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Abstract 

A Bayesian surplus production modelling framework was applied in order to provide a quantitative assessment of 

the North Sea shrimp stock. There were no major problems in model diagnostics. The results indicated that the 

stock declined since 2006 and is now below Bmsy but still above Blim. The estimated risk of stock biomass being 

below Btrigger in 2013 was 21% and there is a 47% risk of the F being above Fmsy. The posterior for MSY was 

positively skewed with a median at 14 ktons and upper and lower quartiles at 11 ktons and 17 ktons.   

 

Background 

The purpose of the study was to investigate the suitability of a biomass dynamic model for the assessment of the 

North Sea/Skagerrak shrimp stock and to provide a basis for management advice. The model was similar in 

structure to the one currently used in the assessment of the Barents Sea- and the West Greenland shrimp stocks 

(Hvingel 2011, Hvingel and Kingsley 2006) and the Greenland halibut stock off East Greenland (Hvingel et al. 

2008). It is based on the general assumption that the production curve of the stock is dome shaped, i.e. population 

growth is logistic.  

 

Predation, although an important source of mortality for shrimp (Hvingel 2006 and references therein), was not 

included as an explicit variable because the available composite predator abundance indices  varied little over time 

and was found not to hold any information regarding shrimp stock dynamics (Hvingel 2005). 

 

A similar investigation was done in 2005 (Hvingel 2005) and in essence concluded that the available data series of 

biomass indices and catch held little information regarding model parameters. For the current study the data series 

has been extended both back- and forward in time and included in the analysis. Informative priors for carrying 

capacity and survey catchability have also been added  

 

Model 

The model was built in a state-space framework (Hvingel and Kingsley 2006, Schnute 1994) with a set of 

parameters (θ) defining the dynamics of the shrimp stock. The posterior distribution for the parameters of the model, 

p(θ|data), given a joint prior distribution, p(θ), and the likelihood of the data, p(data|θ), was determined using 

Bayes’ (1763) theorem: 

 

(1)   ( | ) ( | ) ( )p data p data p    

 

The posterior was derived by Monte-Carlo-Markov-Chain (MCMC) sampling methods using OpenBUGS 

v.3.2.2 (www.openbugs.info/w.cgi/FrontPage; Spiegelhalter et al. 2003; Lunn et al 2009). 
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The equation describing the state transition from time t to t+1 was a discrete form of the logistic model of population 

growth including fishing mortality (e.g. Schaefer (1954), and parameterised in terms of MSY (Maximum Sustainable 

Yield) rather than r (intrinsic growth rate) (cf. Fletcher 1978): 
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K is the carrying capacity, or the equilibrium stock size in the absence of fishing. Bt is the stock biomass. Ct is the 

catch taken by the fishery. 

 

To cancel out the uncertainty of the “catchability” (the parameter that scales biomass indices to real biomass) 

equation (2) was divided throughout by BMSY, (Hvingel and Kingsley 2006). Finally a term for the process error was 

applied and the state equation took the form: 
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where Pt is the stock biomass relative to biomass at MSY (Pt=Bt/BMSY) in year t. This frames the range of stock 

biomass (P) on a relative scale where PMSY=1 and PK (carrying capacity)=2. The ‘process errors’, v, are normally, 

independently and identically distributed with mean 0 and variance 2

v .   

 

The model synthesized information from input priors and four independent series of shrimp biomasses and one 

series of shrimp catches (Table 1). The four series of shrimp biomass indices were: a standardised series of annual 

commercial-vessel catch rates for Danish vessels 1987–2013, CPUEdkt, and Norwegian vessels 2000-2013 

CPUEnort; and two trawl-survey biomass index for 1984–2002, surv1t, and 2006-2013, surv2t. These indices were 

scaled to true biomass by catchability parameters, qdk, qnor, q1 and q2.  Lognormal observation errors, ,,  and ε 

were applied, giving: 

 

 (4) t t texp( )dk MSYCPUEdk q B P 
 

 t t texp( )nor MSYCPUEnor q B P       

  
t 1 t t1 exp( )MSYsurv q B P    

  22 exp( )t MSY t tsurv q B P    

 

The error terms, ,   and ε are normally, independently and identically distributed with mean 0 and variance 2

 , 

2


2

  and 2

 . Total reported catch 1970-2012 and the TAC for 2013 was used as yield data (Table 1) and entered 

into the model as error-free. 

 

Run 1. 

A base run with uninformative priors on all parameters was able to reproduce the point estimates of the input data, 

however with wide confidence limits. The priors of model parameters got somewhat updated, but their posteriors 

had very low precision. This indicated noisy data and/or that the information contained in the data with respect to 

some of the model parameters was relatively low. More information could be added to the model through the 

priors and this was subsequently done in a second run:  

 

Run 2. 

Low-information priors (reference priors) were given to MSY, the process error, σv, and the observation error for  the 

two CPUE biomass index series, σω and ση, as there was little or no information on what their probability 

distributions might look like (Table 2). MSY was given a generously wide uniform prior between 0 and 100 kt. A 

prior for K was constructed based on the estimated K for the Barents Sea stock (Hvingel 2012) and the relative size 

of the two survey areas: 57,000 km
2
 in the North Sea and 1500,000 km

2
 in the Barents Sea. The posterior estimate of 

K for the Barents Sea was accordingly scaled down by approximately 1/27 and used as the prior for the North Sea 

(Table 2). The prior for the stock size in the initial year, P0, was Norm(1.5, 25) a relatively wide distribution 

indicating a higher probability of the stock being above than below Bmsy as the fishery at and prior to that time was 
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comparatively small; in any case, the model showed little sensitivity to the setting of this prior: only the estimated 

biomass trajectory of the first ca. 10 years (1970-1980) would differ, after that they would converge.  

 

The prior distributions for the error terms associated with the survey biomass indices were assigned inverse gamma 

distributions with a mode at 0.2, comparable to the CVs typically found in such surveys. Berenboim et al. (1980) 

estimated a catchability of 0.173 by calibrating trawl catches to the results of a photo survey. This was chosen as 

basis for an informative prior by giving q a lognormal distribution with a median of 0.173 and a variance of 0.3. 

 

 

Convergence diagnostics 

In order to check whether the sampler had converged to the target distribution a number of parallel chains with 

different starting points and random number seeds were analysed by the Brooks, Gelman and Rubin convergence 

diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998) A stationarity test (Heidelberger and Welch 1983) 

was applied to individual chains. If evidence of non-stationarity is found iterations were discarded from the 

beginning of the chain until the remaining chain passed the test.  Raftery and Lewis’s (1992) tests for convergence 

to the stationary distribution and estimation of the run-lengths needed to accurately estimate quantiles were used, 

and finally the Geweke convergence diagnostic was applied (Geweke 1992). A visualisation of the converged chains 

can be seen in Fig. 1. 

 

 

Model check 

In order to check whether the model was a ‘good’ fit to the data, different goodness-of-fit statistics were computed.  

Firstly, I calculated the simple difference between each observed data point and its trial value in each MCMC 

sampling step. The summary statistics of the distributions of these residuals indicated by their central tendency 

whether the modelled values were biased with respect to the observations. 

 

Secondly, the overall posterior distribution was investigated for potential effects of model deficiencies by comparing 

each data point with its posterior predictive distribution (Posterior Predictive Checks; Gelman et al. 1995, 1996). If 

the model fitted the observed data well, the observed data and the replicate data should look alike.  The degree of 

similarity between the original and the replicate data points was summarised in a vector of p-values, calculated as 

the proportion of n simulations in which a sampling of the posterior distribution for an observed parameter exceeded 

its input value: 

N

j j jj 1

1
. (( , ) ( , ))

n

rep obsp value I data data 


    , 

where I(x) is 1 if x is true, 0 if x is false.  Values close to 0 or 1 in the vector p-value would indicate that the 

observed data point was an unlikely drawing from its posterior distribution. 

 

 

Results, model performance 

The sampler was therefore set to do 10 million iterations. Only each 1000
th

 value of the sampled chains for the 

model parameters was stored and used for further analyses in order to remove within chain autocorrelation (Fig. 1). 

After 50 stored iterations the sampler had converged to the target distribution (Fig. 2) leaving 9950 samples for each 

parameter for the final analysis. 

 

Model process error standardised to the estimated relative biomass (Pi) was variable with maximum values around 

20% (Fig. 4) and a serial correlation of 0.24. This indicated that there are factors other than those included in the 

model that affects the dynamics of the stock. These effect are, however, relatively small with a low correlation and 

would have a minor effect on model predictions.  

 

In the Bayesian framework fundamental absence of information in the data will yield posteriors as a copy of the 

input priors.  For the data to carry information on all the parameters of any such model the biomass should vary 

widely both above and below BMSY (Hvingel and Kingsley 2006).  If the available data does not span these 

conditions, problems in fitting stock-production models by any method can be expected (Hilborn and Walters 1992). 

The available time series of indexed stock biomass does not span the range from 0 to K (Fig. 5). Even though the 

conditions for estimation of some parameters are not optimal it may still be possible to get good estimates of 

parameters relevant for management. Fortunately MSY is the easiest single parameter to estimate.  If the range of 
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biomass includes BMSY, good estimates of MSY can be obtained independently of other parameters.  K is notoriously 

difficult to estimate from data alone. 

 

The model was able to produce a reasonable simulation of the observed data (Fig. 3). The probabilities of getting 

more extreme observations than the realised ones given in the data series on stock size were in the range of 0.02 to 

0.98 – few observations was found to lie in the extreme tails of their posterior distributions (Table 4) i.e. the 1988 

Survey1 data point and the 2007 point for Survey2. The CPUE series was generally better estimated than the survey 

series. Otherwise no major problems in capturing the variability of the data were detected. 

 

For the parameters K and P0 the posterior distributions tended to approximate the input priors. The prior for the 

“initial” shrimp stock biomass (P0) was slightly informative giving credit to “low-exploited stock conditions” at the 

start of the series in 1969. Making this prior low-informative by giving P0 a uniform prior between 0 and 2 have 

previously been shown to have little or no effects on the posterior of other parameters in the model – except for the 

first 9-10 years of P (relative biomass). After this period the series converge.  

 

 

Assessment results 

Reference points are as used for the Barents Sea shrimp stock. 

 

Since the late 1980s the stock has varied with a slightly increasing trend until 2006 when it started to decline (Fig 

5+7). The median 2013 level is below Bmsy but above Blim (Table 6). The estimated risk of stock biomass being 

below Btrigger in 2013 was 21% and 7% of being below Blim (Table 6). 

 

The estimated median Fishing mortality has remained close to Fmsy in recent years (Fig. 6). In 2013 there is a 47% 

risk of the F being above Fmsy (Table 6).  

 

The posterior for MSY was positive ely skewed with a median at 14 ktons and upper and lower quartiles at 11 ktons 

and 17 ktons (Table 5).  

 

 

Concluding comments 

The model can reproduce the data, was little serial pattern process errors and can produce reference points, 

projections and risk analyses to guide management. 
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Table 1. Model input data series: Catch by the fishery (Catch 2013=TAC 2013); four indices of fishable biomass – 

two standardized catch rate index series based on fishery data (CPUE) from Denmark (dk) and Norway (nor) 

respectively, a research survey index discontinued in 2002 (Survey 1) and the current survey started in 2006 (Survey 

2). 

 

 

 

 

Catch CPUEdk CPUEnor Survey 1 Survey 2

Year (ktons) (index) (index) (ktons) (ktons)

1970 5.573 - - - -

1971 6.582 - - - -

1972 6.018 - - - -

1973 5.218 - - - -

1974 4.342 - - - -

1975 5.159 - - - -

1976 7.081 - - - -

1977 6.153 - - - -

1978 5.520 - - - -

1979 5.888 - - - -

1980 8.399 - - - -

1981 10.021 - - - -

1982 10.638 - - - -

1983 8.310 - - - -

1984 7.592 - - 17.60 -

1985 12.619 - - 25.18 -

1986 12.821 - - 11.55 -

1987 14.153 1.22 - 18.83 -

1988 12.177 0.99 - 6.83 -

1989 11.249 1.01 - 10.64 -

1990 10.239 1.28 - 12.70 -

1991 11.595 1.42 - 18.40 -

1992 13.081 1.40 - 21.34 -

1993 12.753 1.28 - 17.77 -

1994 11.549 1.40 - 18.50 -

1995 13.361 1.55 - 17.59 -

1996 14.149 1.69 - 24.15 -

1997 15.074 2.06 - 32.02 -

1998 15.504 2.03 - 20.19 -

1999 11.254 1.50 - 17.79 -

2000 11.038 1.42 1.28 17.40 -

2001 11.328 1.45 1.35 24.56 -

2002 12.474 1.76 1.67 24.81 -

2003 13.836 1.79 1.71 - -

2004 15.952 2.33 1.96 -

2005 14.207 1.55 1.83 -

2006 14.268 2.10 1.79 - 19.55

2007 13.552 2.30 2.15 - 37.48

2008 13.554 1.75 2.08 - 19.5

2009 11.542 1.34 1.55 - 14.86

2010 8.333 1.00 1.14 - 10.1

2011 9.049 1.02 1.19 - 8.62

2012 8.834 0.82 1.02 - 6.25

2013 9.500 1.00 1.00 - 7.0
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Table 2. Priors used in the model run 2. ~ means “distributed as..”, dunif = uniform-, dlnorm = lognormal-, dnorm= 

normal- and dgamma = gammadistributed. Symbols as in text.  

 

 

 

 Table 3.  Model diagnostics: residuals (% of observed value) and probability of getting a more extreme observation 

(Pr). 

CPUEdk CPUEnor Survey 1 Survey 2

Year resid (%) Pr  resid (%) Pr  resid (%) Pr  resid (%) Pr  

1984 - - - - 7.04 0.42 - -

1985 - - - - -17.38 0.78 - -

1986 - - - - 28.03 0.17 - -

1987 0.57 0.50 - - -18.39 0.82 - -

1988 -10.54 0.73 - - 62.43 0.02 - -

1989 -3.58 0.59 - - 14.66 0.29 - -

1990 -8.04 0.68 - - 16.11 0.26 - -

1991 -0.82 0.53 - - -4.11 0.59 - -

1992 5.59 0.39 - - -13.21 0.74 - -

1993 7.15 0.36 - - -3.31 0.56 - -

1994 2.85 0.44 - - -2.50 0.55 - -

1995 -0.79 0.54 - - 9.54 0.35 - -

1996 5.35 0.40 - - -7.65 0.64 - -

1997 1.99 0.47 - - -17.79 0.82 - -

1998 -9.15 0.71 - - 14.43 0.29 - -

1999 0.20 0.50 - - 5.85 0.41 - -

2000 -0.87 0.53 11.07 0.32 1.37 0.49 - -

2001 6.70 0.36 15.74 0.26 -21.05 0.86 - -

2002 0.29 0.50 6.74 0.39 -10.84 0.70 - -

2003 0.38 0.51 6.09 0.40 - - - -

2004 -11.62 0.76 6.07 0.40 - - - -

2005 12.53 0.27 -3.77 0.58 - - - -

2006 -5.40 0.63 12.05 0.30 - - -1.79 0.54

2007 2.14 0.47 10.30 0.34 - - -39.45 0.98

2008 7.58 0.35 -8.62 0.66 - - -6.73 0.62

2009 7.29 0.36 -6.37 0.63 - - -6.55 0.62

2010 8.49 0.33 -3.94 0.58 - - 3.76 0.45

2011 0.48 0.51 -13.06 0.75 - - 14.83 0.30

2012 5.84 0.39 -14.11 0.76 - - 34.11 0.13

2013 -5.99 0.65 -5.10 0.60 29.71 0.17

Parameter Prior

Name Symbol Type Distribution

Maximal Suatainable Yield MSY reference ~dunif(1,100)

Carrying capacity K informative ~dlnorm(4.65,3.16)

Catchability survey 1 q 1 informative ~dlnorm(-1.75,11)

Catchability survey 2 q 2 informative ~dlnorm(-1.75,11)

Catchability CPUEdk ln(q dk ) reference ~dunif(-10,1)

Catchability CPUEnor ln(q nor ) reference ~dunif(-10,1)

Initial biomass ratio P 0 informative ~dnorm(1.5,25)

Precision survey 1 1/ κ
2

low-informative ~dgamma(4,0.1125)

Precision survey 2 1/ ε
2

low-informative ~dgamma(4,0.1125)

Precision CPUEdk 1/ ω
2

reference ~dgamma(0.1,0.1)

Precision CPUEnor 1/ η
2

reference ~dgamma(0.1,0.1)

Precision model process 1/ ν
2

reference ~dgamma(0.1,0.1)
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Table 4.  Summary of parameter estimates: mean, standard deviation (sd) and 25, 50, and 75 percentiles of the 

posterior distribution of selected parameters (symbols are as in the text). 

 

 

 

Table 5. Stock status and short term predictions: Upper: stock status for 2012-13. Lower: predictions for 2014 given 

catch options ranging from 6 to 16 ktons.  

 

  

 

 

Mean  sd 25 % Median 75 %

MSY (ktons) 15 5 11 14 17

K (ktons) 192 93 129 158 221

r 0.35 0.16 0.24 0.33 0.44

q dk 0.02 0.00 0.01 0.02 0.02

q nor 0.02 0.00 0.01 0.02 0.02

q 1 0.20 0.04 0.17 0.20 0.23

q 2 0.16 0.03 0.13 0.15 0.18

P 0 1.48 0.20 1.35 1.48 1.61

P 2013 0.72 0.23 0.57 0.75 0.88

 dk 0.15 0.03 0.13 0.15 0.17

 nor 0.20 0.05 0.16 0.19 0.22

 1 0.20 0.04 0.18 0.20 0.23

 2 0.23 0.05 0.19 0.22 0.26

 P 0.26 0.06 0.22 0.25 0.29

Status 2012 2013*

Risk of falling below B lim  (0.3B MSY) 6 % 7 %

Risk of falling below Btrig  (0.5B MSY) 20 % 22 %

Risk of falling below B MSY 91 % 75 %

Risk of exceeding F MSY 43 % 47 %

Stock size (B/Bmsy), median 0.75 0.76

Fishing mortality (F/Fmsy), median 0.93 0.95

Productivity (% of MSY) 94 % 94 %

*Predicted catch = TAC

Catch option 2014 (ktons) 6 8 10 12 14

Risk of falling below B lim  (0.3B MSY) 6 % 6 % 6 % 7 % 7 %

Risk of falling below Btrig  (0.5B MSY) 18 % 20 % 21 % 22 % 24 %

Risk of falling below B MSY 65 % 67 % 69 % 73 % 75 %

Risk of exceeding F MSY 17 % 31 % 47 % 61 % 72 %

Risk of exceeding 1.7F MSY 4 % 10 % 18 % 29 % 39 %

Stock size (B/Bmsy), median 0.84 0.82 0.79 0.76 0.73

Fishing mortality (F/Fmsy), 0.54 0.74 0.96 1.19 1.45

Productivity (% of MSY) 97 % 97 % 96 % 94 % 93 %
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Fig. 1.  Autocorrelation function of values sampled for four selected variables out to lag 50. K is the carrying 

capacity, MSY is maximum sustainable yield, P[42] is the relative biomass in year 2011and sdP is standard error of 

P i.e. the process error. 



10 

 

 

 
Fig. 2.  Three traces (red, green, blue) with different initial values of dour selected variables. K is the carrying 

capacity, P[42] is the relative biomass in year 2011, MSY is maximum sustainable yield and sdP is the 

process error. 
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 Fig. 3.  Observed (solid line) and estimated (shaded) series of the biomass indices. Gray shaded areas are inter-

quartile range of the posteriors. 

 

 

Fig 4- Model process error 
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Fig. 5. Estimated time series of relative biomass (Bt/Bmsy) 1970-2013. The solid black line is the median; 

boxes represent quartiles; the whiskers cover the central 90 % of the distribution. Dashed 

black line represents Blim. 

 

 

  

Fig. 6. Estimated time series of relative fishing mortality (Ft/Fmsy) 1970-2013. The solid black line is the median; 

boxes represent quartiles; the whiskers cover the central 90 % of the distribution. Green line marks Fmsy 
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 Fig. 7.  Estimated annual median biomass-ratio (B/BMSY) and fishing mortality-ratio (F/FMSY) 1970-2013. The 

reference points for stock biomas, Btrigger, and fishing mortality, Fmsy, are indicated by green lines, Blim, by 

green a dotted line. Error bars on the 2013 value are inter-quartile range 
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