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Abstract 

 

Some ecological indices were calculated from the data obtained in the research surveys conducted by Spain in 

NAFO divisions 3NO between the years 2002 and 2011. These indices were calculated for individual populations 

(intrinsic population rate of growth and mean length) and for all the community (ABC curves, indices about faunal 

diversity, proportion of non-commercial species, mean length in community and size spectra). We use the data of 

twenty five species caught in the survey along the years, included Northern shrimp (Pandalus borealis). The data of 

Northern shrimp, capelin (Mallotus villosus) and Northern sand lance (Ammodytes dubius) have a great influence in 

the value of the indices, as their abundance is very high in relation to their contribution to the biomass. The indices 

present a general stable pattern with a slight improvement in recent years. After two decades of moratorium, 

yellowtail flounder (Limanda ferruginea) seems to be recovered and other important commercial species as Atlantic 

cod (Gadus morhua) and American plaice (Hippoglossoides platessoides) begin to recover in the South of the Grand 

Banks. 

 

Introduction 

 

 

It has been long recognized that single-species-based fisheries management approaches should be informed by 

multispecies and/or ecosystem-based approaches that place the species being managed in the broader context of the 

ecosystem (environmental, ecological and socio-economic). This line of thinking has become evident in several 

international conventions and agreements. During the past decade, there has been a strong movement towards the 

ecosystem approach to fisheries (EAF) worldwide.  

 

One approach to integrate ecosystem-level information is the use of carefully selected and appropriate indicators to 

translate ecosystem impacts and changes into management measures that can be assessed for their effectiveness. To 

take forward the work that was completed in 2004 by the SCOR/IOC Working Group on Quantitative Ecosystem 

Indicators (Cury and Christensen, 2005) the IndiSeas Working Group was established, under the auspices of the 

Eur-Oceans European Network of Excellence (NoE), to look at “EAF Indicators: a comparative approach across 

ecosystems”(Shin and Shannon, 2010).  

 

In spite of the grateful necessity of the EAF for improving the exploited resources (ICES, 2000; FAO, 2001), few 

attempts have been undertaken status of ecosystem by metrics indicators in the Northwest Atlantic (Zwanenburg, 

2000; González-Troncoso and Paz, 2007; Pérez-Rodríguez et al., 2012, Pérez-Rodriguez, 2012)  
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Many indicators targeting various components of Ecosystem have been developed, and used based on experience of 

more or less explicit assumptions, stemming from diverse ecological theories. Several studies have carried out 

critical revisions (Rochet and Trenkel, 2003) of the indicators of the impact of the fishing in the ecosystems (Rochet 

and Trenkel, 2003; Fulton et al., 2004; Shin et al. 2010). Others provide the usefulness and relevance of size based 

indicators (SBIs) to EAF (Yunne-Jai Shin et al., 2005) and some papers present the performance in indicators 

derived from abundance estimates for detecting the impact of fishing on a fish community (Trenkel and Rochet, 

2003; Houle et al., 2012 ). 

 

Newfoundland Shelf had supported one of the world´s greatest fisheries. Many stocks were decimated. Annual 

landings of all groundfish species declined sharply in the early 1990s. Many ground fisheries, including Atlantic 

cod, were closed in 1992. Changes in abundance, mean size and biomass are not restricted to commercial species; 

non commercial species have also shown declines (Haedrich and Barnes, 1997; Kulka, 1996; Kulka, 2004). Over-

fishing, predation, changes in prey availability and environmental factors have all been pinpointed as possible causes 

for the observed declines in size and abundance of demersal species.                

 

The best known example of decline is the Northern Atlantic cod, but this is only one of many species that is likely at 

all time historic low levels of abundance, including potentially valuable commercial species such as redfish 

(Sebastes spp.), haddock (Melanogrammus aeglefinus), and American plaice, pelagic fishes, especially capelin, and 

also species of lesser or no commercial importance. In the early years of the 21st century, the fishery has become 

dependent on snow crab (Chionocetes opilio) and Northern shrimp. Increased abundance in these species during the 

1990s comprises a marine ecosystem regime shift likely caused by a change in oceanographic climates compounded 

by a reduction in predators, in particular cod (Rose, 2003). 

 

Numbers and biomass decreased and for both target and non-target species mean size in the 90's has dropped 

dramatically from what it was in the early 80's. The decline in size results from the removal of the larger (and 

presumably older) individuals with the result that the population structure has been fundamentally changed. The 

trend of decreasing mean size over time is not an isolated occurrence on the Northeast Newfoundland and Labrador 

shelf, but is also observed in the groundfish community off west Greenland during a similar time period (Haedrich 

and Barnes, 1997; Hutchings, 2005).  

   

Up to the present mainly studies related to Southern Gran Banks have been published at the species level, so much 

of their biology. Status commercial stocks has been analyzed as: Atlantic cod (Power et al., 2010), American plaice 

(Dwyer et al., 2009), Greenland halibut (Reinhardtius hippoglossoides) (Healey, 2009), yellowtail flounder (Parson 

et al., 2008), thorny skate (Amblyraja radiata) (Simpson et al., 2012); snow crab (Boudreau et al., 2011) and non 

commercial species as wolffishes (Anarhichidae) (Kulka et al., 2004). Also some biological traits of commercial 

species were studied (Morgan et al., 2011; Morgan et al., 2012) or species interactions (Lilly et al., 2000) and some 

ecological approach were published, e. g.: fish pattern distribution and assemblages (Baker et al., 2001); or fishing 

impact (Bailey et al., 2009; Baker et al., 2009). But they have not been developed attempts in order to perform 

indicators at population and or community level to measure the impact of the fishing in the ecosystem status as 

whole. The persistence and variation in the demersal assemblages in NAFO divisions 3NO were studied by 

Nogueira et al. (2012). 

 

The Spanish Administration has performed a multi-species bottom trawl survey on Southern Grand Banks in May-

June since 1995 (NAFO Regulatory Area Div. 3NO) (Figure 1) (Paz et al., 2002). Here, we use data from this 

survey for the period 2002-2011 to estimate for first time several ecological indexes in the NAFO Divisions 3NO. 

During 1988-2002, survey biomass indices indicated a shift in the predominant groundfish species from American 

plaice and Atlantic cod to yellowtail flounder and redfish. Our objective is to contribute to the diagnosis of the 

general tendency of the ecosystem status in this area. 

 

Material and methods 

 

Material 

 

We used data from the Spanish Survey conducted by the Instituto Español de Oceanografía (IEO) to estimate 

abundance and biomass of demersal resources in the Div. 3NO of the NAFO Regulatory Area. This survey has been 

carried out every year since 1995 in late spring (May-June). From 1995 to 2001, it was conducted on board the C/V 
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Playa de Menduiña using bottom net type Pedreira and, since 2002, the R/V Vizconde de Eza has replaced the 

former vessel in conducting surveys using a Campelen type bottom trawl. In 2001 a comparative survey between the 

two vessels was made in order to transform the historic time series into the new vessel index, making 92 paired 

hauls. The survey indices of the most important species were transformed to use the whole time series in the 

assessments of these species. For details of the indices transformation, see Paz et al., 2002. As in this work species 

that are not usually assessed have been used, the transformation of their indices is not available. For this reason we 

used data from 2002 to 2011. Hauls were made following the stratification charts described in Bishop (1994). Sets 

were allocated in accordance with the area of the strata, with a minimum of two planned hauls per stratum. Trawl 

positions were chosen randomly. The sampling unit consisted in 30-minute hauls at a speed of 3.0 knots using a 

Campelen 1800 otter trawl gear. The mesh size was 44 mm for the net and 12 mm for the cod end. The mean 

horizontal opening was 26 m and the vertical opening was 4.1 m. The otter trawl was monitored using a Scanmar net 

control system. For temporal series details see Paz et al. (2002). Around 120 valid hauls are made each year. In each 

haul all the individuals caught are systematically sorted by species and the length distribution is obtained (González-

Troncoso et al., 2004). The mean of the initial and final depth has been used to define the bottom depth of each haul. 

The mean depth varies from 38 to 1460 m. A total of 1160 hauls were made in the survey between 2002 and 2011 

(Table 1 and Figure 1). 

 

Twenty five species were selected in order to estimate several indices (Table 2). It was considered their importance 

in occurrence, biomass and abundance as the available data of each of them. The goal of the survey data is that they 

consisted of commercial and non-commercial species, but they were potentially dominant species in a given region, 

or potential forage for other species. We considered 22 demersal species, one pelagic species (capelin), one 

mesopelagic genus (redfish)
1
 and a shrimp (Northern shrimp). The species Sebastes marinus, Sebastes mentella and 

Sebastes fasciatus were recorded together as redfish. These 25 species amounted more than the 91% of the total 

catch in the period studied. All strata were sampled with sufficient intensity to assess their composition. 

 

Methods 

 

The data used for each species are biomass, abundance and numbers by length. These indices were calculated by the 

swept area method (Cochran, 1997) assuming catchability factor of 1 from the catches and the numbers, 

respectively, for each species.  

 

Different ecological indexes have been proposed in the literature (ICES, 2005) although not all are sustained in a 

theoretical base (Rochet and Trenkel, 2003).    

 

We use indicators for species and for the community, based in the data of the 25 selected species, in order to try to 

measure the impact of fishing in the whole community. In Tables 3 and 4 we present a resume with all the models 

used and their characteristics. 

 

Preliminary analyses indicate that Northern shrimp, capelin and Northern sand lance have a different habitat and/or 

very little size/individual in relation to the other species, so different catchability. Those species have a great 

influence in the total abundance with regard to biomass. Some indices more sensitive to numbers could suffer great 

changes with the inclusion or not of these species in their calculation. For these indices, we made two analyses, one 

with all the species and another one without one or three of these species.  

Population indicators 

 

 Abundance and biomass indices 

 

Abundance and biomass for all species were estimated by the swept area method (Cochram, 1997). 

 

                                                 
1
 There are three redfish species in the study area, Acadian redfish (S. Fasciatus ), deepwater redfish (S. Mentella) and golden redfish ( S. 

Marinus). Due to the difficulty of visual identification of different species, the catches are usually reported by genus as redfish (Sebastes spp). In 
NAFO, the Acadian redfish and deepwater redfish are managed as an only species and golden redfish is not yet regulated.  
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Intrinsic population rate of increase 

 

The intrinsic population rate  ir  is estimated using annual abundance estimates. The population dynamics model 

underlying this indicator is the following one: 

    

( ) ( 1) ir

i iN t N t e   

 

where ( )iN t  is the abundance of the species i  in the year t  

 

This model can be linearised by taking logarithms of both sides (Table 3, eq. 1): 

 

   
,log( ( ))i i i i tN t rt     

 

As the log-transformation is also applied to abundance estimates, the transformation stabilizes variances and justifies 

the use of standard regression techniques for estimating r as the slope. For our study we use as estimation model a 

simple linear regression. Taking r=0 as the reference point assumes that without any noticeable impact of fishing the 

population would be stable although randomly varying between years. 

 

Mean length in population 

 

With the aim of knowing the health of each species, we analyse the progress of the mean length in population, 

meanL . A linear regression was adjusted to the data to know if a variation in the length distribution has occurred 

(Table 3, eq. 2). If the cero is among the 95% confidence interval, it is assumed that without any noticeable impact 

of fishing the population would be stable although randomly varying between years. 

Community indicators 

 

ABC curves 

 

Abundance biomass comparison (ABC) curves is a very used indicator in the marine ecology literature (Warwick, 

1986).  

 

ABC curves are the combined k-dominance curves for species biomass and numbers. They have a theoretical 

background in classical evolutionary theory of r- and k-selection. In undisturbed states, the community is supposed 

to be dominated by k-selected species (slow-growing, large, late maturity) and the biomass curve lies above the 

abundance curve. With increasing disturbance, slow-growing species can not survive, the system is increasingly 

dominated by r-selected species (fast-growing, small, opportunistic), and the biomass curve will be below the 

abundance curve (Blanchard et al., 2004, Yemane et al., 2005). The difference between the two curves is given by 

the W-statistics, which represents the area between them and takes the following form: 

 

1 1 1
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jb is the biomass of the species j , so 
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  is the cumulative biomass  
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ja is the abundance of the species j , so 

1

i

j

j

a


  is the cumulative abundance 

 

S  is the total number of species 

 

In order to make the calculation, the species were ranked in decreasing order of abundance.   

 

Faunal diversity 

 

Species diversity is classically assessed with the species richness S , the Shannon-Wiener diversity index H and 

the Pielou evenness index J , calculated as follow (Blanchard et al., 2004): 

 

S  is the number of species 

1

log
S

i i

i

H p p


  , where ip  is the abundance or biomass ratio of the species i  

log

H
J

S
  

 

The diversity indices N  of Hill (1973) and D  of Simpson were also assessed. The first is less sensitive to 

dominant species and the second to the sampling effort that the previous indices: 

 

exp( )N H  

2

1

1
S

i

i

D
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Those indices were calculated with abundance and with biomass data.  

 

Another reasonable index of ecological stress, derived in this case of the idea of the ABC curves of comparing 

abundance and biomass, is the Shannon-Wiener evenness proportion
 SEP

index, calculated as McManus and 

Pauly (1990): 

 

biomass biomass

abundance abundance

J H
SEP

J H
   

 

Warwick (1986) stays that under severe stress, community biomass will be more evenly distributed among species 

that numbers of individual are. So, in the case of non-stressed communities, the SEP index will have no trend along 

the time.   

 

Proportion of non-commercial species 

 

The relative importance of non-commercial species in the community is expressed in terms of either abundance or 

biomass (Table 4, eq. 1): 

 

ˆ ˆ( ) ( )
,

ˆ ˆ( ) ( )

n nB t N t

B t N t
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where  

ˆ ( )nB t  is the estimated biomass of all non-commercial species 

         ˆ( )B t  is the estimated biomass of all commercial species  

ˆ ( )nN t  is the estimated abundance of all non-commercial species 

ˆ ( )N t  is the estimated abundance of all non-commercial species 

 

Under the impact of fishing, this proportion is expected to increase. The relationship of the proportion of non-

commercial species with time is modelled by logistic regression (general linear model (GLM) with binomial 

distribution and logit-link function), where time is the explanatory variable. A positive slope is taken to suggest a 

significant impact of fishing (Trenkel and Rochet, 2003) 

 

Mean length in community 

 

We calculate the mean length in the community by confounding the lengths of all the species except Northern 

shrimp (Table 4, eq. 2). Fishing is expected to shift the distribution to smaller lengths. As in the community there are 

species with different growth, and in order to avoid the influence of recruitment and outlier lengths, we use only the 

lengths between the 5
th

 and the 95
th

 percentile for each species to calculate the mean (Shin et al. 2010). 

 

Size spectra 

 

To calculate the size spectra, we used abundance estimates at length in 5-cm length classes, with all the species 

confounded except Northern shrimp. The smallest length class observed and used for the annual size spectra was 0-5 

cm. The largest length class was 156-161 cm. These classes were used as a compromise between the desired 

precision of abundance estimates and the number of length classes available to fit the relationship (Trenkel and 

Rochet, 2003; Munyandorero, 2006). The size spectra is usually represented as a relationship between natural log of 

abundance numbers versus natural log of the mid-length of each length class. The inspection of the scatter points 

suggested that the quadratic model was appropriate to represent the annual size spectra across the whole observed 

length ranges (Table 4, eq. 3). 

 

Let i (i = 1,…,k) be the length class and Li and Ni the corresponding mid-length and total number for all fish species 

recorded, respectively. The inspection of the scatter points suggested that the quadratic functions were appropriate to 

represent the annual size spectra across the whole observed length ranges: 

 

ni = α + βli + γl i
2
 + εi    

 

where ni = Ln (Ni), li = Ln (Li), α, β and γ are parameters (α: intercept; β: linear term; γ: curvature term) and εi the 

residual error terms assumed to be normally distributed with 0 mean and variance σε
2
. Such a representation (i.e., ni 

versus li) was chosen because it was applied to many fish communities and, hence, facilitates comparisons.  

 

Results 

 

Population indicators 

 

Abundance and biomass indices  

 

Considering all species together (Figure 2), the indices of abundance and biomass increase due to the improvement 

of the status of three commercial stocks: yellowtail flounder, Atlantic cod and redfish. Thorny skate (Amblyraja 

radiata) and Northern shrimp decrease. Greenland halibut shows variability with increment last three years (Figure 

3). 

 

Intrinsic population rate of increase 

 

Increase rate estimates for nineteen species indicated that there was no evidence to reject the null hypothesis of a 

zero increase rate, so the population would be stable. Whereas three populations were significantly increasing 
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(yellowtail flounder, Atlantic cod, redfish), three species were significantly decreasing (thorny skate, Northern 

shrimp, Moustache sculpin (Triglops murrayi)). Note that only Moustache sculpin is not a commercial species 

(Table 5). 

 

Mean length in population 

 

The mean of the length remains significantly stable along the years for eighteen species of the twenty five species 

(Table 6). For one species, black dogfish (Centroscyllium fabricii), the mean decreases, and increases only for five 

species, witch flounder (Glyptocephalus cynoglossus), yellowtail flounder, Roughhead grenadier (Macrourus 

berglax), Greenland halibut and Roundnose grenadier (Coryphaenoides rupestris). It is interesting to note that 

yellowtail flounder has also an increasing intrinsic population rate. 

Community indicators 

 

ABC curves 

 

We present the results for all species and for all species except Northern shrimp, capelin and Northern sand lance. In 

all years for all species, the abundance curve lies above the biomass curve, so the W statistic is negative, showing a 

slow increasing. Without Northern shrimp, capelin and Northern sand lance, curves of biomass and abundance are 

closely coincident. In 2003 and 2008 they intersect. W- statistics has very small negative trend along the years with 

higher values than those found in the previous analysis with all species (Figures 4a, 4b and 5).  

 

Faunal diversity 

 

Table 7 (A and B) shows the results of the diversity indices calculated. In this case we calculated the indices with all 

the species and the indices without Northern shrimp, capelin and Northern sand lance, in order to know the impact 

that these three species have in the community. In general, the impact of this three species is not too high, less in 

biomass than in abundance. Generally, the diversity is higher for biomass and lower for abundance when we use all 

the species, but the trend is the same in all the cases, with a slight decrease in the indices along the years. Diversity 

of biomass is less with all species and higher for abundance except the last three years. 

 

The results of the index SEP can be seen in Figure 6. As we can see, when Northern shrimp, capelin and Northern 

sand lance are eliminated, SEP values do not present trend along years until 2009.   

 

Proportion of non-commercial species 

 

A list of the species considered commercial or no commercial is in Table 2. We made the analysis for all the species 

and without Northern shrimp, capelin and Northern sand lance. Ratio values became smoothed when the three 

species were eliminated. In all cases the ratio decreases (Figure 7). 

 

Mean length in community 

 

The mean population length without Northern shrimp and without Northern shrimp, capelin and Northern sand lance 

has decreased in the period studied (Figure 8). 

 

Size spectra 

 

All size spectra showed regular decreasing patterns generally indicative of high fish numbers in smaller sizes and 

viceversa in large sizes (Shin, 2000; Munyandorero, 2006) (Figure 9). They were rather curvilinear and well fitted 

by quadratic functions, with R
2
 varying between 0.95 and 0.98.  

 

Analysis of size spectra without Northern shrimp, capelin and Northern sand lance only remove small size 

individuals peaks (Figure 10). On the other hand, large fish observed in 2002 are removed and appears again in 

2006, 2007 and 2008. Since 2009 large fish are again removed. 
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It must be noted in the graph that, if we consider only the larger sizes, the scatter points seem to fit a linear line. The 

size spectra is usually described by a decreasing linear function, but irregularities may occur, particularly among the 

smaller sizes, causing a curvature in the spectrum (Munyandorero, 2006).  

 

Discussion 

 

There are many studies that try to explicate the effect of fishing in individual populations or, more and more, in 

communities, trying to contribute to the development of an ecosystem approach in the evaluation of fisheries. But it 

must be noted that the majority of the ecosystem indicators are sensitive but not specific to fishing impacts (Shin et 

al., 2005). It has been shown that the relationships between diversity, stability and stress are far very complex and 

difficult to explain. 

 

From the above analysis we can conclude that the performed indices seem to be more or less in accordance. In the 

case of population indices, the mean length and the intrinsic population rate, the vision in general is that the 

community, except for some species, remain rather stable or improve in the analyzed decade. The community 

indices are in general in accordance with the fact that the community is stable or a bit improving last years for three 

commercial species since the moratoria of 1992. This is the case for Atlantic cod, the main species collapsed, 

although it has not reached historical levels (Nogueira et al., 2012). Yellowtail flounder and redfish show an 

increasing intrinsic population rate and are the most abundant species in the period studied. This may be because 

since the collapse yellowtail flounder has replaced Atlantic cod in shallower depths, and redfish has been increasing 

since the mid. 2000’s in intermediate depths and was the most dominant species in that period (Nogueira et al., 

2012). Two commercial species, thorny skate and Northern shrimp, decreased. The first one can be attributed to 

impact of fishing, currently there is a fishery in this area, and the second one almost disappears last years (Figure 3), 

probably affected by the recent increasing in the sea temperature. Mean length of population increases for five 

commercial “Bigger slope species” is for Greenland halibut, which notably increases its biomass and abundance last 

years (Figure 2). 

 

Results for ABC curves and W-statistics with all species showed a disturbed state of the community. When Northern 

shrimp, capelin and Northern sand lance were eliminated from the analysis a moderate disturbance can be observed, 

that was higher last three years due to increment of redfish biomass (Figure 3). Those results are similar with those 

found in Flemish Cap by González-Troncoso and Paz (2007). Although with all the species the trend is positive, that 

could mean a general community improving, without the three species that more contribute to the abundance the 

general trend is negative, although with a smaller value, which means that the community is not in a good health 

(because the abundance is above the biomass) and that it seems not to be recovered (because of the negative trend). 

 

Lower diversity in 2009 and 2011 for abundance without Northern shrimp, capelin and Northern sand lance  may be 

due to a very high abundance of redfish. 

 

Both ratio of abundance and biomass for non commercial and commercial species suggested improvement of 

commercial species, but probably due specially to the increase of redfish last years. Similar results were found in 

Flemish Cap by González-Troncoso and Paz (2007). 

 

Results of the mean length of community indicate that fishing shifts the distribution to smaller lengths or an increase 

of individuals of small size due to recruitment. Mean length of community with all species is lower in 2007 and 

2009 because those years the abundance of capelin is very high due to the recruitment. Trend was negative when 

Northern shrimp, capelin and Northern sand lance were eliminated because proportion of these species is much 

higher last years. 

 

Changes in the curvature term in size spectrum (Figure 9) respond to fishing. They usually decrease with increasing 

fishing pressure and removals of large fish (Shin, 2000; Munyandorero, 2006). But the linear trends have not yet 

been given any fishery or biological interpretation. In the other hand, changes in the intercept followed variations in 

total abundance and biomass (Trenkel and Rochet, 2003). During the studied period we can observe the cyclic effect 

of fishing affecting the presence or not of large fishes.  

 

The presence of species that have a high abundance in regards to their biomass, as Northern shrimp, capelin and 

Northern sand lance, has strong influence in some of the indices performed. 
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In general, it seems that the community of the South of the Grand Banks was improve in the last years but is not yet 

recovered. The observed trends in community metrics can be attributable to the effects of fishing and the regulation 

in the area.  

 

It is clear that not only fishing affects a marine community. They may be more factors such as environment, 

predation, migration... In addition, in this work we study only one part of the ecosystem of the Grand Banks. And 

we do not study all the community of the Grand Banks, only twenty five species, of which twenty four are fishes. 

Surely, there are more interactions between another species, fishes and not fishes, that we are not being studied in 

the present paper.  

 

As in Flemish Cap (González-Troncoso and Paz, 2007) no trends can be observed in the South of the Grand Banks. 

The stability of more of the indices in the period of years suggest a new state of equilibrium in the South of the 

Grand Banks due to the collapse of Atlantic cod and the present dominance of the species of genus Sebastes and 

yellowtail flounder (Nogueira et al., 2012). The shift in the abundance and biomass of these species can be due to 

the collapse of the Atlantic cod, which is the more direct competitor as predator in the community for redfish.  

 

By considering the species as a whole, specific trends in our results are smoothed. The fishing effort is not evenly 

distributed throughout the bathymetric range, so the effects of fishing must be different in each assembly identified 

in the area (Nogueira et al. 2012). To observe the differential effects of fishing is necessary to estimate ecological 

indices within each assemblage. In addition, it would be interesting to open new ways of investigation in the area of 

indicators, taking into account another parameters not using here, as can be oceanographic or feeding parameters. 

The present global warming in the area could restore the conditions presented before the cooling trend when was the 

collapse, contributing to the recovery of the ecosystem.  
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Table 1.- Number of trips and hauls made during EU bottom trawl surveys on NAFO 

Division 3NO on board the R/V Vizconde de Eza (2002-2011). 

 

Year Valid hauls Depth range (m) Dates 

2002 125 39-1460 April29-May19 

2003 118 38-1460 May 11-June 02 

2004 120 43-1449 June 06-June 24 

2005 119 49-1402 June 10-June 29 

2006 120 45-1457 June 07-June 27 

2007 110 46-1373 May 29-June 19 

2008 122 40-1435 May 27- June 16 

2009 109 44-1386 May 31-June 18 

2010 95 40-1390 May 30-June 18 

2011 122 44-1430 May 30-June 18 

2002-2011 1160 38-1460 

  

Table 2.- Species included in the analysis 

     

Main Fish Species Common name 

FAO 

Code Status Depth range 

Sebastes sp Redfish RED Commercial 45.5-1460 

Limanda ferruginea Yellowtail flounder YEL Commercial 38-190 

Hippoglossoides platessoides American plaice  PLA Commercial 38-1460 

Gadus morhua Atlantic cod  COD Commercial 40-1355 

Mallotus villosus Capelin CAP Commercial 38-454 

Amblyraja radiata Thorny skate  RJR Commercial 38-1448.5 

Ammodytes dubius Northern sand lance SAN No commercial 38-228.5 

Macrourus berglax Roughhead grenadier  RHG Commercial 119.5-1448.5 

Reinhardtius hippoglossoides Greenland halibut GHL Commercial 43-1448.5 

Antimora rostrata Blue antimora ANT No commercial 215.5-1460 

Syphobranchus kaupii Northern cutthroat eel SSK No commercial 62-1460 

Nezumia bairdi Marlin-spike NZB No commercial 58.5-1460 

Anarichas lupus Wolfish (Catfish) CAA No commercial 44.5-635 

Glyptocephalus cynoglossus Witch flounder WIT Commercial 43.5-1460 

Centroscyllium fabricii Black dogfish CFB  No commercial 232-1456.5 

Coryphaenoides rupestris Roundnose grenadier  RNG  No commercial 225-1460 

Urophycis tenuis White hake HKW  Commercial 58.5-980 

Anarichas denticulatus Northern wolfish  CAB No commercial 56-1434.5 

Lycodes reticulatus Arctic eelpout  LCT No commercial 48.5-1299 

Phycis chesteri Longfin hake GPE  No commercial 168-1355.5 

Bathyraja spinicauda Spinytail skate RJQ No commercial 233.5-1401 

Tryglops murrayi Moustache sculpin TGM No commercial 38-566 

Amblyraja hyperborea Arctic skate  RJG No commercial 312-1448.5 

Anarichas minor Spotted wolfish CAS No commercial 110.5-823.5 

Pandalus borealis Northern shrimp PRA Commercial 44.5-1401 
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Table 3.- Indicators for measuring the impact of fishing on population i 

 

Indicator Description 
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information 
Model Estimation method 
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Table 4.- Indicators and their data requirements for measuring the impact of fishing on a community consisting of S species (i=1,…,S). 
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Table 5.- Intrinsic population rate of increase for all the species 

 

Main fish species r Std  

Confidence interval 

(95%) Test 

Amblyraja hyperborea -0.0816776 0.1014183 -0.3155- 0.15219 r=0 

Ammodytes dubius 0.1322161 0.1395980 -0.1896- 0.4541 r=0 

Anarhichas denticulatus 0.0928833 0.0616966 -0.0493- 0.2351 r=0 

Anarhichas minor 0.0100355 0.0974346 -0.2146- 0.2347 r=0 

Anarhichas lupus -0.0625594 0.0467249 -0.1703- 0.0451 r=0 

Antimora rostrata 0.0313654 0.0250945 -0.026- 0.089 r=0 

Bathyraja spinicauda -0.0770163 0.0467147 -0.1847- 0.0307 r=0 

Centroscyllium fabricii 0.0566189 0.0366091 -0.0278- 0.141 r=0 

Coryphaenoides rupestris -0.0178207 0.0544434 -0.1433- 0.1077 r=0 

Gadus morhua 0.3781126 0.0578315 0.2447- 0.5114 Up 

Glyptocephalus cynoglossus -0.0742480 0.0329023 -0.1501- 0.0016 r=0 

Hippoglossoides platessoides 0.0322768 0.0348685 -0.0481- 0.1126 r=0 

Limanda ferruginea 0.0344602 0.0072099 0.0178- 0.051 Up 

Lycodes reticulatus -0.1182203 0.0656681 -0.2696- 0.0332 r=0 

Macrourus berglax -0.0570993 0.0360892 -0.1403- 0.0261 r=0 

Mallotus villosus 0.1713394 0.1429847 -0.1583- 0.501 r=0 

Nezumia bairdii -0.0038796 0.0325600 -0.0789- 0.0712 r=0 

Phycis chesteri 0.0438445 0.0738317 -0.1264- 0.2141 r=0 

Raya radiata -0.1564018 0.0474555 -0.2658- -0.0469 Down 

Reinhardtius hippoglossoides 0.0513884 0.0423699 -0.0463- 0.149 r=0 

Sebastes sp 0.4524206 0.0755942 0.278- 0.6267 Up 

Synaphobranchus kaupii -0.0082275 0.0480960 -0.1191- 0.1026 r=0 

Triglops murrayi -0.2225120 0.0758047 -0.3973- -0.0477 Down 

Urophycis tenuis -0.2133745 0.1195504 -0.489- 0.0623 r=0 

Pandalus borealis -0.4632840 0.0525763 -0.5845- -0.342 Down 
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Table 6.- Mean length of each species 

 

Main fish species Slope 

Confidence interval 

(95%) Tendency 

Amblyraja hyperborea 1.0693938 -0.4051 - 2.5439 Stable 

Ammodytes dubius 0.0522413 -0.1621 - 0.2666 Stable 

Anarhichas denticulatus -0.3109354 -1.1198 - 0.498 Stable 

Anarichas minor 0.7686557 -0.2067 - 1.7443 Stable 

Anarhichas lupus 0.8511354 -1.4723 - 3.1746 Stable 

Antimora rostrata -0.0148213 -0.4656 - 0.436 Stable 

Bathyraja spinicauda 3.1861227 -0.8804 - 7.2527 Stable 

Centroscyllium fabricii -0.5753861 -0.9491 - -0.2016 Down 

Coryphaenoides rupestris 0.1026182 0.0681 - 0.137 Up 

Gadus morhua 0.3394175 -1.8737 - 2.5526 Stable 

Glyptocephalus cynoglossus 0.4265506 0.0381 - 0.815 Up 

Hippoglossoides platessoides 0.1909602 -0.1308 - 0.5127 Stable 

Limanda ferruginea 0.1855108 0.096 - 0.275 Up 

Lycodes reticulatus -0.5406064 -1.264 - 0.1648 Stable 

Macrourus berglax 0.2976243 0.1495 - 0.4457 Up 

Mallotus villosus -0.3853858 -0.8659 - 0.1252 Stable 

Nezumia bairdii 0.0998061 0.0114 - 0.1881 Stable 

Phycis chesteri 0.3038519 -0.1019 - 0.7096 Stable 

Raya radiata 1.1218434 -0.0786 - 2.3224 Stable 

Reinhardtius hippoglossoides 1.5355846 0.6815 - 2.3896 Up 

Sebastes sp -0.1673774 -0.3941 - 0.0594 Stable 

Synaphobranchus kaupii -0.102664 -0.3456 - 0.1403 Stable 

Triglops murrayi 0.0150006 -0.069 - 0.099 Stable 

Urophycis tenuis 0.2808176 -2.7104 - 3.2721 Stable 

Pandalus borealis -0.0599233 -0.2489 - 0.1291 Stable 
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Table 7.- Diversity index for the years 2002-2011. A) With all the species; B) 

Without Pandalus borealis, Mallotus villosus and Ammodytes dubius. 1) 

Abundance and 2) Biomass.  

 

1) Abundance 

  

 

H J  N  D 

Year  A B A B A B A B 

2002 1.594 1.604 0.495 0.519 4.925 4.973 3.134 3.166 

2003 1.452 1.723 0.451 0.558 4.273 5.599 2.492 3.810 

2004 1.698 1.844 0.528 0.597 5.464 6.323 3.739 4.521 

2005 1.556 1.613 0.483 0.522 4.738 5.019 2.956 3.641 

2006 2.002 1.689 0.622 0.547 7.402 5.415 5.684 4.142 

2007 1.166 1.607 0.362 0.520 3.211 4.990 2.258 3.795 

2008 1.433 1.620 0.445 0.524 4.191 5.054 2.960 3.894 

2009 1.154 0.682 0.359 0.221 3.171 1.979 2.456 1.375 

2010 1.392 1.072 0.432 0.347 4.022 2.920 2.988 1.972 

2011 1.504 0.985 0.467 0.319 4.500 2.677 3.402 1.863 

 

 

                   

2) Biomass 

 

 

H J N D 

Year  A B A B A B A B 

2002 1.755 1.584 0.545 0.512 5.782 4.873 3.514 3.104 

2003 1.868 1.662 0.580 0.538 6.477 5.271 4.162 3.402 

2004 2.000 1.730 0.621 0.560 7.391 5.641 4.868 3.810 

2005 1.902 1.727 0.591 0.559 6.699 5.625 4.885 4.209 

2006 1.872 1.758 0.582 0.569 6.502 5.801 4.626 4.315 

2007 1.932 1.672 0.600 0.541 6.901 5.324 4.937 3.910 

2008 1.977 1.726 0.614 0.558 7.223 5.616 5.083 4.010 

2009 1.605 1.401 0.499 0.453 4.976 4.061 3.044 2.615 

2010 1.657 1.484 0.515 0.480 5.242 4.411 3.585 3.130 

2011 1.553 1.466 0.482 0.474 4.726 4.332 3.416 3.273 
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Figure 1.- Chart showing the hauls position in the Spanish Spring Survey in Div. 3NO 

in the whole period (2002-2011). 
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Figure 2.- Abundance and Biomass estimates for all species from Spanish bottom trawl 

survey 3NO. 2002-2011. 
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Figure 3.- Abundance and Biomass estimates for the main species from Spanish bottom 

trawl survey 3NO. 2002-2011. 
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Figure 4a.- ABC curves for all the species. 
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Figure 4b.- ABC curves for all the species except Pandalus borealis, Mallotus villosus 

and Ammodytes dubius. 
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Figure 5.- Trend of the W-statistic for all the species and all species except Pandalus 

borealis, Mallotus villosus and Ammodytes dubius.  

 

 

 
 

 

Figure 6.- Trend of the SEP-statistic for all species and all species except Pandalus 

borealis, Mallotus villosus and Ammodytes dubius. 
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Figure 7.- Ratio of abundance and biomass of no commercial/commercial species. A) 

Abundance and B) Biomass 
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Figure 8.- Mean length in community comparison all species and without P. borealis, 

M. villosus and A. dubius. 
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Figure 9a.- Scatter plots for the size spectra by year without Pandalus borealis. 
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Figure 9b.- Scatter plots for the size spectra by year without Pandalus borealis, 

Mallotus villosus and Ammodytes dubius. 
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Figure 10.- Scatter plots for the size spectra for all years A) without Pandalus borealis 

and B) without Pandalus borealis. Mallotus villosus and Ammodytes dubius. 
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