NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N5991 NAFO SCR Doc. 11/65

NAFO/ICES WG PANDALUS ASSESSMENT GROUP – OCTOBER 2011

Research survey information regarding northern shrimp (*Pandalus borealis*) in the Barents Sea and Syalbard area 2004-2011

by

C. Hvingel and T. Thangstad Institute of Marine Research Box 6404, N-9294 Tromsø, Norway

Abstract

The mean stock biomass index has varied considerably since the early 1980s. In the recent period (since 2004) the annual biomass indices have fluctuated between 0.75 and 1.25 with a CV mostly around 10%. Over the period 2004 to 2011 the areas of high shrimp density are gradually found further east in the Barents Sea.

The wedge of cold near-zero degrees water observed in 2009 in the central Barents Sea, which appeared to drive the distribution of shrimps more easterly, has in 2010-11 shifted/decreased, allowing for increased presence of shrimps in central shelf areas again.

The survey biomass indices are used as input in the assessment model for this stock.

Introduction

Research bottom trawl surveys have been conducted to assess the stock status of northern shrimp, *Pandalus borealis*, in the Barents Sea. The main objectives were to obtain index values for stock biomass, abundance, recruitment and demographic composition. Recently (since 2004) the monitoring of a multitude of other ecosystem variables has been included in what now is named the joint Norwegian-Russian "Ecosystem survey" (www.imr.no).

Three time series exist: (1) The Norwegian shrimp survey 1982-2004 (ICES, 2002a, 2003b, 2005a), (2) The Russian shrimp survey 1984-2002 and 2005 (ICES 2006), and (3) The joint Norwegian-Russian ecosystem survey since 2004. The ecosystem survey (3) combines surveys 1 and 2, as well as several earlier 0-group and groundfish surveys.

This paper updates the information regarding shrimp from survey (3), the ecosystem surveys series, and includes data from both Norway and Russia. The survey biomass indices are used as input in the assessment model for this stock.

Methods

Survey and coverage

The joint Norwegian-Russian ecosystem survey has since 2004 been conducted annually from August to October by five research vessels simultaneously covering the entire Barents Sea from the edge of the continental shelf in the west, to Novaja Semlja in the east, from the coast of Norway and Russia in the south to the ice-edge in the north (Olsen, 2006) (Fig. 1). In 2009-10 the total number of stations was reduced for economical reasons (Table 1). In 2009 and 2010 only the total biomass of shrimp was recorded.

In most of the covered area both in the Norwegian and Russian EEZs the survey follows a regular grid with ecosystem sampling stations approx. 30-35 nm apart (Fig. 1). In the important juvenile shrimp areas in the central Barents Sea (Hopen Deep), additional demersal trawl stations are placed at ½ the standard grid size to get a more detailed coverage of the shrimp distribution in this area. In the other high density shrimp area in the north-west around Spitsbergen a depth-stratified survey is conducted. Here stations are placed approx. every 30-35 nm as in the other areas, but in addition a number of extra bottom trawl stations are placed at irregular intervals within this part of the survey area. Additional stations were reduced in numbers in 2008, and have in 2009 and 2010 been omitted altogether.

Sampling trawl gear

Sampling of demersal species like shrimp within the ecosystem survey was conducted with a standard Norwegian research trawl, which is a modified Campelen 1800 shrimp trawl with rockhopper ground gear (Fig. 2). Mesh size in the cod-end was 22 mm with a 6 mm lining. A juvenile (Hoita) bag with 0.8 mm lining was has occasionally been attached under the trawl in front of the cod-end in order to collect juvenile shrimp < 10 mm in the catch.

Trawl geometry and behaviour of the trawl were monitored using *Scanmar* trawl sensors. The Norwegian vessels used standard *Steinshamn* W9 bottom V trawl doors with an area of 6.7 m² and a weight of 2 250 kg. "Strapping" – a rope 150-180 m in front of the doors locks the distance the trawl doors to approximately 50 m – is used. The towing time is 15 min. GPS positions were used to calculate towed distance. A speed sensor (symmetry) was used on all bottom hauls, giving information about the direction and amount of currents entering the trawl and making it possible to tow at the right speed and geometry in proportion to underwater crosscurrents by adjusting wires or warps to compensate a skewed trawl. Other trawl settings are described in detail in a separate manual for rigging of trawl and trawl equipment (Engås, 1995).

Sampling routines

For each haul on board Norwegian vessels, samples of 250-300 adult shrimp specimens are taken from the main bag, sorted by sexual characteristics, and measured by caliper to the nearest mm below (carapace length, cpl, as defined in Allen (1959); McCrary (1971)). A sample of up to 100 juvenile individuals is taken from the Hoita bag and measured the same way as the adults. Shrimp sampling on board Russian vessels is done in a similar manner.

Russian and Norwegian scientists use different database systems (BioFox and Regfisk, respectively) to register biological data from marine animals surveys. At the end of the survey the Russian ecosystem data are converted and included in the Norwegian database system; however, it has to date not been possible to convert the Russian shrimp length data, so that normally only total weight per haul is given. The length- and sex frequency distribution in the samples was weighted by total catch and stratum area to obtain estimates of the overall distribution.

Area stratification

Data from the sampling were stratified by depth and area as in Fig. 3. Five main areas are identified which each are further sub-divided into 6 depth strata (0-600 m). The depth strata boundaries follow depth contours obtained from the GEBCO world bathymetry database (http://www.gebco.net). The individual strata were constructed using ArcGIS 9.3 software; then each stratum's area was calculated in km² using an equal area projection (Europe Albers Conic) (Table 1, Fig. 4).

Swept area analysis

The catch in each tow divided by the swept area represents a sample of shrimp density in a stratum. From these samples the mean and standard error of the density in each stratum was calculated and multiplied by the area of the stratum to give an estimate of stratum biomass and abundance. Standard error was calculated as B * 0.985 Cochran (1977) for strata with only one tow. The means and their standard errors for the strata were summed to give the overall values for the survey area.

Results

The estimate of mean biomass has varied considerably since the early 1980s (Fig.5). From 2004 to 2006 biomass increased by about 66% and then decreased again back to the 2004-level in 2008. The 2010 and 2011 values is back up close to that of 2006 (Table 3, Fig. 6.). The spatial distribution of this biomass has changed. Over the period 2004 to 2011 the areas of high shrimp density are gradually found further east in the Barents Sea (Fig. 7 and 8).

Overall size distributions (Fig. 9) indicate a relatively large amount of smaller shrimp in 2004 which likely based the increase in stock biomass until 2006 (Fig. 4). The recruitment index – estimated abundance of shrimp at 13-16mm CL supposed to enter the fishery in the following one-two years decreased since 2004 (Fig. 10). Nevertheless, total biomass increased in 2009 and 2010 questioning the predictive capability of the recruitment index. The demographic information was not updated for 2009-11.

Temperatures in the Barents Sea have been high during the last eight years, mostly due to the inflow of warm water masses from the Norwegian Sea. In 2011, temperatures close to the bottom were in general close to those in 2010, and still above the long-term mean by 0.2–0.7°C in most of the Barents Sea (Anon. 2011). Only small areas with temperatures below 1°C were observed. Shrimps were only caught in areas where bottom temperatures were above 0°C. Highest shrimp densities were found between zero and 4°C, while the limit of upper temperature preference appeared to lie at about 6-8°C. The wedge of cold near-zero degrees water observed in 2009 in the central Barents Sea, which appeared to drive the distribution of shrimps more easterly, has in 2010-11 shifted/decreased, allowing for increased presence of shrimps in central shelf areas again (Fig. 11). However, shrimp are still distributed further east in the Barents sea than see before 2009.

References

ALLEN, J. A., 1959. On the biology of *Pandalus borealis* Krøyer, with reference to a population off the Northumberland coast. *J. Mar. Biol. Assoc. U.K.*, **38**: 189-220.

ANON., 1988. SAS/STAT User's Guide, Release 6.03 Edition. Cary, NC: SAS Institute Inc., 1988. 1028 p.

ANON., 2010. Survey report from the joint Norwegian/Russian ecosystem survey in the Barents Sea August-September 2010. IMR/PINRO Joint Report Series, No. x/2010. ISSN 1502-8828. xxx pp.

ENGÅS, A. 1995. Trålmanual Campelen 1800. Versjon 1, 17. januar 1995, Havforskningsinstituttet, Bergen. 16 p. (unpubl.).

COCHRAN, W. G., 1977. Sampling techniques, 3rd edition. John Wiley & Sons, New York, 428 p.

FISHER, N. I., T. LEWIS, B. J. J. EMBLETON. 1987. Statistical Analysis of Spherical Data, Cambridge University Press, 329 p.

ICES. 2002. Report of the Arctic Fisheries Assessment Working Group. ICES CM 2002/ACFM:18.

ICES. 2003. Report of the Arctic Fisheries Working Group. ICES CM 2003/ACFM:22.

ICES. 2005. Report of the *Pandalus* Assessment Working Group, 27 October–5 November 2004. ICES CM 2005/ACFM:05.

ICES. 2006. Report of the *Pandalus* assessment working group 2005. ICES CM 2006/ACFM:10. ref G. 72 p.

MCCRARY, J. A., 1971. Sternal spines as a characteristic for differentiating between females of some Pandalidae. *J. Fish. Res. Board Can.*, **28**: 98-100.

MACDONALD, P. D. M., T. J. PITCHER. 1979. Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures. *J. Fish. Res. Board Can.*, **36**: 987-1001.

OLSEN, E. 2006. Manual for conducting the joint "Autumn Ecosystem Survey" in the Barents Sea. Version 4 – 22.06.2006, Havforskningsinstituttet, Bergen. 42 p. (unpubl.)

Table 1. Number of hauls, estimated total biomass, density and coefficient of variation (CV) by stratum and year (for further details on stratification see Fig. 3).

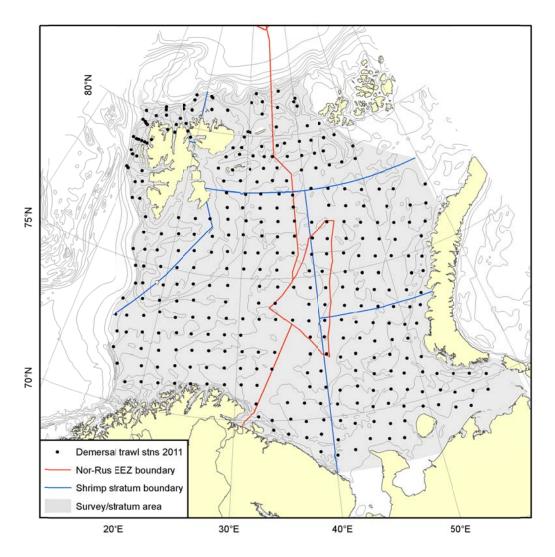

	Stratum	1		2	2004			2	005			2	006			2	007			20	008			20	009			20	10			201	1	
Name	Depth	Area	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV	Hauls	Biom.	Dens.	CV
(code)	(m)	(kkm²)	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%	(#)	tons	kg/km ²	%
1.1	0-100	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	79	2	85	2	83	2	15	3	0	0	0	6	119	2	99
1.2	100-200	40	17	5943	150	49	16	6182	156	58	9	7005	177	74	10	3390	86	49	16	4102	104	45	4	9370	236	84	12	479	12	53	18	10860	274	86
1.3	200-300	20	26	15311	776	26	24	18859	956	29	25	15539	788	21	20	11765	596	25	22	13862	703	39	4	6231	316	55	5	14927	757	68	12	13734	696	28
1.4	300-400	10	30	12721	1316	24	23	10148	1050	22	25	5200	538	14	22	11870	1228	28	16	4571	473	35	5	10597	1096	63	3	17462	1806	116	11	12905	1335	29
1.5	400-500	7	17	4327	608	28	18	4164	585	22	14	4254	598	23	11	5370	755	23	7	5248	738	38	3	7846	1103	58	2	3235	455	113	8	4766	670	20
1.6	500-600	6	8	1696	293	25	10	3018	522	40	6	2035	352	42	6	1670	289	39	7	1234	213	50	1	657	114	85	0	0	0	0	1	1108	191	85
2.1	0-100	41	1	0	0	0	1	0	0	0	2	0	0	0	2	0	0	0	1	0	0	0	1	74	2	85	4	0	0	0	4	0	0	0
2.2	100-200	153	25	3260	21	50	16	7383	48	36	23	1512	10	51	24	2399	16	39	16	2038	13	59	21	1610	11	31	0	2801	18	0	34	6115		50
2.3	200-300	230	34	150557	654	21	69	153493	667	14	69	242092	1051	16	67	168005	730	18	62	116391	505	21	43	74409	323	20	50	150357	653	18	46	113698	494	14
2.4	300-400	119	35	81699	685	18	56	95050	797	12	63	143045	1199	13	67	130541	1094	9	29	65561	550	16	25	39008	327	16	26	55106	462	17	25	60257	505	20
2.5	400-500	43	7	29982	698	22	28	18289	426	11	27	24034	559	11	27	30831	717	13	15	11106	258	15	11	20794	484	20	11	15684	365	15	14	12054	280	
2.6	500-600	2	0	0	0	0	1	783	490	85	1	29	18	85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	363	227	
3.1	0-100	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	265	10	85	2	0		0
3.2	100-200	61	23		66	86	9	222	4	59	12	584	10	37	13	489	8	72	5	870	14	72	4	295	5	38	8	62	1	67		21767	356	
	200-300	83	50		150	31		136155	1646	98		33372	404	48	33		303	26		15580	188	44		39901	482	47		25710	311	73		17690	214	
	300-400	35	50	44459	1270	35	25	29951	855	59		22089	631	32	35	26424	755	24		12890	368	37		19272	550	27	10		526	40	14	40996	1171	
3.5	400-500	12	8	5501	458	45	3	62	5	31	2	2749	229	46	4	8491	707	107	3	1381	115	57	3		212	31	1	9058	754	85	1	164		85
3.6	500-600	2	4	372	179	74	3	306	147	120	1	686	330	85	6	276	133	52	2	6	3	141	2	338	163	50	0	0	0	0	3	434	208	
4.1	0-100	13	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	0	1	787	62	85	1	12	1	85	0	0	0	0	1	23		85
4.2	100-200	75	2	50.	8	126	10	462	6	75	6	218	3	70	11	0	0	0	11		20	83	11	3331	44	65	11	1021	14	45	14	2171		41
	200-300	119		22445	188	40		33658	282	35		72137	604	26	26		236	39		55148	462	22		179029	1500	20	25	181147	1518	20		155111	1300	
4.4	300-400	34		13596	398	43		12213	357	38		12211	357	79	9	9586	280	43		21229	621	30		12464	365	33	7	40390	1181	34		33948	993	
5.1	0-100	188	14		0	0	28	44	0	82	54	2	0	101	35	0	0	0	27	0	0	0	3	100	1	42	26	424	2	78	25	9		44
5.2	100-200	71	15		14	94	19	2567	36	52	23	0	0	0	20	1327	19	40	19		12	76	11	1055	15	51	20	3487	49	58	21	447		76
	200-300	40	11		963	13		33817	843	26		37384	932	20		25316	631	20		19033	474	18		22939	572	35		46218	1152	28		23519	586	
	300-400 0-600	25 1504 (8	8596 457078	343	0 9		12009 578834 (480	30		18413 544592 (736	37		16229 507122	649	18		15382 368792 (615	32		21988 473949	879 0 315 0	24		10524 596776 (421 397 (51		15086 547344 0	603	

Table 2. Indices (ktons) of annual mean biomass from survey 1: The Norwegian shrimp survey 1982-2004; survey 2: The Russian shrimp survey 1984-2002 and 2005; and survey 3: The joint Norwegian-Russian ecosystem survey since 2004.

Year	Survey 1	Survey 2	Survey 3
1982	327	-	-
1983	429	-	-
1984	471	661	-
1985	246	468	-
1986	166	399	-
1987	146	346	-
1988	181	233	-
1989	216	603	-
1990	262	1028	-
1991	321	1192	-
1992	239	876	-
1993	233	892	-
1994	161	404	-
1995	193	248	-
1996	276	441	-
1997	300	765	-
1998	341	576	-
1999	316	966	-
2000	247	800	-
2001	184	468	-
2002	196	980	-
2003	212	-	-
2004	151	-	365
2005	-	656	527
2006	-	-	605
2007	-	-	474
2008	-	-	354
2009	-	-	424
2010	-	-	597
2011	-	-	547

Table 3 Estimated biomass, abundance and mean weight of the total and fishable (>16 mm cpl) stock and of recruits (13-16 mm cpl). Demografic data 2009-11 not analysed.

		Bioma	ss (ktons)			Abundand	ce (#10 ⁹)		Mean weight (g)					
Year	Total	Fishable	Recruites	CV (%)	Total	Fishable	Recruites	Total	Fishable	Recruites				
2004	365	261	97	9	98	47	44	3.73	5.54	2.21				
2005	527	446	78	22	121	85	33	4.35	5.26	2.38				
2006	605	517	85	8	135	97	35	4.48	5.34	2.45				
2007	474	426	46	7	90	71	17	5.27	6.02	2.67				
2008	354	317	34	9	69	52	14	5.14	6.05	2.46				
2009	424	-	-	10	-	-	-	-	-	-				
2010	597	-	-	9	-	-	-	-	-	-				
2011	547	-	-	9	-	-	-	-	-	-				

Fig. 1 Sampling grid used for the 2011 Norwegian-Russian ecosystem survey in the Barents Sea.

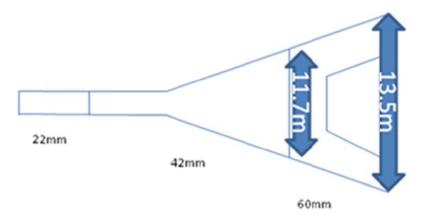


Fig. 2 Schematic drawing of a Campelen 1800 survey bottom trawl with 22 mm mesh size in the cod-end, 42 mm in the mid-section, and 60 mm in the trawl opening. The width of the trawl opening (11.7 m) and wing spread (13.5 m) is also indicated.

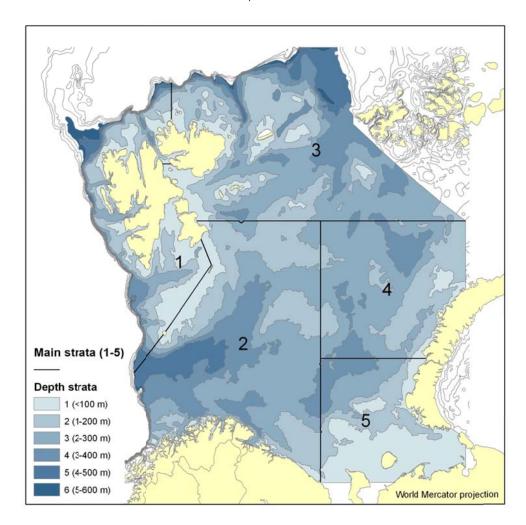


Fig. 3 The survey stratification scheme. Each stratum is given a code for [main area]+[depth stratum within]; e.g. [1.3] indicates main stratum = 1 and depth stratum = 3, i.e. covering depths from 201 to 300 m (see also Table 1).

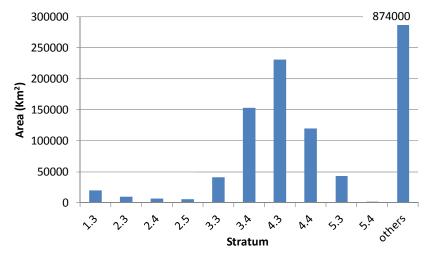
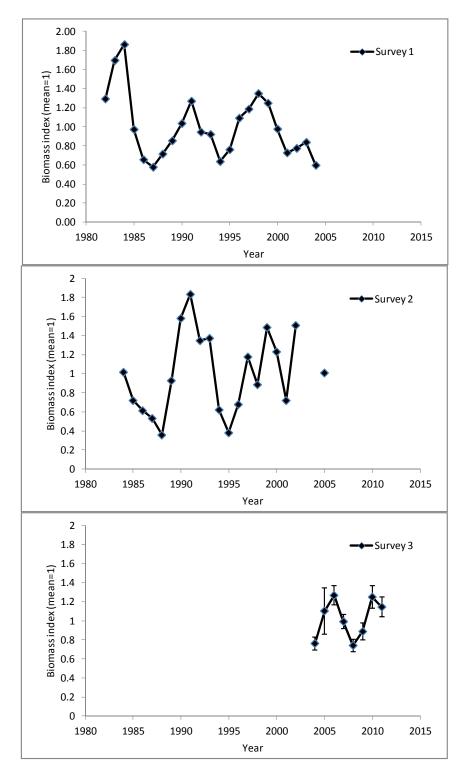
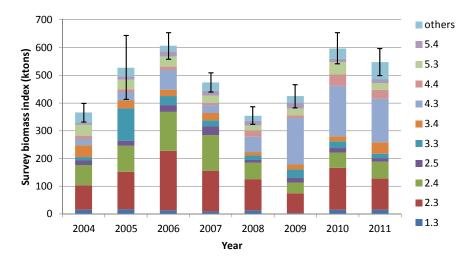




Fig. 4 Areas of the 10 most important strata (code: see Table 1 and Fig. 3 for definition).

Fig. 5 Indices of annual mean biomass from survey 1: The Norwegian shrimp survey 1982-2004; survey 2: The Russian shrimp survey 1984-2002 and 2005; and survey 3: The joint Norwegian-Russian ecosystem.

Fig. 6 Estimated mean biomass by year and strata (code: see Table 1 and Fig. 3 for definition). Error bars indicate +/- one Standard Error of the overall estimate.

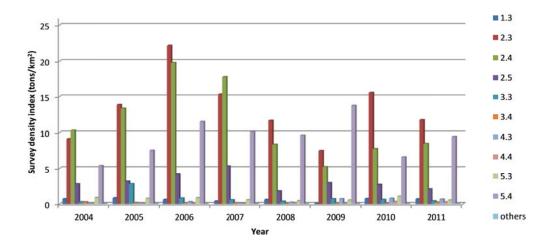
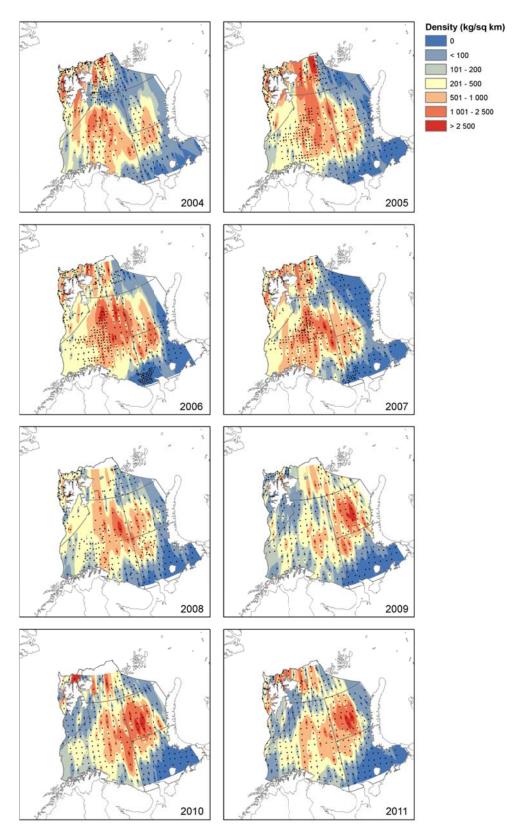
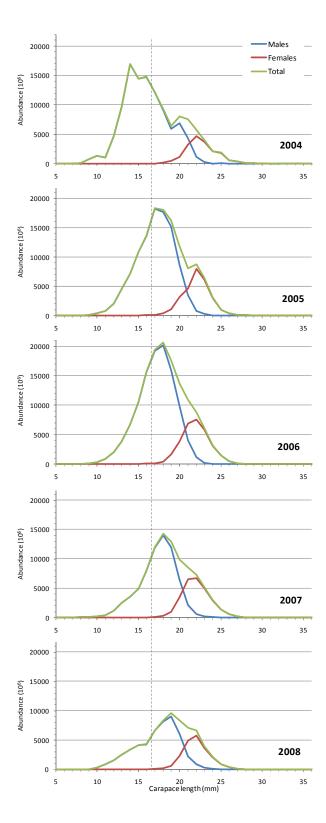




Fig. 7 Estimated mean biomass density by year and strata (code: see Table 1 and Fig. 3 for definition).

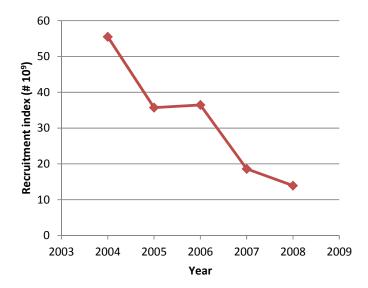

10

Fig. 8 Shrimp density 2004-2011 from *inverse distance weighted* interpolation (e.g. Fisher *et al.*, 1987) between trawl stations (black dots) (Europe Albers Equal Area Conic projection).

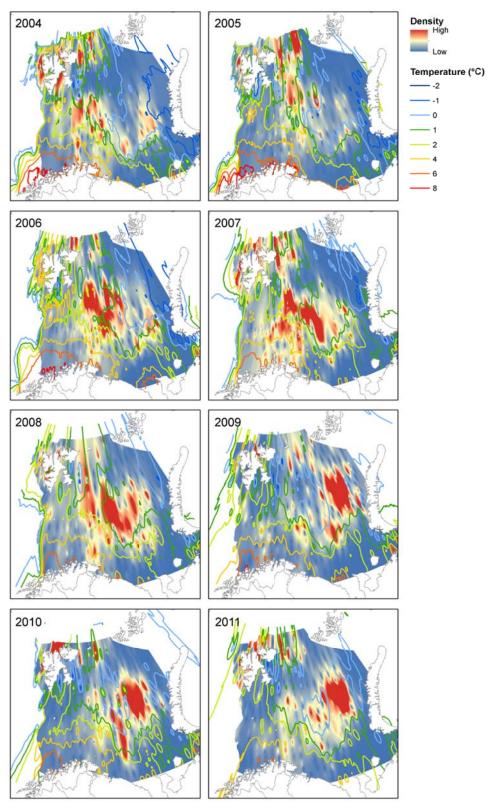


Fig. 9 Shrimp in the Barents Sea: overall size distribution of males, females and total 2004-2008. (No data for 2009-11)

Fig. 10 Index of recruitment: estimated mean abundance of shrimp at size 13-16 mm cpl 2004-2008. (No data for 2009-11).

13

Fig. 11 Bottom temperature contour overlays from ecosystem surveys 2004-2011 on shrimp density distributions as in Fig. 7.