zwanenburg et al., 2010) and US Northeast Continental Shelf (Fogarty and Keith, 2009). 
For the most part, the same variables were used with the exception of a few (see  Table 2 for a direct comparison). 
There is a certain amount of uncertainty in the process used to identify ecoregions as a result of the methods used 
and limitations of the data. The first source of uncertainty comes from the interpolation process. Certain datasets 
(demersal fish, nekton fish, zooplankton, and bottom temperature) were interpolated using the kriging method 
(Goulet et al., 2010) and, as with any interpolation method, the interpolated values are basically educated guesses of 
unknown values based on certain models. The results come with a certain amount of uncertainty and this is 
represented as a root mean squared error in the Goulet et al. (2010) report. There were also issues with varying 
spatial and temporal resolutions of the datasets. The nekton and zooplankton datasets covered the smallest area and 
had the coarsest spatial resolution (Goulet et al., 2010). Therefore, the remainder of the datasets had to be resampled 
to fit the limited spatial resolution of the nekton and zooplankton datasets. The were also limitations in the years 
covered by each of the datasets (Table 1), therefore, data covering longer time periods will be more representative of 
broadscale trends than those collected over a shorter .  
 

The PCA results can be summarized by a few obvious trends. Bathymetry, primary production, and sea 
surface temperature were strong driving variables when included in the PCA analysis.  These variables essentially 
reflect physical attributes of ocean circulation features in the region that are measured with relatively little 
uncertainty when averaged over long periods of time. When these variables were absent, the coral and demersal 
datasets dominated the PCA signal.  

 
The clustering results of PCA run #2 (with only nekton and zooplankton datasets removed) and PCA run #5 

(with nekton, zooplankton, and coral datasets removed) clustered the NL shelf and the southeast shoal as different 
clusters. In contrast, PCA runs #3 (nekton, zooplankton, SST, PP, bathymetry removed) and PCA run #3B (same as 
run #3 with bottom temperature removed) clustered them as having similar attributes. The contrast between runs #2, 
#3 and #3B highlights the influence of the physical variables in determining the difference between these two areas 
in k-means clustering results. In all runs, the Grand Banks remained its own class separate from the NL shelf and the 
southeast shoal. The “patchy” class along the edge of the clustering results of all PCA runs, except run #5, occurred 
on the continental slope, and is most likely caused by the variables associated with the description of corals. This 
was lost in run #5, where coral variables were removed, which likely reflects the influence of different spatial scales 
of coral habitats relative to those describing the physical features of the environment and the temporally averaged 
distribution of demersal fish and phytoplankton.   

 
A critical aspect of these analyses comes from the relatively simplistic description of the biological 

variables using biomass, diversity and richness that resulted in the northeast Newfoundland Shelf and the southeast 
Shoal appearing to have the same attributes.  Although the two areas are similar in their general metrics, the species 
found in each part of the continental shelf differ substantially.  This raises a cautionary aspect to the definition of 
ecoregions using summary variables.  Once clusters are identified based on multivariate analyses, approaches based 
on ecosystem, community or taxonomic diversity must be considered to determine if all elements of a cluster are 
based on functionally similar communities.  Creating GIS layer(s) that reflect metrics of taxonomic similarity (or 
dissimilarity) could serve to add an important element in the definition of ecoregions that would include aspects of 
ecosystem structure that reflects the patterns of biodiversity across the region of interest.  The metrics of taxonomic 
similarity should be based on the results of separate (unconstrained) ordination analyses of community structure 
derived from interpolated maps of the distribution of individual species.  What weight is given to dominant versus 
rare or keystone taxa would have to reflect all aspects of the conservation objectives associated with the definition of 
ecoregions.  

 
There are a number of future research paths that could be taken here. One option is to try and smooth the 

clustering results using the “Boundary Clean” and “Filter” tools in ArcGIS; this would be consistent with the 
approach taken by Fogarty and Keith (2009). The inputs for the PCA and clustering analysis could also be changed 
to examine the influence on results when including and excluding different variables. Demersal datasets were binned 
into three multi-year intervals (Goulet et al., 2010); however, these datasets were not examined here. These datasets 
could be examined to assess the influence of change over time of the demersal survey variables. Finally, there are 
also other unsupervised classification algorithms that could be used to classify the PCA results. Different clustering 
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procedures can influence how objects are grouped into clusters and how a cluster is defined (Legendre and 
Legendre, 1998). ArcGIS also provides an unsupervised classification technique whereby the ISO Cluster tool 
creates a signature file containing information on group assignment and the Maximum Likelihood tool takes this 
data creates a classified map. The latter enables the user to set a minimum class size, which could eliminate some of 
the smaller clusters and aggregate them into larger clusters, thereby simplifying the result.  
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