Hydrographic conditions off West Greenland in 2013

Boris Cisewski

Thünen-Institut für Seefischerei, Palmaille 9, 22767 Hamburg, Germany

E-Mail: boris.cisewski@ti.bund.de
Tel.: (+49) 40 38905 224
Fax: (+49) 40 38905 263

Abstract

An overview of the atmospheric and hydrographic conditions off West Greenland in autumn 2013 is presented. The large scale atmospheric circulation is described in terms of the North Atlantic Oscillation (NAO) index and annual mean air temperature at Nuuk Weather Station in West Greenland. The NAO index was negative (-1.97) and the annual mean air temperature at Nuuk was -0.3°C in 2013, which was 1.1°C above the long-term mean (1981-2010). The annual sea surface temperature (NOAA OI SST) anomalies for 2013 indicate positive anomalies of the SST in the Northwestern Atlantic and around Greenland. The hydrographic conditions are monitored at two oceanographic NAFO/ICES sections, which span across the western shelf and continental slope of Greenland near Cape Desolation and Fyllas Bank. Two offshore stations at each section have been chosen to document changes in hydrographic conditions off West Greenland. In 2013, the temperature and salinity of the Irminger Sea Water component of the West Greenland Current at Cape Desolation Station 3 was 5.84°C and 34.97, which was 0.12°C and 0.05 above the long-term mean (1983-2010), respectively. The properties of the North Atlantic Deep Water in the deep boundary current west of Greenland are monitored at 2000 m depth at Cap Desolation Station 3. Between 2012 and 2013, the temperature and salinity decreased, but were 0.08°C and 0.01 above the long-term mean. The water properties between 0 and 50 m depth at Fyllas Bank Station 4 are used to monitor the variability of the fresh Polar Water component of the West Greenland current. In 2013, the temperature of this water mass was 0.37°C below the long-term mean and the salinity was 0.45 below its long-term mean, respectively.
Introduction

The water mass circulation off Greenland comprises three main currents: Irminger Current, West Greenland and East Greenland Currents (Figure 1). The East Greenland Current (EGC) transports ice and cold low-salinity Surface Polar Water (SPW) to the south along the eastern coast of Greenland. On the inner shelf the East Greenland Coastal Current (EGCC), predominantly a bifurcated branch of the EGC, transports cold fresh Polar Water southward near the shelf break (Sutherland and Pickart, 2008). The Irminger Current (IC) is a branch of the North Atlantic Current. Figure 2 reveals warm and salty Atlantic Waters flowing northward along the Reykjanes Ridge. South of the Denmark Strait (DS) the current bifurcates. While a smaller branch continues northward through the DS to form the Icelandic Irminger Current, the bulk of the current recirculates to the south and transports salty and warm Irminger Sea Water (ISW) southward along the eastern continental slope of Greenland. It makes a cyclonic loop in the Irminger Sea. South of Greenland both currents bifurcate and spread northward as a single jet of the West Greenland Current (WGC). The WGC carries the water northward and consists of two components: a cold and fresh inshore component, which is a mixture of the SPW and melt water, and a saltier and warmer Irminger Sea Water (ISW) offshore component. The WGC transports water into the Labrador Sea, and hence is important for Labrador Sea Water formation, which is an essential element of the Atlantic Meridional Overturning Circulation. The dynamics of the current is monitored yearly in autumn at two standard ICES/NAFO oceanographic sections across the slope off West Greenland (Figure 3).

Materials and Methods

The German groundfish survey off Greenland is conducted since 1981, aiming at monitoring groundfish stocks in particular of cod and redfish, collecting environmental data and performs ecosystem studies in the area. The monitoring is carried out by the Thünen-Institute of Sea Fisheries (TI-SF) from board of R.V. ‘Walter Herwig III’ and reveals significant interannual and long-term variability of both components of the WGC.

CTD profiler casts were conducted with a Sea-Bird 911plus sonde attached to a 12-bottle water sampler. The hydrographic database consisted of 35 hydrographic stations sampled between October 13 and October 31, 2013, from R.V. ‘Walther Herwig III’. Study area and station locations are shown in Figure 3. For in-situ calibration, salinity samples were analyzed with a Guildline Autosal-8400A salinometer immediately after the cruise. The collected data was interpolated to a 1 m grid in the vertical. If data was missing at the top of a profile, we assumed constant properties from the first measurement (normally 2–5 m) up to the surface.

The sea level pressure (SLP) and its anomalies during the winter months (December through March) were taken from NCEP/NCAR Reanalysis data available from the NOAA-CIRES Climate Diagnostics Centre (http://www.cdc.noaa.gov/). To describe the pattern of SLP over the
North Atlantic we used the Hurrell winter North-Atlantic Oscillation index, which is based on the principal component (PC) time series of the leading EOF of seasonal (December through March) SLP anomalies over the Atlantic sector. Air temperature at Nuuk station (Table 1) on the western coast of Greenland was used to characterize the atmospheric conditions in 2013. Annual and monthly mean values were obtained from the Danish Meteorological Institute (Cappelen, 2013). The climatological mean of this time series were referenced to 1981-2010. Information about sea surface temperature anomalies was provided by NOAA/ESRL Physical Science Division, Boulder, Colorado.

Results and Discussion

Atmospheric conditions in 2013

The variability of the atmospheric conditions over Greenland and the Labrador Sea is driven by the large scale atmospheric circulation over the North Atlantic, which is normally described in terms of the North Atlantic Oscillation (NAO). During a positive NAO strong northwest winds bring cold air from the North American continent and cause negative anomalies of the air temperatures over Greenland, Labrador Sea and Baffin Bay (Hurrell and Deser, 2010). During a negative NAO the westerlies slacken and the weather is normally milder over the whole region. According to ICES standards, I use in this study the Hurrell winter (DJFM) NAO index, which is available at http://www.cgd.ucar.edu/cas/jhurrell/indices.html. In winter 2012/2013, the NAO index was negative (-1.97) describing weaker winds, and milder weather over the North Atlantic Ocean (Figure 4). Figure 5a shows the winter sea level pressure (SLP) averaged over 30 years (1981-2010), mainly dominated by the Iceland Low and the Azores High. In winter 2012/2013, the average SLP field had a fairly typical pattern compared to the long-term mean, however both the Iceland Low and the Azores High were weaker than in the mean pattern (Figure 5b). The resulting positive anomalies in the north and the negative in the south reveal a negative NAO character (Figure 5c). Air temperature at Nuuk was used to characterize the atmospheric conditions in 2013. Annual and monthly mean values were obtained from the Danish Meteorological Institute (Cappelen, 2013). In 2013, the monthly mean air temperatures were higher than the long-term mean for the first four months, while for the rest of the year the monthly temperatures were close to their long-term mean (Figure 6). The annual mean temperature at Nuuk was -0.3°C in 2013, which was 1.1°C above the long-term mean (Figure 7).
Here a short overview of the hydrographical condition west of Greenland during autumn 2013 is presented. The core properties of the water masses of the WGC are formed in the western Irminger Basin where the EGC meets the Irminger current (IC). The EGC transports fresh and cold PSW of Arctic origin. The IC is a northern branch of the Gulf Stream, which makes a cyclonic loop in the Irminger Sea and carries warm and saline ISW. After the currents converge, they turn around the southern tip of Greenland, form the WGC and propagate northward along the western coast of Greenland. During this propagation considerable mixing between the two water masses takes place and ISW gradually deepens (Clarke and Gascard, 1983; Myers et al., 2009). There is more than one definition of the water masses carried by the WGC (Clarke and Gascard, 1983; Stein, 2005; Schmidt and Send, 2007; Myers et al., 2009). Here we consider the upper layer down to 700 m water depth and define SPW and ISW following the nomenclature of Myers et al., 2009 (Table 2). The annual sea surface temperature (NOAA OI SST) anomalies for 2013 indicate positive anomalies of the SST in the Northwestern Atlantic and around Greenland (Figure 8). Negative anomalies were observed only along the southeastern coast of Greenland and associated with the East Greenland current.

Standard Cape Desolation and Fyllas Bank sections span across the shelf and the continental slope off West Greenland. The Cape Desolation section is situated 300 km northwest from the southern tip of Greenland. At this section a strong surface front separates PSW on the shelf from ISW offshore (Figure 9). In autumn, the temperature of the upper layer is well above zero \(\theta_{\text{Min}} = 1.58^\circ \text{C} \) due to the summer heat accumulation, and hence only the salinity can be used as a tracer of the SPW (Figure 9a). A salinity of less than 32 was observed at station 792 (Figure 9b). The most offshore station of the section done in 2013 (Station 787) corresponds to the standard Cape Desolation Station 3, which was reported in ICES WGOH since 2001 (Stein, 2010). In 2013, no SPW was apparent at this station. Moreover, the water temperature of the upper 100 - 120 meters was higher than its long-term mean (Figure 10a). The salinity of the upper 200 meters also reveals high positive anomalies (Figure 10b).

In 2013, the water temperature and the salinity in the 75-200 m layer of the ISW component at Cape Desolation Station 3 was 5.84°C (Figure 11a) and 34.97 (Figure 11b), which was 0.12°C and 0.05 above the long-term mean, respectively. This finding agrees with previous studies e.g. Myers et al., 2009 who used summer observations off West Greenland. The observed warming of the ISW in the WGC coincides with a temperature increase at other locations within Subpolar Gyre (e.g. Irminger Current south of Iceland, see Hátún et al., 2005) and is believed to be cause by weakening of the Subpolar Gyre started a decade and a half ago (Häkkinen and Rhines, 2004; Hátún et al., 2005; Hátún et al., 2009).

The properties of the North Atlantic Deep Water in the deep boundary current west of Greenland are monitored at 2000 m depth at Cap Desolation Station 3. The temperature and salinity of this water mass underwent strong interannual variability during the 1980s (Figure 12).
Since the beginning of the 1990s, both characteristics were decreasing and reached their minimum values in 1998 and 1997, respectively. After that, positive trends were observed until 2007. In 2007 the temperature of the North Atlantic Deep Water started to decrease and its salinity stagnated. This decrease of the water temperature continued till 2010. Between 2010 and 2012, the temperature and salinity increased again. In 2013, the temperature and salinity decreased, but were 0.08°C and 0.01 above the long-term mean (Figures 12a and b).

The Fyllas Bank section is situated further to the north over the broad shallow Fyllas Bank that affects strongly the structure of the West Greenland Current (Myers et al., 2009). In 2013, fresh PSW was seen in uppermost 100 m over the entire section (Figure 13) and it spread at least 100 km away from the shelf. The core of ISW ($\theta >5 ^\circ C, S>34.9$) was found between 199 and 730 m water depth at station 814, which corresponds to standard Fyllas Bank Station 4 (e.g. ICES, 2002; ICES, 2004). In 2013, this station can be characterized by a negative potential temperature anomaly within the uppermost 200 to 300 m and a positive temperature anomaly between 300 and 700 meter water depth and high negative salinity anomalies within the upper 500 m (Figures 14 a and b). The water properties between 0 and 50 m depth at Fyllas Bank Station 4 are used to monitor the variability of the fresh Polar Water component of the West Greenland current. In 2013, the temperature of this water was 0.37°C below the long-term mean (Figure 15a). The salinity anomaly of the Polar Water reveals a positive trend between 2008 and 2011 (Figure 15b). However, in 2012 the salinity decreased and was 0.45 below its long-term mean and stagnated on the same level in 2013.

Acknowledgements

We gratefully acknowledge the support provided by the captain, officers and crew of the R.V. ‘Walter Herwig III’.
References:

Myers, P. G., D. Chris, and M. H. Ribergaard (2009), Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections, Progress in Oceanography, 80(1-2), 93-112.

Tables

Table 1. Details on the times series, analysed in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Lat (°N)</th>
<th>Lon (°W)</th>
<th>Type</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuuk (4250)¹</td>
<td>64.17</td>
<td>51.75</td>
<td>Weather station</td>
<td>DMI</td>
</tr>
<tr>
<td>Nuuk airport (4254)¹</td>
<td>64.20</td>
<td>51.68</td>
<td>Weather station</td>
<td>DMI</td>
</tr>
<tr>
<td>Cape Desolation Station 3</td>
<td>60.47</td>
<td>50.00</td>
<td>Oceanographic station</td>
<td>TI-SF</td>
</tr>
<tr>
<td>Fyllas Bank Station 4</td>
<td>63.88</td>
<td>53.37</td>
<td>Oceanographic station</td>
<td>TI-SF</td>
</tr>
</tbody>
</table>

Table 2. Water mass characteristics in the study area.

<table>
<thead>
<tr>
<th>The water masses in the area</th>
<th>Potential temperature (θ)</th>
<th>Salinity (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Polar Water (SPW)</td>
<td>$\theta \leq 0$</td>
<td>$S \leq 34.4$</td>
</tr>
<tr>
<td>Irminger Sea water (ISW)</td>
<td>$\theta \geq 4.5$</td>
<td>$S \geq 34.95$</td>
</tr>
</tbody>
</table>

¹ In recent years, Nuuk air temperature was taken from the Nuuk airport synop station 04254 due to a failure on Nuuk synop station 04250 (Cappelen, 2013).
Figure 1. Scheme of the upper ocean circulation in the study area. Red and blue curves show the trajectories of warm Irminger Sea Water and cold Surface Polar Water, respectively.
Figure 2. Schematic of the boundary currents of the Irminger Sea (depicted from Pickart et al., 2005)
Figure 3. Map and bathymetry of the study region. Meteorological station location is shown in yellow. Red dots show the location of the hydrographic stations, conducted during the survey in 2013. Gray edged dots show the two ICES/NAFO standard sections (CD – Cape Desolation section, FY – Fyllas Bank Section; geographic coordinates are given in table 1).
Figure 4. The Hurrell winter (DJFM) NAO index with a 5-year running mean (black curve).

Data source: http://www.cgd.ucar.edu/cas/jhurrell/nao.stat.winter.html.
Figure 5. Maps of winter 1981-2010 (DJFM) mean sea level pressure (SLP) (a), winter 2013 SLP (b), and resulting SLP anomaly (c) over the North Atlantic. Images are provided by the NOAA/ESRL Physical Science Division, Boulder, Colorado.
Figure 6. Monthly mean temperature at Nuuk station in 2013 (black line), long-term monthly mean temperature (red solid line) and one standard deviation (red dashed lines) are shown. Reference period is 1981 to 2010. Data source: Danish Meteorological Institute (DMI)
Figure 8. Map of 2013 annual sea surface temperature (NOAA OI SST) anomalies in the study region. The long-term mean corresponds to 1981-2010. *Image is provided by the NOAA/ESRL Physical Science Division, Boulder, Colorado*
Figure 9. Vertical distribution of potential temperature (a) and salinity (b) along the Cape Desolation section in 2013.
Figure 10. Hovmoeller diagram of the potential temperature anomalies (a) and salinity anomalies (b) in the upper 700 m at Cape Desolation Station 3. Reference period is 1983-2010.
Figure 11. Potential temperature (a) and salinity (b) in 75-200 m water layer at Cape Desolation Station 3 (60.47°N, 50°W). Red lines indicate the long-term mean potential temperature and salinity, referenced to 1983-2010.
Figure 12. Potential temperature (a) and salinity (b) at 2000 m water depth at Cape Desolation Station 3 (60.47°N, 50°W). Red lines indicate the long-term mean potential temperature and salinity, referenced to 1983-2010.
Figure 13. Vertical distribution of potential temperature (a) and salinity (b) along Fyllas Bank section (Figure 8) in 2013.
Figure 14. Hovmoeller diagram of the potential temperature anomalies (a) and salinity anomalies (b) in the upper 700 m at Fyllas Bank Station 4. Reference period is 1983-2010.
Figure 15. Mean potential temperature (a) and salinity (b) in the 0-50 m water layer at Fyllas Bank Station 4 (63.88°N, 53.37°W). Red lines indicate the long-term mean potential temperature and salinity, referenced to 1983-2010.