

Fisheries Organization

Serial No. N6551

NAFO SCR Doc. 16/014

SCIENTIFIC COUNCIL MEETING – JUNE 2016

Biomass and Abundance of Demersal Fish Stocks off West and East Greenland estimated from the Greenland Institute of Natural resources Shrimp and Fish Survey, 1988-2015.

By

Rasmus Nygaard Greenland Institute of Natural Resources, Box 570, 3900 Nuuk, Greenland

And

Ole A. Jørgensen DTU-Aqua, Technical University of Denmark Charlottenlund Slot, 2920 Charlottenlund, Denmark

Abstract

Since 1988, the Greenland Institute of Natural Resources has annually conducted a bottom trawl survey off West Greenland. The survey was initially designed as a shrimp survey with the focus to evaluate the biomass and abundance of the Northern shrimp (Pandalus borealis), but fish catches have systematically been recorded since 1992. The gear was changed prior to the 2005 survey. In 2008 the survey was expanded to include The East Greenland shelf area using the same gear and depth range. This paper contain detailed information on Greenland halibut (Reinhardtius hippoglossoides), Atlantic cod (Gadus morhua), redfish (Sebastes norvegicus and Sebastes Mentella), Atlantic wolffish (Anarhichas lupus), Spotted wolffish (Anarhichas minor), American plaice (Hippoglossoides platessoides) and Thorny skate (Amblyraja radiate) for West Greenland and East Greenland. The appendix contains total biomass and abundance estimates for Elasmobranchs, Teleosts, Cephalopods and crustaceans excl. Shrimp. The 2015 survey was restricted to the eastern part of the shelf areas in division 1A due to high levels of sea ice in the area, which may have influenced the survey results. In 2015, Greenland halibut abundance and biomass increased slightly, but is still below the most recent decade average. The cod biomass in West Greenland increased further in 2015, mainly caused by an increased presence of older fish that has remained in West Greenland rather than migrating to East Greenland. The biomass of golden redfish and deep-sea redfish in West Greenland have increased in the past few years, but the abundance of redfish, mainly juvenile, has decreased about a factor 20 since the beginning of the time series, indicating continued failing recruitment in the area. Both the East Greenland and West Greenland shelf (1AB) are known nursery grounds for redfish. Abundance and biomass indices of spotted wolffish, Atlantic wolffish, American plaice and thorny skate have increased throughout the time series in West Greenland and the 2015 indices is among the highest observed.

Materials and Methods

The Greenland Shrimp and Fish survey in West Greenland (SFW survey)

The survey has throughout the time series been conducted with the 722 GRT stern trawler M/Tr 'Pâmiut'. The survey design, the area coverage and the trawl and its rigging has been unchanged since 2005. The survey period is June –July in West Greenland and August in East Greenland.

The Survey Gear and trawl: The survey initially used a Skjervoy 3000/20 trawl with steel bobbin gear and double bag. In 2005, the skjervoy trawl was replaced by a Cosmos trawl (Wieland and Bergström, 2005). Until 2003, *Greenland Perfect* trawldoors were used (9.25 m², 2.4 tons), but they were replaced in 2004 by Injector International trawl doors (7.5 m², 2.8 tons) to facilitate the trawl change in the year after. Calibration experiments were conducted in the main shrimp areas in 2004 and 2005 and a formal analysis of conversion factors were established for shrimp (Rosing and Wieland, 2005). Preliminary conversion factors for a few commercial fish species were derived as described by Rosing and Wieland (2005) and are given in table 3. However, the calibration factors were never finally evaluated and in some cases (particularly cod) the calibration factors relied on few data. Indeed, without calibration the two separate time series seems well connected for most species.

Survey area and stratification: The trawl survey initially covered the traditional offshore shrimp area, between 60° - 72° north, depth 150-600m. In 1991, the area was extended to include Disko Bay. The area is delimited by a line 3nm off the base line and the 600 m depth curve. Areas shallower than 150 m was initially rather unsystematically covered but from 2004 two extra depth zones have been formally included (50-100m, and 100-150m).

The stratification is based on designated 'Shrimp Areas' that is divided into depth zones of: 151-200, 201-300, 301-400 and 401-600 m, as based on depth contour lines (figure. 1). The depth zones 0-100 m and 100-150m are delimited by the NAFO Subdivision boundaries. The ""shrimp Areas" and their sizes are provided in table 1. The number of valid hauls by year and strata are is listed in table 2. Fish species was prior to 2007 analysed using a re-stratification that followed the NAFO divisions. Re-stratification implies a potential bias and the survey information from 2005 and onwards has therefore been reanalysed in accordance with the shrimp strata actually used in the survey. If strata had no stations in a given year, the neighbouring strata with stations in that year is geographically enhanced to include of the non-visited strata. This way the total area surveyed is maintained (since 2005).

Tow duration has over the years been gradually reduced from 60 min. (prior to 1997) to 30 and has been fixed to 15 min since 2005 (Wieland and Storr-Paulsen 2006). Towing speed has been about 2.5 knots throughout the years. Survey abundance and biomass is expressed per swept area: Wingspread*towed distance, where wingspread is inferred from Scanmar recordings and the towed distance is measured by GPS.

Allocation of stations per strata. Trawl stations are allocated to strata with the objective to minimise the variances of the shrimp biomass. The allocation algorithm utilises the historically observed shrimp variances where highest weight is placed on the most recent information. Stations positions were initially selected at random but since 1999 station positions were chosen to secure a minimum distance between stations. Since 1998 about half the haul positions were randomly selected from the previous year hauls; the rest of the hauls being selected at random.

The Greenland Shrimp and Fish survey in East Greenland (SFE survey)

The survey is carried out with the same gear and survey protocols as used in West Greenland after 2005. Stratification is based on the "Q-areas" used for the East Greenland survey for Greenland halibut. The areas are further depth stratified into 0-200 m, 200-400m and 400-600 m zones, the areas are shown in figure 1. and the area sizes are given in table 1. The major difference between West Greenland and East Greenland is the bottom conditions that severely restrict the areas that can be trawled off East Greenland. In some areas, stations are randomly selected from historical known trawl-able sites.

Results

Greenland halibut (Reinhardtius hippoglossoides).

Greenland halibut can be found in all divisions, but the highest concentrations are found in the important nursery areas in division 1A, 1B-north and Disko Bay (table 4 and 5). The abundance indices is mainly driven by year to year variability in the number of one-year old recruits, which by number typically constitute 80-90% in numbers of the Greenland halibut taken in the survey.

The biomass and abundance indices increased gradually until the gear change in 2005 (figure 2). After the gear change the general trend in the abundance indices has been decreasing slightly, with the exception of record high numbers of one-year old recruits observed in 2011 and 2013 (figure 2). Clear modes can be found in the length distribution at 12-15 and 23 cm every year probably corresponding to year-classes 1 and 2 (figure 14). Distribution of survey catches in number pr. km² and kg pr. km² are given in figure 21. In East-Greenland, recruits are rarely seen and both abundance and biomass indices are much lower on the shallow parts of the East Greenlandic shelf areas.

Greenland halibut recruitment.

A recruitment index was estimated for the entire survey area. By means of the Petersen-method ages 1, 2 and 3+ were separated in the survey catches. To allow comparison of abundance throughout the time series, the 2005 to 2015 catches were divided by a conversion factors to adjust the new Cosmos trawl catches to the old Skjervoy trawl catches. For Greenland halibut the conversion were length dependent and x in the equations is the individual fish length (Table 3).

The number of one-year-old fish in the total survey area including Disko Bay increased gradually from 1996 to a peak of 500 million in 2001 (Fig. 9). During the 00' the recruitment was stable at around 300 mill. The number of one-year old recruits peaked in 2011 with 530 million, which is the highest estimate in the time series. The recruitment decreased in 2012 where the 2011 year-class was estimated to 175 mill., the lowest estimate since 1996 and at the level of the early 90's. The recruitment increased again in 2013 where the 2012 year-class was estimated at 444 mill. to decrease again in 2014 where the 2013 year-class was estimated to 180 mill. The 2014-year-class is estimated to 376 mill somewhat above the average for the time series (270 mill.). Almost all the one year old fish were found in Div. 1AS and Div. B and the distribution was somewhat more southern in 2015 compared to the previous years (Fig. 10).

The offshore recruitment has been rather stable between 2003 and 2010. The recruitment increased to the highest level in the time series in 2011 to decrease to lowest level seen since 1997 (1996 year-class) in 2012. The offshore recruitment (2012 year-class) increased again in 2013 to the second largest in the time series to decrease again to 130 mill in 2014. In 2015 the estimate increased again to the third largest level (334 mill.) in the time series (Fig. 11). The increase in recruitment between 2014 and 2015 was seen in Div. 1AS (*2) and Div. 1B (almost *10). 88.6% of the one year old fish was found in the off shore areas (Fig.12).

Greenland halibut in Disko Bay is believed to be recruited from a spawning area in the central part of the Davis Strait. The recruitment to Disko Bay has been decreasing between 2003 and 2008 but increased since then to the highest level seen since 2001 in 2011. Since then the recruitment has been gradually decreasing and was the second lowest in the time series in 2015 (Fig. 11). Only 11.4% of the recruitment ended up in Disco Bay in 2015, where the percentages usually have been well above 20 % (Fig. 12). Generally there is a steep decline between abundance at age 1 and age 2 and 3+ which also was observed in the 2015 survey (Fig. 13).

Cod (Gadus morhua)

The 2015 survey indicated that the offshore cod stock in West Greenland (1A-1E) decreased with 9% in abundance and increased with 12% in biomass compared to 2014. The dominating YC in the survey was the 2010 YC, followed by the 2009 YC which was dominating the survey in 2011-2013. The 2010 YC was also the

most abundant YC in 2014. The 2009 YC was mainly distributed in North West (NAFO 1B) Greenland in 2010 and 2011, but moved further south (NAFO 1D-1E) in 2012 and was again mainly observed in this area in 2013 and 2014. A 2011 YC was for the first time recorded in considerable numbers in NAFO 1C and 1D. The 2010 and 2011 YC showed the same distribution pattern as the 2009 YC with main distribution area as 1 and 2 yr old in the northern part of the survey area, and at age 3 moving further to the south. Cod older than 6 years has in earlier years been almost absent in West Greenland. However, in 2014 and especially in 2015 a large increase in the presence of these older fish has been observed. For further information on cod see the ICES Report of the North-Western Working Group (Anon., 2016)

Demersal Redfish (Sebastes sp.) combined.

Two species of redfish are common in the area, golden redfish, *Sebastes norvegicus* and deep-sea redfish *Sebastes mentella*. Due to difficulties in identification of species in some years redfish were classified as *Sebastes sp.* (prior to 2007). Redfish less than approximately 20 cm are classified as juvenile "*Sebastes sp*". The distinction is however not straight forward and often small redfish are classified as Sebastes Mentella, which in West Greenland has also dominated individuals less than 30 cm in recent years.

Redfish are present in all divisions, but recruits are normally concentrated in division 1B (table 8, 9 and figure 16). Golden redfish and deep-sea redfish biomass has increased in West Greenland in the most recent years, but the abundance of redfish, mainly juvenile, has decreased substantially since the beginning of the time series. The 2015 abundance indices of redfish combined is the lowest estimate in the time series indicating continuous failing recruitment in the area (figure 4). Biomass of demersal species of redfish combined decreased to about a third the initial values throughout the 1990's, but stabilized during the 2000's and has been increasing since 2009 (table 9 and figure 4). Annual growth increments of 4 cm were indicated by repeatedly pronounced peaks in length compositions at 7-8 cm and 12 cm probably corresponding to age 1 and 2 (Nedreaas, 1990). Densities by haul in number pr. km² and kg pr. km² are given in figure 23 - 26. In East Greenland, Sebastes mentella is further divided into a demersal and two pelagic stocks of redfish (beeked redfish), a shallow and deep pelagic stock. For further information on redfish in East Greenland see the ICES Report of the North-Western Working Group (Anon., 2016)

Classification of redfish by species.

A separation of redfish by species has been attempted since 2007 (table 10-15, figure 16). Particularly the separation of *Sebastes mentella* and juvenile redfish varies from year to year. Golden redfish biomass has increased since 2009 (table 15). The increase seen in 2013 and 2014 was seen particularly in division 1 E and 1F and is often caused by few hauls containing larger individuals (figure 26) contributing more than half the total West Greenland biomass. The sudden increase in larger individuals of redfish could indicate a connection with the Icelandic, East Greenlandic stock or the West Greenlandic fjords. Another possibility is the potentially increased survival of redfish since the implementation of sorting grids in the shrimp-fishery in 2002.

American plaice (Hippoglossoides platessoides).

In West Greenland, American plaice is common in all divisions (table 16,17 and figure 27). The biomass and abundance indices have fluctuated substantially in recent years, but the general trend has been increasing both prior to and after the gear change (table 16, 17 and figure 5). Clear modes can be found at 5 and 15 cm indicating new incoming year-classes and individuals larger than 45 cm are rarely seen in Greenland (figure. 17). The highest concentrations are mainly found in West Greenland (figure 27).

Atlantic wolffish (Anarhichas lupus)

Atlantic wolffish is common in all divisions, in both East and West Greenland (figure 28). Previously Atlantic wolffish had its main distribution south of 68°N, but it has shifted further north since the beginning of the time series (table 18, 19 and figure 6). Although the abundance and biomass indices tends to have extreme values in some years, the underlying trends has been increasing since the beginning of the time series and the non-calibrated indices seems well connected. The length distribution reveals the dominance of smaller fish

and although the proportion of larger individuals has increased in the past years, individuals above 65 cm are virtually absent (figure. 18).

Spotted wolffish (Anarhichas minor)

Spotted wolffish are common in all divisions in both East and West Greenland and inshore and offshore. Abundance and biomass indices have increased throughout the time series and the non-calibrated indices seems well connected (Table 20,21 and figure 7). The length distribution ranges from 10-120 cm and modes at 13 and 100 cm likely represents one year recruits and individuals at maximum length (figure 19). Recruits and juvenile individuals are mainly found in North-West Greenland (1A) (figure 19 and 29).

Thorny skate (Amblyraja radiata)

In West Greenland, thorny skate is common in all divisions but the majority of both the biomass and abundance is located in West Greenland (figure 30). Abundance and biomass indices have increased throughout the time series and the non-calibrated indices seems well connected (table 22, 23 and figure 8). Although Lmax for thorny skates is reported to be more than 100 cm, it has been suggested that North American thorny skate grows to larger body size than East Atlantic individuals. Since individuals larger than 55 cm are rarely seen in Greenland waters and all individuals about 50 cm are fully mature, it seems likely that thorny skates in Greenland resemble East Atlantic stocks. During the most recent years thorny skate length distributions have revealed clear modes at 10-15 cm and 35-50 cm probably corresponding to recruits and overlapping year-classes of adult individual (figure. 20).

Other species

The Appendix contains biomass and abundance estimates for elasmobranchs, teleosts, cephalopods and crustaceans excl. Shrimp for the West-Greenland part of the GINR shrimp fish survey including the West-Greenlandic Shelf part of NAFO div 0A.

Discussion

Catch-ability is set at 1 for all species. However, since swept area is calculated for the trawl excluding doors and bridles, catchability may be higher than 1 for some species and below 1 for other species, implying that both biomass and abundance should be regarded as index values only, not absolute values.

Index changes from the end of the 1990's to 2001 for species related to shallow water and banks (50-150m) could reflect better coverage of these depths during the past decade. Changes from 2003 to 2004 could be influenced with the trawl door update from Greenland perfect to injector and may be species dependant, as no calibration experiments were made on this account. Index changes from 2004 to 2005 could be related to species specific data quality in the calibration experiments. If ignoring the preliminary calibration factors, the indices seems well connected for most species, indicating that there is little reason to calibrate in order to compare the timeseries. Indeed, even for Greenland halibut the length-dependent calibration factor has a 1:1 value around 12 cm which constitutes 80-90% of the individuals caught every year. Therefore, for the Greenland halibut abundance indices it matters little if calibrating or not.

Since the main purpose of the survey is to evaluate the biomass of northern shrimp and the effort is concentrated in areas and depths where the commercial shrimp trawling is taking place, especially on the northern slopes of the bank Store Hellefiskebanke (67°50N 55°00W) and in the inshore area Disko Bay. As Store Hellefiskebanke and Disko Bay are important nursery areas for Greenland halibut and redfish, as well as other important species (Smidt, 1969; Tåning, 1949) it is likely, that the abundance estimates of the survey reflects the juvenile stock situation of these species.

The 2002 estimates in division 1AN may have been affected by low coverage in this division, since only 2 hauls was performed in this division in 2002 and therefore not all strata can have been covered. No record exists on whether any compensation for low coverage was made in subarea 1AN in 2002.

References

Anon., 2016. Report of the North-Western Working Group (NWWG). ICES CM 2016.

Cochran, W. G. 1977: Sampling Techniques, Third editon, Wiley & Sons.

- Kingsley, M.C.S., P. Kanneworff and D.M. Carlsson. 2004. Buffered random sampling: a sequential inhibited spatial point process applied to sampling in trawl survey for northern shrimp *Pandalus borealis* in West Greenland waters. ICES J. Mar. Sci. 61:12-24.
- Nedreaas, K. 1980: Age determination of Northeast Atlantic Sebastes species. J. Cons. int.Mer. 47: 47: 208-230.
- Rosing, M.& K. Wieland (2005): Preliminary results from shrimp trawl calibration experiments off West Greenland (2004, 2005) with notes on encountered design/analyses problems. NAFO SCR Doc. 05/92.
- Smidt, E.L.B., 1969: The Greenland Halibut *Reinhardtius hippoglossoides* (Walb.), Biology and Exploitation in the Greenland Waters. Meddelelser fra Danmarks Fiskeri- og Havundersøgelser, N.S.,6: 79-148.
- Sünksen, K. 2007: Discarded by-catch in shrimp fisheries in Greenlandic offshore waters 2006-2007. NAFO SCR Doc. 07/88
- Tåning, Å.V., 1949. On the breeding places and abundance of the redfish (*Sebastes*) in the North Atlantic. *Ibid*. Journ. Cons. Vol.16 No.1: 85-96.

Wieland, K.,& M. Storr-Paulsen, 2006: Effect of tow duration on catch rates and mean length of Northern shrimp (*Pandalus borealis*) and Greenland halibut (*Reinhardtius hippoglossoides*) in the West Greenland Bottom Trawl Survey. *Fish. Res.* **7**8: 276-285.

West Greenland												
			Depth	strata								
Area	<100	100-150	150-200	200-300	300-400	400-600	Total					
1A	3039	5220					8259					
1B	11346	4966					16312					
1C	4183	8169					12351					
1D	4136	1538					5673					
1E	494	2721					3215					
1F	1497	5248					6745					
C0				903	2179	1154	4236					
I1			407	1963	2441	1499	6310					
12			419	815	1085	1338	3658					
U1			2486	4633	4785	5129	17033					
U2				6710	8481	7994	23185					
U3			2012	3017	1675	2710	9413					
W1			2873	6099	7520	816	17307					
W2			1674	2612	1741	915	6941					
W3			2122	4725	2085	2994	11926					
W4			4119	1818	821	1961	8719					
W5			3001	3648	1950	3021	11620					
W6			1206	2006	1585	1234	6031					
W7			2442	891	265	317	3915					
W8			424	567	405	718	2114					
W9			1711	938	516	430	3595					
All												
strata	24695	27861	24895	41344	37534	32230	188559					

Table 1: The survey area (km²) in the Greenland Shrimp and Fish Survey.

		East Greenland		
		Depthstrata		
Area	0001-0200	0201-0400	0401-0600	Total
Q1	217	35445	6975	42637
Q2	93	7657	1246	8996
Q3	3363	22547	9830	35740
Q4	1337	7770	2054	11161
Q5	469	2785	1819	5073
Q6	6307	6130	2063	14500
All				
strata				118107

West Greenland											
Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	Total
1990		29	63	*	68	17	35	16	*	*	228
1991		18	39	41	44	18	11	16	*	*	187
1992		20	33	39	36	8	18	18	11	15	198
1993		16	22	31	39	10	21	15	12	13	179
1994		16	33	27	49	9	23	8	9	9	183
1995		17	33	33	48	13	29	13	14	11	211
1996		18	20	33	46	11	29	12	9	11	189
1997		17	33	34	47	9	32	12	12	19	215
1998		10	34	33	66	14	27	19	14	14	231
1999		10	40	34	63	18	33	16	14	17	245
2000		8	25	23	45	17	37	23	14	29	221
2001		9	28	23	59	16	36	24	15	26	236
2002		2	26	22	68	12	32	18	20	27	227
2003		11	21	19	51	12	30	18	15	22	199
2004		15	25	14	41	14	24	22	20	34	209
					New surv	ey gear ir	troduced	l			
2005	6	20	30	16	45	10	26	19	23	23	212
2006	5	26	40	21	49	9	27	20	21	31	244
2007	8	18	38	18	47	9	27	27	31	39	254
2008	6	16	38	16	53	7	28	23	25	46	252
2009	8	21	31	24	60	13	28	22	24	48	271
2010	10	26	44	25	65	11	30	23	24	40	289
2011	-	17	31	26	54	9	24	18	12	25	216
2012	-	18	34	21	52	12	21	18	18	26	220
2013	4	19	37	17	44	8	20	13	21	28	211
2014	-	21	36	21	47	10	19	17	23	32	226
2015	-	24	29	17	42	7	24	22	20	36	221

Table 2. Numbers of valid hauls in West Greenland, since 1988. 1AX=Disko Bay. 0A= The West-Greenlandic shelf part in Canadian waters. (- area included in neighboring strata).

Note.

2005. Strata 1A 50-100 no stations - included in 1A 100-150.

2006. Strata 1C 50-100 no stations - included in 1C 100-150.

2007. Strata 1C 50-100 no stations - included in 1C 100-150.

2008. All strata surveyed.

2009. Strata 1A:50-100 no stations - included in 1A 100-150.

2010. Strata 1A:50-100, 1A:100-150 no stations - included in U1 150-200.

2011. Strata W1:400-600, C0:200-300, C0:300-400, C0:400-600 no stations - included in W1 300-400.

2012. Strata C0:200-300, C0:300-400, C0:400-600 no stations - included in W1 300-400.

2013. Strata C0:400-600 no stations - included in C0 300-400. Strata W9:400-600 no stations - included in W9 300-400. 2014. Strata C0:200-300, C0:300-400, C0:400-600 no stations - included in W3 equivalent depth strata.

2015. Strata C0:200-300, C0:300-400, C0:400-600 no stations - included in W3 equivalent depth strata. W1:400-600 included in W1 300-400.

			East Gr	eenland			
Year	Q1	Q2	Q3	Q4	Q5	Q6	Total
2007							35
2008	8	6	12	7	7	12	52
2009	21	12	26	19	6	13	97
2010	19	14	24	9	6	10	82
2011	20	11	21	12	7	14	85
2012	19	16	28	13	7	15	98
2013	25	12	22	14	5	14	92
2014	22	14	12	9	8	16	81
2015	26	11	24	12	8	14	95

Table 2 - continued	Numbers of valid	hauls in East Gree	nland since 2007
Table 2 - continucu.	Numbers of value	nauis in Last urce	manu since 2007.

Note:

2007 Survey startup year. Only 35 hauls. No results presented.

2008. Strata Q1,Q2,Q4:0-200 no stations - included Strata Q1,Q2,Q3:200-400.

2009. Strata Q1:0-200 m no stations – included in Q1:200-400.

2010. Strata Q1:0-200 m no stations – included in Q1:200-400.
2011. Strata Q1:0-200 m no stations – included in Q1:200-400.
2012. Strata Q1:0-200 m no stations – included in Q1:200-400.
2013. Strata Q1:0-200 m no stations – included in Q1:200-400. Strata Q5:0-200 m no stations – included in Q4:0-200.

2014. Strata Q1:0-200 m no stations - included in Q1:200-400. Strata Q3:0-200included in Q4:0-200 (COD Q3:200-400.)

2015. Strata Q1:0-200 m no stations – included in Q1:200-400. Stations in Icelandic EEZ included in Qxxx.

Table 3. Preliminary calibration factors to adjust the Cosmos trawl catches to the former Skjervoy trawl standard. For Greenland halibut and American plaice the conversion were length dependent and for those species x in the equations represents the individual fish length.

Fishspecies	Greenland halibut	Redfish	American plaice	Atlantic wolffish	Spotted wolffish	Cod	Thorny skate
Conversion factor	0.0404x+0.6527	2.4	-0.0825x + 5.3307	2.3	2.3	1.78	5.1
Trawl size factor	1/1.1516	1/1.1516	1/1.1516	1/1.1516	1/1.1516	1/1.1516	1/1.1516
Final factor	0.035x+0.567	2.0	-0.072x + 4.629	2.0	2.0	1.5	4.4

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		50.7	8.2	96.7	231.5	1.5	1.2	0.8	0.6	0.0	391.2	27		
1993		29.1	24.3	34.0	152.6	9.8	4.3	4.6	0.4	0.5	263.5	28		
1994		22.9	35.2	63.0	130.7	10.0	18.1	2.4	0.1	0.4	282.8	22		
1995		39.5	28.9	89.4	98.9	18.3	12.2	5.7	0.1	0.3	293.4	32		
1996		92.6	13.7	102.5	265.9	11.8	14.0	10.7	0.2	0.4	511.7	25		
1997		41.3	17.5	112.1	97.6	2.2	13.0	0.9	0.1	0.3	285.0	22		
1998		78.5	30.4	209.6	47.2	23.3	7.2	3.6	1.4	0.6	401.6	29		
1999		100.8	58.2	95.4	91.0	5.8	5.3	7.7	1.3	0.9	366.3	35		
2000		81.7	19.3	172.8	126.7	4.1	4.8	6.7	0.1	0.6	416.8	30		
2001		145.9	97.9	223.7	111.5	1.7	4.8	2.6	0.7	1.6	590.2	28		
2002		78.0	75.2	148.1	42.5	2.7	6.2	6.5	0.6	1.3	360.9	38		
2003		154.6	37.7	227.0	116.7	2.3	2.0	2.4	0.1	1.0	543.8	36		
2004		154.8	20.6	199.1	84.8	2.4	2.9	2.8	0.1	0.4	468.0	34		
				New su	ırvey gear in	troduced	1					ecv		cv
2005	3.3	177.5	51.6	186.5	202	5.3	9.1	1.9	1.1	0.5	638.8	12		
2006	14.1	110.5	69.9	96.9	198.6	4.2	24.6	0.8	0.0	0.3	520.0	11		
2007	10.5	103.1	75.3	128.5	154.4	2.2	37.9	0.3	1.2	0.4	513.8	13		
2008	13.2	184.2	106.5	64.6	88.6	0.7	0.6	0.9	0.3	0.3	459.9	12	3.0	53
2009	8.0	132.8	75.3	72.9	119.6	6.9	0.7	0.9	0.3	0.1	417.5	8	4.1	120
2010	9.1	154.5	117.7	123.3	115.9	4.5	0.7	1.2	0.1	0.1	527.1	9	3.0	43
2011	-	318.8	111.6	230.7	93.4	8.9	1.1	0.9	0	0.2	765.6	16	2.9	37
2012	-	80.2	48.8	105.9	52.3	5.0	0.4	0.1	0	0.1	292.8	8	1.7	46
2013	1.0	148.0	212.0	188.0	145.0	11.0	5.0	0.0	0.0	0.0	711.0	16	1.7	38
2014	-	79.1	117	103.7	32.6	1.7	1.6	0.3	0.6	0	336.1	15	0.8	25
2015		77.7	101,7	84,1	131,1	3,6	2,4	1,5	0,2	0,2	402,4	11	0,5	32

Table 4. Greenland halibut *Reinhardtius hippoglossoides* abundance indices (millions).

Table 5. Greenland halibut Reinhardtius hippoglossoides biomass indices (tons).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		3516	785	4992	4203	402	206	97	48	0		22		
											14250			
1993		2483	1286	2507	4255	747	595	539	333	60	12804	27		
1994		2007	1697	3598	4748	1665	1458	91	10	25	15199	26		
1995		4367	1291	5786	2567	825	971	502	12	45	16365	51		
1996		3682	1294	8593	5496	439	1248	899	9	118	21778	22		
1997		4972	1746	6456	4929	421	1754	180	25	84	20567	29		
1998		7025	4976	11874	2821	1724	863	275	117	278	29955	35		
1999		10205	6025	8060	5224	555	778	261	48	318	31473	44		
2000		3411	1713	9537	3985	454	692	567	38	280	20676	30		
2001		8433	2478	10161	3802	278	1208	289	33	443	27126	32		
2002		6158	2067	9070	3108	779	737	670	39	402	23055	40		
2003		8297	3399	16556	5693	478	589	297	4	355	35668	28		
2004		15182	2079	28229	11755	1147	420	319	2	201	59332	36		
				N	lew survey	gear intro	luced					ecv		cv
2005	421	22894	7010	22580	17150	574	1129	347	263	412	72780	12		
2006	519	15179	4516	20246	13797	519	6693	93	0	206	61769	12		
2007	769	11603	5666	13137	6950	163	5920	3	82	246	44539	18		
2008	402	19559	4417	16422	7822	147	302	120	59	179	49429	13	4850	40
2009	229	21764	2634	19902	7047	478	324	164	16	25	52584	20	4454	100
2010	489	25880	7071	17559	8658	599	54	320	1	58	60688	11	5729	33
2011	-	18213	6778	23977	13945	640	364	49	0	14	64547	10	3825	34
2012	-	10331	4327	16168	9194	1475	225	7	4	81	41813	7	2439	51
2013	210	13661	12510	15103	11508	689	812	3	95	105	54695	9	2664	28
2014	-	8577	7388	11463	6014	942	829	45	111	9	35377	12	1611	28
2015	-	13651	7272	13180	12716	461	287	200	13	183	47962	15	1351	30

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl.	CI	E-Grl	
1991	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5			0.8	51		
1992	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.0	0.0	0.6	49		
1993	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.5	66		
1994	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	47		
1995	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.1	0.0	0.6	55		
1996	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.3	54		
1997	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	68		
1998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	54		
1999	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.2	29		
2000	0.0	0.0	0.2	0.4	0.3	0.2	0.1	0.1	0.0	0.2	1.3	23		
2001	0.0	0.0	0.0	0.0	0.2	0.1	0.1	0.4	0.3	0.3	1.5	26		
2002	0.0	0.0	0.0	0.0	0.1	0.1	0.1	3.3	0.1	0.5	4.2	50		
2003	0.0	0.0	0.1	0.4	1.4	0.0	0.4	0.7	0.2	0.2	3.4	22		
2004	0.0	0.0	0.0	0.2	0.0	0.1	0.4	2.6	1.5	1.6	6.5	29		
					New surv	vey gear in	itroduced					cv		CV
2005	0.1	0.0	0.0	0.1	0.7	0.1	1.8	4.8	6.8	94.1	108.7	52		
2006	0.5	0.0	0.2	0.2	2.8	1.4	2.5	16.5	3.3	46.3	73.8	27		
2007	0.7	0.0	1.0	0.3	2.5	0.7	7.1	3.0	2.6	38.1	56.1	46		
2008	1.2	0.1	0.7	0.1	2.4	1.7	4.1	9.5	11.9	21.7	53.4	23	31.5	22
2009	0.9	0.0	0.8	0.1	3.2	1.0	3.2	2.8	1.4	1.7	15.1	11	54.7	15
2010	0.3	0.1	0.6	0.0	1.7	1.1	2.7	8.2	2.5	6.1	23.4	24	45.3	51
2011	-	0.0	3.4	3.7	35.8	7.8	2.1	19.5	1.0	7.4	80.9	17	42.7	25
2012	-	1.1	3.8	3.5	10.0	1.0	3.3	1.2	27.1	20.3	71.1	39	22.7	21
2013	4.7	1.0	4.0	3.8	11.1	1.6	6.1	7.5	30.0	55.5	125.2	36	67.2	37
2014	-	2.4	4.2	0.4	4.4	1.3	78.9	2.5	16.5	20.6	131.0	57	35.4	49
2015		2,0	1,4	3,1	9,1	2,2	27,2	31,7	19,0	40,4	136,1	28	29,1	22

Table 6. Cod *Gadus morhua* abundance indices (millions).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl.	CI	E-Grl	
1990		2	13	*	75	3	83	9005	*	*	(9180)	65		
1991		0	0	7	2	15	151	310	*	*	(485)	44		
1992		0	0	3	20	34	75	112	0	2	246	46		
1993		0	0	2	0	5	22	39	113	5	186	68		
1994		0	3	0	0	9	38	0	1	0	51	46		
1995		0	0	0	5	1	120	23	3	4	155	63		
1996		0	0	0	0	0	15	23	24	44	107	50		
1997		0	0	0	0	2	53	0	0	0	55	76		
1998		0	0	0	1	0	0	47	50	3	101	56		
1999		0	1	5	23	5	1	17	1	0	53	47		
2000		0	51	99	76	54	21	9	2	46	357	23		
2001		0	0	15	125	30	56	178	98	100	603	23		
2002		0	0	13	54	74	41	1489	42	150	1863	46		
2003		0	18	111	315	8	264	453	118	46	1332	26		
2004		0	0	496	46	7	176	680	685	305	2394	28		
					New sur	vey gear i	introduced	ł				cv		cv
2005	38	0	22	45	320	19	449	1077	1170	60546	63684	71		
2006	114	0	40	22	578	74	471	5513	536	19874	27221	32		
2007	247	13	317	56	711	121	1502	514	541	26843	30865	54		
2008	421	99	227	46	1218	794	923	1730	3321	19702	28481	37	47864	23
2009	212	0	184	42	1046	199	688	453	282	499	3604	13	58141	29
2010	183	38	215	7	821	144	573	2417	835	2899	8133	31	110656	53
2011	-	1	537	726	7468	1493	398	3963	196	3948	18730	16	81138	20
2012	-	194	1061	841	3000	313	1226	447	14104	15911	37098	39	64421	21
2013	2446	294	1026	1287	3443	447	1871	4361	19015	51622	85812	37	168771	28
2014	-	709	1644	286	1813	492	56061	2511	21714	27755	112984	50	153807	54
2015	-	1076	429	1958	4103	353	19705	33169	27532	60282	148606	30	104806	19

Year	04	1AN	145	1 A X	1BN	1RS	10	1D	1F	1F	W-Grl	CI	F-Grl	
1992	011	1	146	9	1006	187	69	34	6	4	1462	32	Lun	
1992		4	210	17	361	22	157	182	97	520	1568	69		
1001		12	197	17	1572	225	272	95	10	9 <u>7</u>	2461	26		
1005		12	67	11	550	223	192	03	5	5	057	20		
1996		1	8	8	1688	59	103	63	11	54	2017	29		
1997		5	43	7	34.8	58	156	57	23	22	710	24		
1998		1		20	236	15	115	71	10	32	522	24		
1999		2	69	20	230	11	115	61	10	22	574	21		
2000		0	27	6	207	32	28	10	т 18	159	165	21		
2000		2	77	3	25	15	20	10	10	180	103	60		
2001		1	23	1	50	84	43	12	2	100	257	27		
2002		2	23 45	2	210	22	70	25	2	26	422	27		
2003		2	4J 11	2 1	52	20	19	20	2	20 60	252	23		
2004		2	11	1	JZ Nou		T/	od	2	07	233	57		CW
2005	104	1	10	1	72			eu 25	10	0.0	FF1	ιv		CV .
2005	104	1 7	19	1	/ 3	79	//	25	12	00	224			
2006	27	2	25	1	110	52	83	10	3	11	334			
2007	97	2	37	0	128	34	49	5	3	1/	3/1		1047	
2008	99	2	40	0	121	33	24	5	2	11	334		104/	
2009	37	2	29	0	115	26	12	1	2	9	234		1988	
2010	27	6	27	0	69	42	23	8	3	8	213		1566	
2011	-	10	23	1	121	18	31	13	1	9	225		2517	
2012	-	7	10	0	42	13	20	10	2	16	120		1018	
2013	12	2	10	0	29	4	30	6	44	7	145		1075	
2014	-	1	3	0	23	5	3	39	20	3	96		559	
2015		1	2	0	13	1	11	39	8	7	82		762	

Table 8. Redfish species combined, all sizes (Sebastes sp.) abundance indices (millions).

Table 9. Redfish species combined, all sizes *Sebastes sp.* biomass indices (tons).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-	CI	E-Grl.	
											Grl.			
1992		69	18117	437	13423	2832	1576	1124	169	147	37894	43		
1993		195	4994	710	6420	300	1549	3835	1923	2138	22065	38		
1994		590	5076	538	16064	1986	3886	995	179	1272	30586	24		
1995		52	1585	775	5029	869	2963	1952	358	123	13705	22		
1996		18	117	782	12178	1694	2552	1980	304	1788	21413	28		
1997		599	1481	337	4913	1597	6766	1901	1099	1229	19922	31		
1998		39	1467	1423	6193	2130	3274	1953	606	1198	18283	22		
1999		164	4021	742	5596	999	2742	2976	207	1124	18671	25		
2000		0	1790	793	1045	2185	2337	463	2411	1214	12237	36		
2001		192	5380	536	1746	1460	2637	1069	60	2256	15337	50		
2002		55	1917	397	2536	2386	1676	2654	272	998	12891	28		
2003		279	2886	702	6357	2319	6185	1918	187	2476	23308	32		
2004		369	462	368	2210	2274	2996	1679	101	1026	11486	41		
					New survey	y gear intr	oduced					cv		cv
2005	3491	134	1378	665	3370	6974	6212	2751	1388	2771	29132			
2006	591	1129	2196	759	4427	2717	6213	959	557	2350	21897			
2007	3367	248	2172	153	6886	1499	5166	358	282	1778	21908			
2008	2845	433	2221	210	7411	4007	2542	224	286	2585	22761		290666	
2009	1696	356	2472	193	5496	3688	1951	293	335	1339	17819		318517	
2010	1348	761	3363	910	4765	4193	3073	1043	369	1069	20895		336840	
2011	-	1917	1536	1486	8362	3538	5377	4026	226	2397	28865		511700	
2012	-	1382	1224	998	4380	2438	3560	1942	239	10341	26505		234650	
2013	965	429	1684	553	6063	1077	7327	1269	23081	3178	45626		454592	
2014		370	394	150	5241	1074	1092	11621	11017	2009	32969		206406	
2015		276	548	1000	3458	427	2833	12477	4590	4771	30381		288118	

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	cv	E-Grl	cv
2006	27	6	20	0	107	51	79	15	2	7	314	16		
2007	96	0	28	0	120	33	44	4	2	15	342	15		
2008	97	0	36	0	118	0	9	2	1	6	269	26	452	53
2009	36	0	14	0	111	1	4	0	1	4	172	24	954	28
2010	24	0	9	0	33	0	3	4	2	5	80	21	507	31
2011	-	0	15	0	70	1	0	2	0	0	89	23	102	61
2012	-	0	2	0	16	0	1	0	1	0	21	23	253	56
2013	5	0	3	0	18	0	2	1	0	0	30	17	48	36
2014	-	0	1	0	8	0	0	0	0	0	9	31	21	33
2015	-	0	0	0	4	0	0	1	0	0	5	36	21	52

Table 10. Juvenile redfish <20cm *Sebastes sp.* abundance indices (millions).

Table 11. Juvenile redfish <20cm *Sebastes sp.* biomass indices (tons).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	cv	E-Grl	cv
2006	489	650	1433	0	3270	2238	4623	746	111	1162	14722	18		
2007	2912	0	1475	0	3985	1142	4262	156	87	821	14839	16		
2008	2358	2	1678	0	5198	2	154	44	12	55	9503	29	9011	53
2009	1365	0	491	3	3571	36	160	9	24	90	5749	29	41341	63
2010	919	0	394	0	1524	0	105	161	66	154	3323	29	24135	31
2011	-	9	289	1	2579	47	19	88	25	18	3074	32	3781	56
2012	-	0	52	0	557	9	32	13	21	16	700	24	36567	79
2013	228	2	158	1	802	10	118	12	4	7	1340	21	1244	33
2014	-	0	22	0	227	7	4	3	4	2	268	28	550	26
2015	-	0	6	0	213	0	0	11	5	2	236	44	796	45

Table 12. Deep-sea redfish *Sebastes mentella* abundance indices (millions).

-														
Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	cv	E-Grl	cv
2006	0	1	1	0	1	1	1	1	0	2	8	24		
2007	0	0	0	0	6	0	0	0	0	1	8	52		
2008	1	1	4	0	2	33	14	0	0	2	57	56	1286	49
2009	1	2	14	0	4	24	7	1	0	4	55	45	895	29
2010	2	5	16	0	35	41	19	4	0	3	127	36	995	36
2011	-	9	8	0	49	16	27	7	0	6	122	22	400	22
2012	-	6	7	0	24	12	16	8	1	4	79	10	305	27
2013	7	1	6	0	9	4	25	2	41	2	98	85	338	33
2014		0	2	0	13	5	2	37	19	2	80	25	172	25
2015		0	2	0	6	1	10	36	6	4	65	38	130	23

Table 13. Deep-sea Sebastes mentella biomass indices (tons).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	cv	E-Grl	cv
2006	11	168	65	77	252	274	543	64	34	544	2032	22		
2007	84	0	30	28	1443	0	8	28	11	277	1909	84		
2008	141	245	385	9	432	3989	2209	71	50	395	7926	49	247557	47
2009	79	239	1659	45	618	2989	1420	213	8	828	8098	38	236680	35
2010	141	606	1831	11	2281	4039	2322	608	56	621	12519	36	283924	36
2011	-	1300	998	4	3441	3156	4129	1509	71	1540	16149	24	122949	26
2012	-	1041	886	334	2084	2093	2340	1386	154	878	11195	9	100342	29
2013	655	124	958	217	2522	835	5974	454	20728	833	33301	59	162268	50
2014		71	264	8	1949	991	379	10466	9559	838	24525	22	67611	24
2015		103	543	32	1031	181	2287	10302	2800	2104	19382	35	60589	28

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	cv	E-Grl	cv
2006	0	0	3	0	2	0	2	0	1	2	12	23		
2007	1	2	8	0	2	1	5	0	0	1	21	43		
2008	1	0	0	0	1	0	1	0	0	4	9	25	108	29
2009	1	0	1	0	1	1	1	0	1	2	6	15	139	27
2010	0	0	1	0	1	1	1	0	1	0	6	17	64	36
2011	-	1	0	1	2	1	3	3	1	2	14	12	2015	36
2012	-	0	1	0	2	0	2	2	0	12	20	54	460	36
2013	0	1	1	0	2	0	2	3	3	4	17	15	689	34
2014	-	0	0	0	2	0	1	1	1	1	7	17	366	40
2015	-	0	0	0	2	0	1	2	3	3	11	19	611	37

Table 14. Golden redfish *Sebastes norvegicus* abundance indices (millions).

Table 15. Golden redfish *Sebastes norvegicus* biomass indices (tons).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	cv	E-Grl.	cv
2006	92	311	698	682	905	204	1047	149	413	644	5144	16		
2007	371	248	667	126	1459	356	896	174	184	679	5160	27		
2008	345	185	157	201	1781	15	180	109	224	2135	5332	41	34098	32
2009	252	117	321	146	1308	663	370	70	303	422	3971	18	40496	27
2010	288	155	1137	899	960	154	646	275	246	293	5053	28	28781	32
2011	-	607	249	1482	2342	334	1229	2429	130	839	9642	21	384970	36
2012	-	341	286	664	1740	336	1188	543	65	9447	14609	61	97741	28
2013	82	303	568	335	2740	232	1234	803	2349	2338	10985	31	291080	57
2014	-	299	108	142	3066	77	709	1152	1454	1169	8176	19	138245	41
2015	-	173	0	968	2214	246	546	2165	1785	2665	10762	22	226724	37

Table 16. American plaice *Hipplogossoides platessoides* abundance indices (millions).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl.	CI	E-Grl	
1992		1.4	1.0	2.8	1.4	0.6	1.7	1.4	0.5	0.1	10.8	22		
1993		1.3	1.7	1.2	3.0	0.8	2.0	1.7	0.6	0.9	13.2	24		
1994		2.2	3.7	3.3	14.9	7.0	9.5	0.7	0.3	0.5	42.0	32		
1995		1.0	0.6	1.8	6.3	0.9	2.7	3.0	0.3	0.5	17.2	29		
1996		1.6	3.4	7.3	4.6	1.7	4.2	3.1	0.1	0.7	26.6	18		
1997		6.6	2.0	2.7	15.1	1.0	10.4	2.0	0.3	0.7	40.8	47		
1998		1.6	1.9	2.4	3.6	1.2	1.5	6.4	0.9	5.6	25.2	27		
1999		0.5	1.7	2.0	6.8	1.2	5.3	1.9	1.0	0.6	20.9	18		
2000		1.8	4.8	6.7	14.8	1.9	3.5	3.8	0.5	0.5	38.5	23		
2001		1.3	1.3	2.2	13.6	1.5	3.5	2.3	0.6	0.6	26.8	31		
2002		0.0	3.8	4.7	8.8	1.8	5.1	31.8	1.5	1.8	59.5	49		
2003		2.2	5.2	5.5	25.7	1.6	13.7	15.0	0.8	2.0	71.7	22		
2004		0.7	1.4	5.3	11.9	2.8	10.2	8.9	0.6	1.6	43.4	27		
					New surve	ey gear in	troduced					cv		cv
2005	3.5	2.1	13.7	5.8	59.9	17.3	74.5	19.5	6.1	5.6	208.0	9		
2006	3.9	1.3	15.0	10.9	40.3	10.0	38.1	21.6	4.4	4.5	150.0	10		
2007	6.5	0.6	12.3	6.3	46.8	9.4	31.2	11.9	2.6	2.7	130.8	12		
2008	7.1	3.7	10.8	4.0	29.5	2.2	13.5	11.4	1.3	1.3	84.8	8	17.2	22
2009	2.9	5.6	18.0	14.3	41.4	8.1	11.6	7.6	1.1	2.3	112.8	9	20.2	12
2010	9.5	2.8	40.7	14.3	50.7	9.2	34.4	20.3	1.2	2.1	185.2	8	17.4	19
2011	-	8.6	40.7	17.1	103.6	6.2	30.3	21.6	0.8	1.9	230.7	11	17.5	16
2012	-	2.3	18.3	15.3	51.3	8.3	19.4	11.4	0.9	1.1	129.4	9	10.4	22
2013	4.4	19.0	39.0	25.4	84.1	9.1	34.1	27.9	4.7	0.9	248.6	13	13.1	17
2014	-	7.0	22.0	11.0	36.0	6.0	15.0	10.0	2.0	1.0	110.0	7	10.0	19
2015	-	41,0	55,0	28,0	89,0	39,0	25,0	17,0	2,0	1,0	296,0	10	10,8	23

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl.	CI	E-Grl	
1992		57	54	213	78	51	137	128	55	6	779	23		
1993		56	72	87	90	28	107	141	69	43	694	26		
1994		112	293	277	487	308	284	60	22	64	1906	22		
1995		65	54	279	191	51	87	130	19	18	895	18		
1996		119	264	670	231	74	142	119	7	27	1654	18		
1997		323	150	287	398	87	367	135	31	25	1803	21		
1998		154	178	328	185	48	82	398	97	102	1573	20		
1999		81	136	170	287	43	202	145	65	44	1173	17		
2000		175	278	408	551	74	178	227	89	40	2021	18		
2001		169	79	140	403	65	162	153	38	67	1276	17		
2002		0	184	327	414	151	275	1061	92	67	2570	23		
2003		196	352	338	1013	125	680	1048	59	171	3980	20		
2004		138	143	192	537	128	715	747	38	150	2789	27		
				Ne	w survey	[,] gear int	roduced	l				cv		cv
2005	246	346	944	722	3049	1136	4511	2196	470	569	14190	8		
2006	268	210	608	1148	2288	702	3534	2163	399	380	11699	13		
2007	356	112	544	731	2877	731	2418	810	230	308	9118	12		
2008	371	437	648	382	1889	212	1067	898	128	149	6181	9	2495	42
2009	183	556	649	643	1977	585	826	825	102	127	6473	7	2577	15
2010	355	235	1539	1214	2436	748	2128	1460	105	224	10442	9	3181	30
2011	-	463	1364	1459	5464	792	1391	2020	99	208	13256	7	4385	26
2012	-	236	756	730	3508	662	1350	777	121	178	8317	9	2702	33
2013	325	920	1472	1457	4066	521	2818	1425	568	121	13694	10	2269	31
2014		311	746	990	2245	337	1089	1027	203	130	7078	7	1203	26
2015		2046	1320	2956	4547	1364	1635	1642	246	188	15944	9	2351	30

Table 17. American plaice *Hipplogossoides platessoides* biomass indices (tons).

Table 18. Atlantic wolffish *Anarhichas lupus* abundance indices (millions).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		0.0	0.0	0.0	0.0	0.1	0.3	0.1	0.1	0.1	0.8	33		
1993		0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.3	0.3	1.2	41		
1994		0.0	0.1	0.0	0.3	0.2	1.9	0.4	0.4	1.6	4.9	36		
1995		0.0	0.0	0.0	0.1	0.1	0.4	0.1	0.4	0.2	1.3	34		
1996		0.0	0.1	0.0	0.1	0.1	0.4	0.2	0.6	0.6	2.0	50		
1997		0.0	0.0	0.0	0.2	0.0	0.8	0.2	0.3	0.1	1.7	28		
1998		0.0	0.3	0.0	0.3	0.1	0.7	0.4	0.5	0.7	3.0	30		
1999		0.0	0.2	0.1	0.1	0.1	0.4	0.2	0.4	0.4	2.0	44		
2000		0.0	0.5	0.1	0.3	0.4	0.4	0.6	1.7	0.0	4.0	69		
2001		0.0	0.1	0.2	0.4	0.1	0.2	0.4	0.2	0.1	1.5	40		
2002		0.0	0.4	0.1	0.5	0.0	0.9	0.6	1.1	0.5	4.1	33		
2003		0.0	0.1	0.6	2.3	0.2	1.5	0.5	2.3	1.1	8.8	27		
2004		0.0	0.1	0.3	1.6	0.9	0.2	0.3	0.7	0.3	4.4	39		
				N	ew surve	y gear int	roduced					cv		cv
2005	0.1	0.0	0.5	0.0	1.5	0.6	6.9	2.4	5.5	1.5	19.1	16		
2006	0.0	0.1	0.8	0.1	0.9	0.6	2.4	1.2	1.0	2.8	9.8	14		
2007	0.0	0.0	0.7	0.0	1.3	0.6	0.7	0.3	0.4	0.7	4.8	15		
2008	0.2	0.0	1.0	0.1	0.7	0.5	1.0	0.5	0.4	0.3	4.6	15	4.7	26
2009	0.0	0.1	1.0	0.1	0.7	0.4	1.5	0.2	1.1	0.4	5.6	19	12.2	35
2010	0.1	0.4	2.6	0.1	2.3	0.6	3.1	0.8	0.9	0.6	11.4	8	5.3	17
2011	-	0.1	1.1	0.1	1.3	0.3	0.5	0.9	0.3	0.4	5.0	14	6.4	40
2012	-	0.0	2.2	0.2	1.6	0.3	0.7	1.2	0.3	0.6	7.0	18	3.8	22
2013	0.1	0.1	3.1	0.0	1.0	0.3	1.7	0.4	0.5	0.8	7.9	18	6.5	14
2014	-	0.4	2.3	0.3	0.7	0.8	0.3	0.1	0.2	0.3	5.5	16	2.6	20
2015		0,6	4,3	0,3	3,1	4,6	6,3	1,1	0,8	0,3	21,5	23	2,9	18

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		0	7	0	8	21	47	22	28	31	163	33		
1993		0	5	6	1	2	26	35	29	188	292	64		
1994		0	12	9	40	39	198	30	65	249	644	38		
1995		0	0	0	22	9	38	24	90	36	219	40		
1996		0	1	3	17	23	41	35	103	101	324	53		
1997		0	3	0	21	1	115	16	58	15	228	30		
1998		0	3	2	13	9	60	34	104	133	358	38		
1999		0	4	13	21	12	8	6	202	62	329	79		
2000		0	20	3	52	31	55	54	396	15	626	90		
2001		0	1	3	11	1	16	21	42	23	117	40		
2002		0	9	2	77	5	73	78	216	118	579	37		
2003		0	2	41	267	64	361	60	205	148	1148	24		
2004		0	6	19	160	56	96	21	162	100	620	27		
				Nev	v survey	gear int	roduced					cv		cv
2005	11	0	76	5	201	123	1564	348	890	640	3858	16		
2006	3	4	58	60	127	134	359	168	172	1241	2326	20		
2007	0	0	73	6	357	326	147	107	122	533	1670	21		
2008	15	0	76	31	124	55	348	88	136	226	1098	16	1091	26
2009	0	3	109	30	155	72	275	92	211	648	1595	31	2870	32
2010	10	12	509	51	350	144	668	134	104	345	2327	17	1295	25
2011	-	46	96	64	197	69	121	233	63	205	1094	17	1633	40
2012	-	0	239	82	506	44	79	252	64	444	1708	23	1172	20
2013	9	27	239	20	136	81	555	183	115	636	2000	25	1652	24
2014	-	9	79	69	158	62	107	78	100	458	1121	30	520	34
2015		56	450	168	478	762	1543	752	547	310	5066	22	1585	32

Table 19. Atlantic wolffish Anarhichas lupus biomass indices (tons).

Table 20. Spotted wolffish Anarhichas minor abundance indices (millions).

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.3	28		
1993		0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.4	36		
1994		0.0	0.3	0.0	0.2	0.1	0.4	0.0	0.0	0.0	1.1	33		
1995		0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.4	22		
1996		0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.5	24		
1997		0.1	0.3	0.0	0.2	0.0	0.0	0.1	0.0	0.0	0.8	23		
1998		0.1	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.6	25		
1999		0.9	0.3	0.1	0.4	0.1	0.0	0.0	0.0	0.0	1.7	42		
2000		0.0	0.8	0.0	0.5	0.1	0.0	0.0	0.1	0.0	1.6	28		
2001		0.3	0.4	0.1	0.3	0.0	0.0	0.0	0.0	0.0	1.1	27		
2002		0.3	2.1	0.1	0.4	0.1	0.1	0.1	0.0	0.0	3.1	42		
2003		0.5	1.5	0.2	1.4	0.0	0.6	0.0	0.0	0.1	4.3	24		
2004		0.2	0.7	0.2	0.6	0.0	0.1	0.1	0.0	0.1	2.1	30		
				New	survey g	ear intro	duced					cv		cv
2005	0.0	1.2	1.9	0.0	0.7	0.2	0.4	0.3	0.2	0.1	5.1	23		
2006	0.0	0.4	1.0	0.1	1.4	0.3	0.3	0.2	0.1	0.2	3.9	23		
2007	0.1	0.5	1.0	0.1	1.5	0.4	0.2	0.1	0.0	0.1	3.9	31		
2008	0.1	0.5	0.6	0.1	0.4	0.0	0.1	0.1	0.0	0.1	2.1	15	1.1	49
2009	0.0	0.4	1.7	0.1	0.6	0.1	0.0	0.0	0.0	0.1	3.1	26	2.3	16
2010	0.2	1.0	1.8	0.2	0.7	0.2	0.2	0.1	0.1	0.2	4.5	12	2.9	24
2011	-	0.9	1.8	0.2	0.9	0.1	0.2	0.1	0.0	0.1	4.4	14	2.3	32
2012	-	0.8	1.0	0.1	0.7	0.1	0.1	0.2	0.1	0.2	3.2	15	2.9	27
2013	0.1	1.3	2.2	0.2	1.7	0.1	0.3	0.2	0.4	0.4	6.9	20	2.5	21
2014		1.4	2.3	0.1	0.2	0	0.1	0.2	0.2	0.2	4.7	21	1.5	20
2015		2,2	2,2	0,2	0,7	0,4	0,5	0,4	0,2	0,4	7,4	14	2,0	25

Year	0A	1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		4	76	65	110	3	34	33	6	19	351	28		
1993		55	0	100	47	16	66	4	0	282	571	53		
1994		223	180	0	81	40	119	28	11	1	683	25		
1995		0	60	15	68	16	22	19	11	164	377	49		
1996		169	77	12	193	15	6	31	0	50	554	26		
1997		193	72	37	81	0	16	124	0	5	530	34		
1998		2	64	0	143	18	6	125	100	7	465	32		
1999		131	121	23	28	36	13	2	0	0	354	31		
2000		0	188	31	133	36	19	1	593	0	1000	114		
2001		523	30	25	310	80	4	0	0	10	982	52		
2002		135	194	20	169	81	74	233	71	126	1104	28		
2003		299	1416	195	978	22	741	107	0	226	3985	22		
2004		124	1270	623	567	2	78	603	352	545	4164	35		
				Ne	w survey	v gear int	roduced					cv		cv
2005	150	764	1182	6	1058	155	741	2514	568	137	7275	26		
2006	0	472	1257	243	1345	1066	1336	716	350	1145	7930	19		
2007	14	543	705	196	1249	678	874	372	178	634	5442	17		
2008	63	1487	2050	74	730	24	347	995	425	372	6567	44	5262	49
2009	0	280	627	653	1453	154	35	129	189	160	3662	18	2890	27
2010	66	2363	1508	1195	1006	167	222	238	212	1715	8691	18	3877	36
2011	-	2537	2244	742	2460	1210	2294	479	218	769	12955	23	6133	28
2012	-	1227	683	464	3166	325	468	390	555	1104	8383	21	6871	30
2013	7	2026	2402	544	3135	632	1494	658	3163	4845	18906	22	4622	31
2014	-	779	3038	381	753	9	427	2740	1496	1916	11538	23	10468	25
2015		3994	3814	843	3655	518	1451	3208	1127	3646	22256	15	3227	29

Table 21. Spotted wolffish Anarhichas minor biomass indices (tons).

Table 22. Thorny skate *Amblyraja radiata* abundance indices (millions).

Year		1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		2.9	1.3	1.3	1.4	0.2	0.6	1.0	0.1	0.0	9.0	25		
1993		0.7	0.4	0.8	1.6	0.5	0.9	0.5	0.6	0.2	6.1	21		
1994		1.9	1.8	1.2	3.9	1.8	2.8	0.4	0.2	0.0	14.1	21		
1995		2.7	1.3	0.8	2.8	1.8	0.7	2.4	0.5	0.1	13.1	26		
1996		4.6	2.2	1.5	4.0	0.4	0.7	0.6	0.0	0.6	14.6	23		
1997		4.6	1.4	0.6	4.4	0.2	2.3	0.7	0.1	0.0	14.4	26		
1998		2.8	4.1	3.2	3.0	0.3	0.6	0.9	0.4	0.3	15.5	25		
1999		1.7	3.2	0.9	2.8	0.3	1.0	0.8	0.2	0.2	11.0	23		
2000		2.1	3.4	2.0	4.0	0.5	0.6	0.5	0.1	0.6	13.9	23		
2001		3.2	1.2	0.6	2.3	0.3	0.4	0.5	0.1	0.2	8.8	32		
2002		0.5	1.1	0.9	2.2	0.4	0.9	2.6	0.2	0.5	9.3	25		
2003		3.9	2.4	1.4	7.2	0.1	0.7	0.8	0.2	0.7	17.4	26		
2004		2.5	1.3	1.3	1.2	0.2	0.2	0.7	0.2	0.1	7.9	24		
New survey gear introduced									cv		cv			
2005	0.1	4.1	2.8	2.2	3.7	0.5	0.8	0.6	0.4	0.2	15.4	10		
2006	0.2	3.8	2.2	3.0	2.8	0.2	2.3	2.8	0.5	1.1	18.8	10		
2007	0.1	3.3	1.4	1.6	3.8	0.1	1.3	0.9	1.4	0.4	14.3	20		
2008	0.2	5.4	1.4	1.0	1.9	0.1	0.5	1.1	0.1	0.2	11.9	16	0.7	49
2009	0.0	10.9	1.1	3.9	1.9	0.3	0.3	0.6	0.2	0.4	19.7	20	2.3	15
2010	0.1	5.6	4.0	4.1	3.3	0.8	2.7	1.2	0.1	0.0	21.8	12	2.9	23
2011	-	5.5	2.3	3.6	6.7	0.4	4.0	4.9	1.7	0.1	29.2	16	2.2	21
2012	-	2.7	2.2	2.4	4.7	0.5	1.3	2.1	0.1	0.0	16.1	15	1.8	26
2013	0.4	4.9	2.1	3.2	9.1	0.6	1.7	1.1	0.1	0.1	23.4	27	1.6	23
2014		2.4	2.4	1.6	1.9	0.5	0.7	0.2	0.1	0	9.8	13	0.6	39
2015		7,8	8,7	6,5	7,6	5,7	2,5	3,2	0,2	0,2	42,3	15	1,3	28

Year		1AN	1AS	1AX	1BN	1BS	1C	1D	1E	1F	W-Grl	CI	E-Grl	
1992		370	268	162	226	37	57	113	32	5	1271	20		
1993		60	65	199	171	87	116	128	40	22	887	24		
1994		494	283	182	465	275	311	55	61	3	2129	23		
1995		253	227	301	451	327	121	300	78	24	2083	21		
1996		631	554	623	509	61	105	65	0	207	2755	23		
1997		830	411	322	566	56	156	187	25	7	2559	26		
1998		392	839	535	427	78	38	114	81	76	2580	26		
1999		278	931	253	247	45	94	96	25	49	2019	34		
2000		323	1178	345	428	122	84	120	3	197	2799	23		
2001		325	215	222	248	52	52	89	10	60	1272	28		
2002		13	246	320	280	101	86	687	63	177	1973	29		
2003		1005	902	567	1481	11	107	174	24	206	4478	25		
2004		598	520	791	197	47	33	333	98	78	2694	23		
New survey gear introduced										cv		CV		
2005	26	776	953	676	558	219	145	249	125	96	3822	15		
2006	66	836	364	662	361	91	477	807	224	303	4193	14		
2007	55	897	319	566	709	50	258	152	164	87	3258	15		
2008	98	1411	315	400	353	20	45	222	25	47	2937	21	646	49
2009	7	2267	411	904	374	90	81	97	78	55	4365	11	1615	16
2010	20	1092	1036	1062	623	293	434	368	16	19	4962	11	2397	29
2011	-	970	556	1129	1152	84	477	1172	80	42	5661	11	1925	22
2012	-	738	635	722	910	107	192	145	31	16	3496	12	1546	27
2013	117	1222	756	1671	1453	219	408	255	57	40	6198	18	1613	25
2014		742	896	713	410	249	200	73	24	3	3311	17	497	50
2015		1467	1473	1830	1814	1582	273	791	90	145	9465	13	1362	32

Table 23. Thorny skate Amblyraja radiata biomass indices (tons).

Fig 1. The Stratification areas used in the Greenland Shrimp and Fish survey. In West Greenland each strata is divided in depth strata of 150-200m. 200-300m. 300-400m and 400-600m. "Shallow" water strata of 0-100m and 100-150m delimited by the 3 nm line and the NAFO Div. Borders of the shallow water stratas are not shown. In East Greenland each strata is divided in depth strata of 200-400m and 400-600m. "Shallow" water strata of 0-200m is delimited by the 3 nm line.

Fig 2. Greenland halibut abundance (million) and biomass (Kt) for West Greenland.

Fig 3. Atlantic cod abundance (million) and biomass (Kt) for West Greenland.

Fig 4. Redfish species (*S. mentella* and *S. norvegicus* combined) abundance (million) and biomass (Kt) for West Greenland. Dashed lines are trawl calibrated indices.

Fig 6. Atlantic wolffish abundance (million) and biomass (Kt) for West Greenland.

Fig 7. Spotted wolffish abundance (million) and biomass (Kt) for West Greenland.

Fig 8. Thorny skate abundance (million) and biomass (Kt) for West Greenland.

Fig 9. Total recruitment of age one including Disko Bay.

Fig 10. Distribution of one year old Greenland halibut in the 2013-2015 surveys.

Fig 11. Number of one-year of Greenland halibut by division and year.

Distribution of abundance

Fig 12. Relative distribution of one-year old Greenland halibut between offshore areas and inshore Disko Bay.

Fig. 13. Distribution of age 2 and 3+ Greenland halibut in the 2015 survey.

Fig. 16. Stacked Length frequencies for golden redfish (*Sebastes Norvegicus*), deep-sea redfish (Sebastes mentella) and juvenile redfish (Sebastes sp.) for West Greenland (left) and length frequencies per division (right).

Fig. 17. American place (*Hippoglossoides platessoides*). Length frequencies for West Greenland (left) and length frequencies per division in (right).

Fig. 20. I norny skate (*Amblyraja radiata*) length frequencies for West Greenland (left) and len frequencies per division (right).

32

Fig. 21. Greenland halibut survey biomass in kg/km² and abundance in numbers/km².

Fig. 22. Atlantic cod survey biomass in kg/km² and abundance in numbers/km².

Fig. 23. Juvenile redfish < 20 cm survey biomass in kg/km² and abundance in numbers/km².

Fig. 24. Deep-sea redfish survey biomass in kg/km² and abundance in numbers/km².

Fig. 25. Golden redfish survey biomass in kg/km² and abundance in numbers/km².

Fig. 26. Golden redfish and deep-sea redfish survey biomass in kg/km² and abundance in numbers/km².

Fig. 27. American plaice survey biomass in kg/km² and abundance in numbers/km².

Fig. 28. Atlantic wolffish survey biomass in kg/km² and abundance in numbers/km².

Fig. 29. Spotted wolffish survey biomass in kg/km² and abundance in numbers/km².

Fig. 30. Thorny skate survey biomass in kg/km² and abundance in numbers/km².

Appendix I.

2015 biomass (in Kilotonnes) and abundance (in million individuals) indices for Elasmobranchs. Teleosts. Cephalopods and crustaceans excl. Shrimp species for the West and East-Greenland part of the GINR shrimp fish survey 0-600m including the West-Greenlandic Shelf part of NAFO div 0A (Canada).