Northwest Atlantic



**Fisheries Organization** 

Serial No. N6558

NAFO SCR Doc. 16/17

# **SCIENTIFIC COUNCIL MEETING – JUNE 2016**

Oceanography and Scientific Data NAFO STACFEN Report 2015

Mathieu Ouellet Oceans Science Branch Ecosystem Science Directorate Fisheries and Oceans Canada (DFO) 200 Kent Street, Ottawa, ON, Canada K1A0E6 E-mail: <u>info@dfo-mpo.gc.ca</u>

## Abstract

The Oceans Science branch (OSB), as the Regional Environmental Data Center for NAFO, is required to provide an annual inventory of environmental data collected in the NAFO Convention Area to the NAFO subcommittee for the environment (STACFEN). Inventories and maps of physical oceanographic observations such as ocean profiles, near surface thermosalinographs, drifting buoys, currents, waves, tides and water level measurements for the calendar year 2015 are included.

It is important for STACFEN to encourage members to send data and information to the designated data center in order to get significant return for NAFO member countries.

## Introduction

The Oceans Science branch (OSB) of DFO acts as Regional Environmental Data Center for NAFO. This role began in 1963 when the Canadian Oceanographic Data Centre started providing data management functions to ICNAF, and was subsequently formalized in 1975 by which time the CODC had become the Marine Environmental Data Service (MEDS). The unit within MEDS responsible for the NAFO Regional Environmental Data Center function was later transferred to DFO branches known as Integrated Science Data Management (2005-2013), Oceanography and Scientific Data (2013-2014), Oceanographic Services (2014-2015) and Oceans Science (2015-current).

In order for OSB to carry out its responsibility of reporting to the Scientific Council, the Designated National Representatives selected by STACFEN are requested to provide OS with all marine environmental data collected in the Northwest Atlantic for the preceding years.

Provision of a meaningful report to the Council for its meeting in June 2016 required the submission to OSB of a completed oceanographic inventory form for data collected in 2015, and oceanographic data pertinent to the NAFO Convention Area, for all stations occupied in the year prior to 2015. The data of highest priority are those from the standard sections and stations, as described in NAFO SCR DOC., No. 1, Serial N 1432, 9p.

Data that have been formatted and archived at OS are available to all members on request. Requests can be made by telephone (613) 990-6065, by e-mail to <u>isdm-gdsi@dfo-mpo.gc.ca</u>, by completing an on-line order

form on the OSB web site at <u>http://www.Meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/request-commande/form-eng.asp</u> or by writing to Oceanographic Services, Fisheries and Oceans Canada, 12<sup>th</sup> Floor, 200 Kent St., Ottawa, Ont. Canada K1A 0E6.

### **Data Processing and Management**

In the NAFO Convention Area, a variety of oceanographic surface, near-surface and subsurface observations, including vertical profiles of parameters such as temperature, salinity, oxygen, nutrients and other chemical and biological variables, are being made every day by ships borne instruments and autonomous devices. The Oceans Science Branch of DFO (OSB) receives these data either in real-time or delayed mode.

Real-time or near real-time data are acquired either directly from instruments (for instance, Argo Canada profilers), from research ships or ships of opportunity, from universities, from DFO research institutes, from the Global Telecommunication System of the World Meteorological Organization and the NOAA's Geostationary Satellite Server. Some real-time data transmitted over satellite or low bandwidth communications are pre-formatted in a way that reduces their vertical resolution or significant figures. Such data receive some form of quality control but generally do not benefit from the calibration made possible after a cruise or an instrument's recovery (in the case of moored equipment or remote controlled devices).

Delayed mode data are acquired through exchanges with research institutes, universities and other ocean databases, such as the World Ocean Database (WOD, NOAA & WDS) and the ICES Oceanographic database. The delayed mode data generally takes from months to years to process after a cruise is over or after an instrument has been recovered. For this reason, OSB continually receives delayed mode data from years preceding the previous observation years and must also query the aforementioned international databases (ICES, WOD) for observational periods covering a number of years prior to the year elapsed.

Most real-time data are subject to be replaced with a delayed mode version when available, and even delayed mode data are sometimes subject to recalibration, at which point it must be updated in the archives.

Data processing at OSB begins by reformatting files from their original formats into a common format. Quality control is carried out by a combination of specially designed software and trained personnel. The quality control has four main functions. The first is to check and ensure that each data message is properly formatted, units are standardized, and parameter range checks are performed. The second is to identify any duplication, and select the best version based on data type, source of the data, and general qualities in analysis and reporting of the observations. The third is to identify and correct date/time and geographical positioning errors using computer tests and visual inspection of the track for each cruise. The final quality control procedure uses a series of algorithms to find and flag common instrument failures found in profiles or series of subsurface measurements. These algorithms depend on data, platform and/or observation program type.

#### **Data Summary**

The data collected in the NAFO Convention Area (NCA) can be grouped by a number of ways (variable type, sampling type, platform type, real-time vs. delayed mode, source, etc.). To facilitate table and geographical representation, the categorization behind tables and figures differs slightly. The following table summarizes counts for 2015 by data type with a correspondence to the figures (p. 10-15) and tables (p. 16-34) where more information can be found.

| Data Type            | Platform Type              | Counts/Duration            | Table # | Figure # |
|----------------------|----------------------------|----------------------------|---------|----------|
| Oceanographic        |                            | 7926* profiles from        |         | <b>-</b> |
| profiles             | autonomous platforms       | 125 platforms              | 1       | 1        |
|                      |                            | 6345 profiles (2877        |         |          |
|                      |                            | +3441*) from over 28       |         |          |
|                      | ship**                     | platforms***               | 2       | 2        |
| Surface/near-surface |                            |                            |         |          |
| observations         | ship (thermosalinograph)   | 5387* obs. from 1 ship     | 2       | 4        |
|                      |                            | 245744* obs. from 136      |         |          |
|                      | drifting buoys             | buoys                      | 4       | 4        |
|                      |                            | Over 47900* obs. from      |         |          |
|                      | moored buoys temp/waves    | 10 buoys                   | 4       | 4        |
|                      |                            | 108625* obs. from 15       |         |          |
|                      | moored buoys temp/salt     | buoys                      | 4       | 4        |
|                      |                            | 90746* obs. from 3         |         |          |
|                      | fixed platforms            | platforms                  | 4       | 4        |
|                      |                            | 21 sites, avg. 1 year      |         |          |
|                      | water level gauges         | each                       | 5       | 4        |
| Sub-surface          | Moored current-meter, CTD, | 18 time series at 7 sites, |         |          |
| observations         | thermograph, ADCP          | avg. 284 d each            | 6       | 5        |

Data observed in NAFO Convention Area in 2015 and acquired in 2015

\*Data formatted for real-time transmission

\*\*Statistics also include data measured by one Canadian helicopter

\*\*\*Some ships do not identify themselves

Data observed prior to 2015 in NAFO Convention Area and acquired in 2015

| Data Type     | Platform Type      | Counts/Duration         | Table # | Figure # |
|---------------|--------------------|-------------------------|---------|----------|
|               |                    | 6377 profiles** (6190 + |         |          |
| Oceanographic |                    | 187*) from over 30      |         |          |
| profiles      | Ship               | platforms               | 3       | 3        |
|               |                    | 61 time series at 36    |         |          |
| Sub-surface   |                    | sites, average of 104   |         |          |
| observations  | Moored thermograph | days each               | 6       | 6        |

\*Data formatted for real-time transmission

\*\*The amount of bottle data profiles measured <u>prior</u> to 2015 and loaded in a DFO database called BioChem, in 2015, could not be assessed

#### Description

### Oceanographic profiles

#### Argo (figure 1, table 1)

Argo is an international program which started in 2000 with aims to deploy profiling floats on a 3 by 3 degree grid in the oceans of the world. Each profiling float samples and reports both temperature and salinity from 2000 m to the surface every 10 days. Some of the floats also report oxygen. Data are distributed on the Global Telecommunications System (GTS) of WMO within 24 hours of collection and made available on two mirror Global servers located in France and in the USA.

OSB performs the data management duties of Argo Canada profilers from instrument to the GTS and global servers. OSB also decodes and stores all Argo data circulating on the GTS. Over 3900 Argo profiling floats are currently sampling the world oceans. The distribution of profiles measured by floats operated by four countries (25% Canada, 46% France, 4% UK and 25% USA) in the NCA, in 2015, highlights the success of Argo

#### as an international project.

A profiling instrument like the ones used in the Argo project, but not part of the Argo project, was deployed in the Gulf of St. Lawrence by the Institut des Sciences de la Mer (Université du Québec à Rimouski) in conjunction with DFO and Environment and Climate Change Canada.

### *Gliders (figure 1, table 1)*

Underwater gliders are autonomous underwater vehicles following saw tooth-like profiles in the ocean while measuring various parameters, during missions that can last months and extend over thousands of kilometers.

DFO regularly acquires data from the Ocean Tracking Network (headquartered at Dalhousie University) owned gliders, both active in NCA, and OSB creates messages for transmission on the GTS after performing automatic quality control. OSB also decodes and stores all glider data circulating on the GTS.

### *Mammals (figure 1, table 1)*

Among data decoded by OSB from the GTS are real-time data transmitted by the Sea Mammal Research Units of University of St Andrews. These data are measured by tags featuring miniaturized CTD sensors attached to marine mammals and transmitting oceanographic data in real-time when the animals surface. These devices are used by a variety of researchers worldwide. In 2015 a few observations were made in and around Disko Bay (Greenland).

### Ships (figures 2a & 2b, tables 2 & 3)

OSB receives real-time (within 30 days of observation) messages containing temperature and salinity profile data (either from CTD or XBT) from various Canadian Coast Guard ships, helicopter or opportunity vessels performing research or monitoring activities. The messages are sometimes sent from the ships or shortly after the ship's return. The data are quality controlled (see reference, GTSPP QC manual) prior to transmission on the GTS (if within 30 days of observation) or ingestion in the archive.

OSB decodes and stores all ship based data circulating on the GTS, either CTD or XBT. Some of this data are sampled by ships of opportunity

OSB further receives delayed mode data from DFO institutes: Northwest Atlantic Fisheries Centre, Bedford Institute of Oceanography (BIO), Maurice-Lamontagne Institute (MLI), St. Andrews' Biological Station, Gulf Fisheries Center (GFC, indirectly through BIO or MLI) and the Freshwater Institute (FWI), which it then ingests after conversion and visual quality assurance.

OSB also receives delayed mode data from foreign institutes and queries the World Ocean Database and ICES Oceanographic Database for additional data in the NAFO Convention Area (NCA). This year, OSB also downloaded data from the Spanish Institute of Oceanography which had been made available on SeaDataNet, upon notification. Comparisons are made between various sources to ensure always store the most recently calibrated data and with the most available number of fields. BIO provides support to OSB in acquiring and reformatting data from the Woods Hole Oceanographic Institution.

## Near-surface observations

#### Moored buoys and fixed stations (figure 4, table 4)

OSB continuously acquires data from meteorological buoys in Canadian waters equipped with ocean data acquisition systems. These buoys belong to Environment and Climate Change Canada and measure wind velocity, air and water temperature, pressure and wave spectral energy with estimated period and significant wave height. All data are currently acquired via the Geostationary Operational Environmental Satellite (GOES), on which the buoys transmit, but in some situations the data is acquired in delayed-mode or from the GTS. The wave data has quality flags assigned by a combination of automated algorithms and a visual inspection of the spectral shape.

OSB also acquires, in delayed mode, data from wave measuring buoys deployed collected near offshore oil and gas sites as per NEB Guidelines. In 2015, a data submission from year 2015 wave buoys at two locations was archived at OSB.

A number of US moored buoys and fixed stations in the NCA transmit data on the GTS, and those are also acquired by OSB. The stations belong to various institutions but their data management is coordinated by NOAA's National Data Buoy Center. Their positions are typically near the coast.

## Drifting buoys (figure 4, table 4)

OSB decodes and stores all drifting buoy data circulating on the GTS. Like in Argo, these buoys are deployed by various countries. Most buoys are designed for the Surface Velocity Program and are drogued at 15 m depth. The data reported are temperature and sometimes salinity. The buoy calculated displacement, over time, provides an estimation of currents at the drogued depth.

### *Thermosalinographs (figure 4, table 2)*

OSB decodes and stores all thermosalinograph data circulating on the GTS. In 2015, only one ship reported thermosalinograph data in the NCA.

### Water level gauges (figure 4, table 6)

OSB processes and archives observed water level data collected from the gauge network maintained by the Canadian Hydrographic Service (CHS), plus a few stations operated by Environment and Climate Change Canada. Over 2 million new observations are archived every month. The historical tide and water level data archive has digital records with the earliest dating back before the turn of the century.

## Sub-surface moorings (figures 5-6, table 5)

Current meters have been deployed in the NCA for many years. Depending on location, the data are processed and archived by the BIO or MLI.

In 2015, 2014-2015 moored micro-cat CTD and Acoustic Current Doppler Profiler data at the Ocean Tracking Network sites 1-3 were recovered, processed and made available by and at BIO. BIO also processed and made available data from 2013-2015 ADCP, moored micro-cat CTD and thermograph data at OSNAP (international project: Overturning in the Subpolar North Atlantic Program) sites. Data from current meters deployed as part of the the Labrador Sea and Scotian Slope (2009-2010) components of the Atlantic Off-Shelf Monitoring Program were also processed at BIO. Finally, some older Scotian Shelf moored thermograph data from 1967 and 1968 were recalibrated by BIO.

#### **Other Activities**

#### Atlantic Zone Monitoring Program

The DFO Atlantic Zone Monitoring Program (AZMP) activities include regular sampling for 7 fixed stations and 14 standard sections, and research cruises in the AZMP area to collect other physical, chemical and biological data. As part of ISDM' activities in data management, OS continues to build and maintain the AZMP web site: http://www.Meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html.

The wealth of data and information on the site includes:

- Physical and chemical data from 1999 to the present such as CTD, bottle and bathythermograph measurements
- Climate indices showing long term trends of physical variables in the water and atmosphere.
- Remote Sensing links for Ocean Colour, SST and Primary Productivity product

The data collected as part of AZMP is also compiled in figures and tables pertaining to ship observations. A

climate index of area vs. bottom temperature-range distribution of bottom waters calculated for four NAFO sub-areas (4X, 4W, 4Vn, 4Vs), for the Northern Gulf and Magdalen Shallows, is made available along with other climate indices on the AZMP website.

## Aquatic Invasive Species (AIS)

Aquatic Invasive Species are a major threat to Canada's fisheries and aquaculture industry and have been entering Canadian waters for centuries but never as rapidly as today. Every decade, some 15 alien species establish themselves in our coastal or inland waters. In the absence of their natural predators, the most aggressive of them spread rapidly. They can radically alter habitat, rendering it inhospitable for native species. The zebra mussel and sea lamprey are examples of such species that have greatly affected the Great Lakes.

The most effective approach to dealing with this threat involves managing the pathways through which invasive species enter and spread through Canadian waters. For aquatic species these pathways are shipping, recreational and commercial boating, the use of live bait, the aquarium/water garden trade, live food fish, unauthorized introductions and transfers, and canals and water diversions. The shipping pathway is considered the largest single source of new aquatic invasive species. Ballast water that is taken on in foreign ports, for ship stability and safety at sea, is discharged in Canadian waters, along with undesirable "hitchhikers" - foreign species ranging from bacteria to larger organisms.

The Canadian Aquatic Invasive Species database and web application was developed in 2004-5. The main objective was to provide a geo-referenced repository for all invasive species observations gathered in Canada by DFO scientists, provincial departments, other federal or municipal departments and the general public. The second objective was to create a decision making tool that would allow the production of augmented value products that would illustrate trends and movements over time and various locations and thus allow the department to be proactive rather than reactive to observations made.

Currently there is data from the Great Lakes, the Maritimes and some from the Vancouver area. Most of the data are observations of location name, long-lat, species name, date, and any metadata provided. It was not possible at the time of this report to obtain counts of new observations added in 2015.

#### Offshore Oil and Gas Environmental Monitoring Data

OSB also acquires, in delayed mode, monitoring physical oceanographic data collected near offshore oil and gas sites as per NEB Guidelines. Data submissions from year 2015 contained wave buoy and environmental reports at two locations. The wave data are tagged for inclusion in the OSB wave archives and are reported in table 3.

#### **Data Access**

Argo data are sent to the global data centers within 24 hours of collection and a national website (<u>http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/Argo/index-eng.html</u>) presents products and statistics on Argo Canada profilers along with links to the data.

GTS-decoded or otherwise acquired real-time oceanographic profiles, US costal mooring and US fixed platform data from the GTS are forwarded three times a week to the Global Temperature Salinity Profile Programme's Continuously Managed Database (<u>http://www.nodc.noaa.gov/GTSPP/access\_data</u>) and to the Copernicus Environment Monitoring Service (formerly MyOcean) where they are made available in "near real time in situ" products (<u>http://marine.copernicus.eu/web/69-myocean-interactive-catalogue.php</u>). The GTS thermosalinograph data are forwarded to Ifremer's France data center (<u>http://www.gosud.org</u>).

Delayed-mode Canadian oceanographic profile data are exchanged bilaterally with the ICES Oceanographic Database (<u>http://www.ices.dk/marine-data/data-portals/Pages/ocean.aspx</u>) and the World Ocean Database (<u>https://www.nodc.noaa.gov/OC5/WOD/pr\_wod.html</u>). Synchronization is however a work in progress and one may need to allow from months to more than a year for Canadian data to become available from these databases after it has been collected.

Selected ocean profiles along AZMP sections can be viewed and downloaded from the AZMP website (<u>http://www.Meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html</u>). OSB sends updates of data acquired to DFO research institutes on a monthly basis. Canadian oceanographic profiles data can otherwise always be requested through this form: <u>http://www.Meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/request-commande/form-eng.asp</u>.

GTS-decoded drifting buoy and equatorial moored buoy data are sent to the US NODC (now part of National Centers for Environmental Information, NOAA) Ocean Archive System on a yearly basis (<u>http://www.nodc.noaa.gov/cgi-bin/OAS/prd/text/query</u>).

Canadian moored buoy data are made available on a national website within days of collection (updates on business days): <u>http://www.Meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/index-eng.htm</u>

Canadian water level data are available from two national websites: <u>http://waterlevels.gc.ca</u> (last 24 hours); <u>http://www.Meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/twl-mne/index-eng.htm</u> (validated, historical). Relevant stations data are shared with international initiatives such as the Permanent Service for Mean Sea Level, Global Sea Level Observing System and IOC Sea Level Station Monitoring facility.

Canadian moorings data are available from BIO (<u>http://www.bio.gc.ca/science/data-donnees/base/index-en.php</u>) or MLI (<u>http://slgo.ca/app-sgdo/en/accueil.html</u>) depending on the site locations.

Aquatic Invasive Species data can be queried through an application (<u>http://www.meds-sdmm.dfo-mpo.gc.ca/ais-eae</u>) or viewed as a geoportal gallery (<u>http://geoportal.gc.ca/eng/Gallery/MapProfile/3</u>).

### References

List of NAFO Standard Oceanographic Sections and Stations. The reprint of NAFO SCR DOC., NO. 1, Serial N1432, 9p. Printed and distributed by: NAFO, P.O. Box 638, Dartmouth, Nova Scotia, Canada B2Y 3Y9.

GTSPP Real-Time Quality Control Manual First Revised Edition. UNESCO-IOC 2010. (IOC Manuals and Guides No. 22, Revised Edition.) (IOC/2010/MG/22Rev.)

Appendix

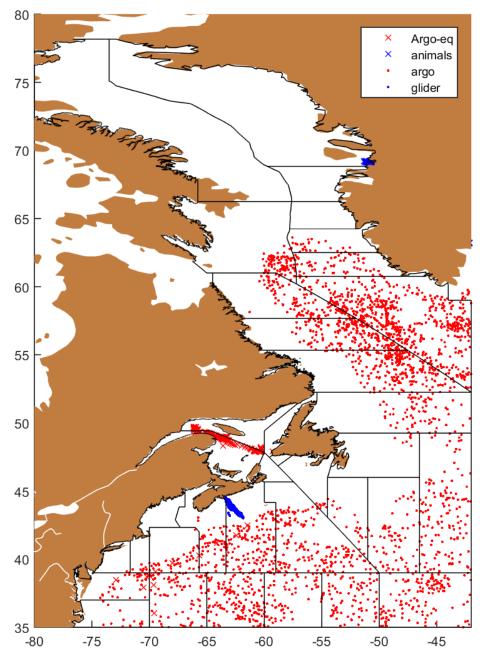



Fig. 1. Position of profiles sampled by autonomous platforms in 2015

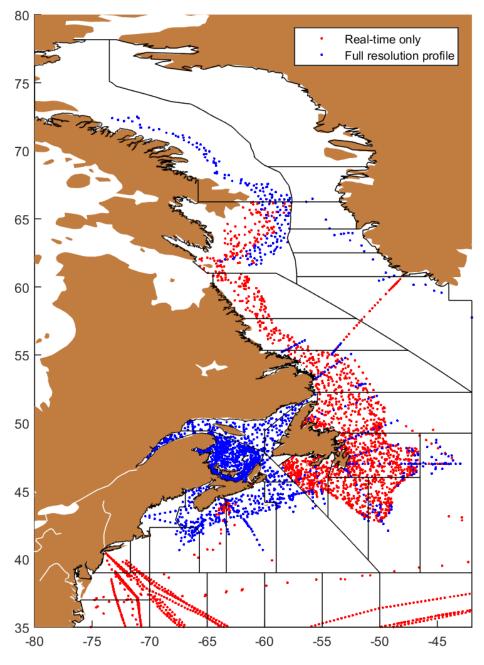



Fig. 2. Position of profiles sampled by ships (+1 helicopter) in 2015

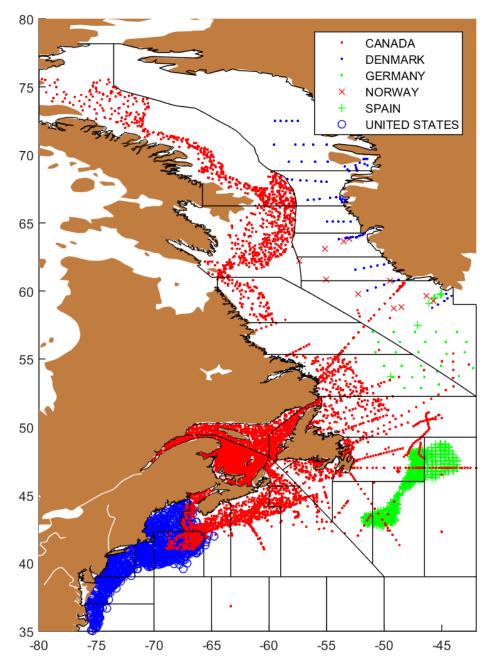



Fig. 3. Position of profiles sampled by ships before 2015 and acquired in 2015

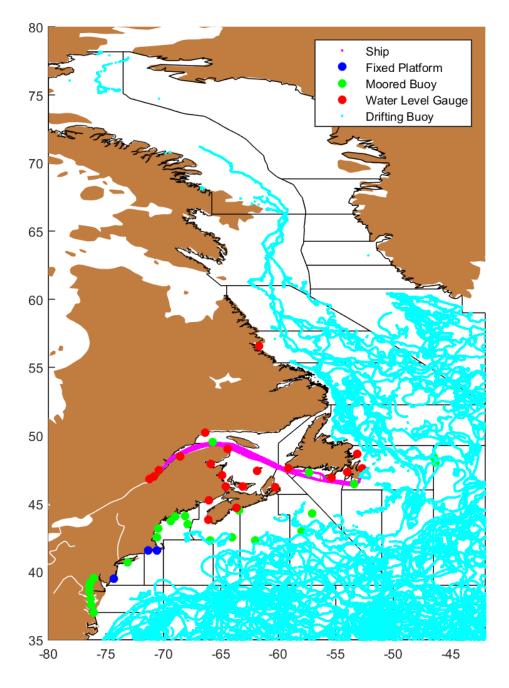



Fig. 4. Position of near surface observations made in 2015 and acquired in 2015

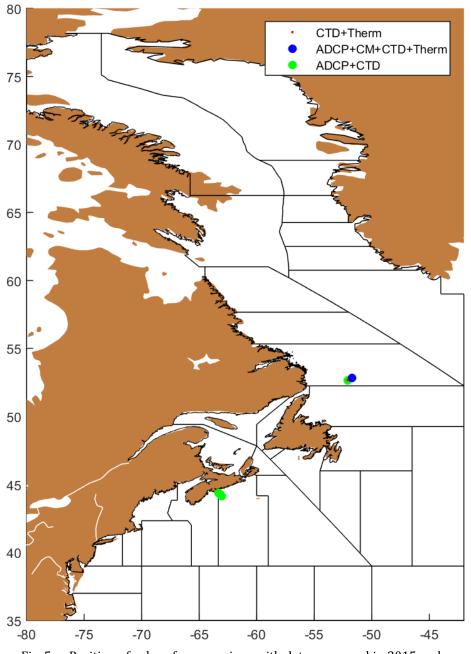



Fig. 5. Position of subsurface moorings with data measured in 2015 and processed in 2015 (therm=Thermograph, CTD=Conductivity-Temperature-Depth, ADCP = Acoustic Doppler Current Profiler, CM = Current meter)

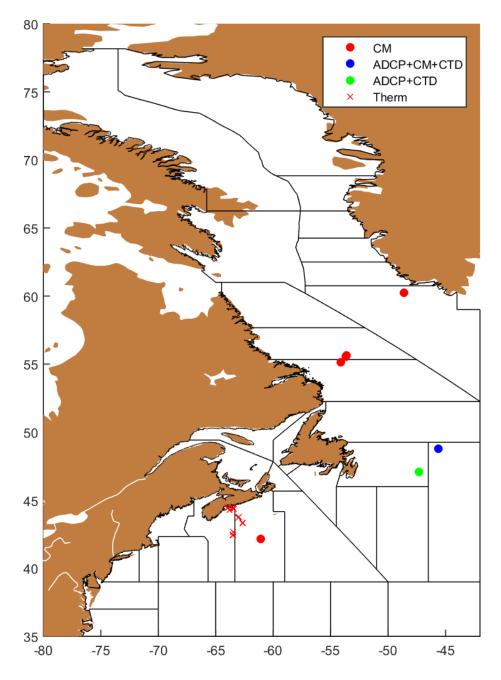



Fig. 6. Position of subsurface moorings with data measured before 2015 and processed or reprocessed in 2015 (therm=Thermograph, CTD=Conductivity-Temperature-Depth, ADCP = Acoustic Doppler Current Profiler, CM = Current meter)

Table 1: Real-time temperature and /or salinity profiles from autonomous platforms collected and processed in 2015

| Platform<br>Type | Platform<br>Name | Country | WMO ID  | Reporting<br>period<br>(months) | Profiles | NAFO Subareas             |
|------------------|------------------|---------|---------|---------------------------------|----------|---------------------------|
| Glider           | OTN201           | Canada  | 48922   | Sep-Nov                         | 850      | 4W                        |
| Glider           | OTN200           | Canada  | 48923   | Jan-Aug                         | 3905     | 4W 4X                     |
| Argo             |                  | France  | 1901208 | Jan-May                         | 14       | 6Н                        |
| Argo             |                  | France  | 1901210 | Jan-Dec                         | 35       | 1F 2G 2H 2J               |
| Argo             |                  | France  | 1901217 | Jan-Dec                         | 37       | 1F 2H 2J                  |
| Argo             |                  | UK      | 1901294 | Jan-Dec                         | 36       | 0B 1D 1E 1F 2G            |
| Argo             |                  | USA     | 1901465 | Jan-Dec                         | 19       | 2J 3M 3N 30               |
| Argo             |                  | USA     | 1901534 | Mar-Dec                         | 22       | 4W 4X 5Ze 5Zw 6A 6B 6D 6E |
| Argo             |                  | USA     | 4901057 | Jan-Dec                         | 32       | 4Vs 4W 4X 6D 6E 6F 6G     |
| Argo             |                  | Canada  | 4901192 | Jan-Dec                         | 34       | 1F 2J 3K                  |
| Argo             |                  | Canada  | 4901193 | Jan-Dec                         | 35       | 1D 1E 1F 2G 2H            |
| Argo             |                  | Canada  | 4901198 | Apr-Dec                         | 27       | 1F 2J 3K                  |
| Argo             |                  | Canada  | 4901199 | Jan-Sep                         | 10       | 3N 3O 4Vs 6G              |
| Argo             |                  | Canada  | 4901201 | Jan-Oct                         | 21       | 3M 6H                     |
| Argo             |                  | USA     | 4901278 | Jan-Jun                         | 16       | 6D 6E                     |
| Argo             |                  | USA     | 4901285 | Jun-Dec                         | 19       | 3N 3O 4Vs 6G              |
| Argo             |                  | USA     | 4901290 | Mar-May                         | 5        | 6Н                        |
| Argo             |                  | USA     | 4901298 | Jan-Nov                         | 17       | 3M 3N 3O 4Vs 6F 6G        |
| Argo             |                  | USA     | 4901400 | Jan-Dec                         | 17       | 6C 6D 6E 6F               |
| Argo             |                  | France  | 4901417 | Jan-Dec                         | 36       | 1F 2G 2H                  |
| Argo             |                  | France  | 4901418 | Jan-Dec                         | 37       | 1F 2H 2J                  |
| Argo             |                  | France  | 4901419 | Oct-Dec                         | 10       | 1E 1F 2G                  |
| Argo             |                  | USA     | 4901450 | Mar-Jul                         | 2        | 6G 6H                     |
| Argo             |                  | USA     | 4901461 | Jan-Mar                         | 7        | 3M 3N                     |
| Argo             |                  | USA     | 4901462 | Jan-Dec                         | 36       | 4Vs 6F 6G 6H              |
| Argo             |                  | USA     | 4901464 | Jun-Jun                         | 1        | 6Н                        |
| Argo             |                  | USA     | 4901466 | Jan-Dec                         | 35       | 3M 3N 4Vs 6F 6G 6H        |
| Argo             |                  | USA     | 4901467 | Jan-Nov                         | 31       | 4Vs 4W 4X 6D 6E 6F        |
| Argo             |                  | USA     | 4901469 | Jan-Jun                         | 17       | 6G 6H                     |
| Argo             |                  | USA     | 4901591 | May-Dec                         | 13       | 4Vs 4W 6C 6D 6E           |
| Argo             |                  | USA     | 4901594 | Jan-Dec                         | 24       | 4W 6E 6F                  |
| Argo-eq          |                  | USA     | 4901605 | Jul-Nov                         | 5        | 4X 5Ze 6C                 |
| Argo             |                  | USA     | 4901621 | Dec-Dec                         | 2        | 6B 6D                     |
| Argo             |                  | USA     | 4901628 | Jan-Nov                         | 23       | 4X 5Ze 6B 6C 6D 6E        |
| Argo             |                  | USA     | 4901629 | Jan-Sep                         | 24       | 4Vs 4W 6E 6F 6G           |
| Argo             |                  | USA     | 4901630 | Jan-Mar                         | 4        | 6C 6D                     |
| Argo             |                  | USA     | 4901631 | Jan-Dec                         | 33       | 4Vs 4X 6D 6E 6F           |

| Argo    | USA    | 4901701 | May-Dec            | 11  | 6Н                                      |
|---------|--------|---------|--------------------|-----|-----------------------------------------|
| Argo    | USA    | 4901704 | Jan-Dec            | 33  | 3M 3N 4Vs 6F 6G 6H                      |
| Argo    | USA    | 4901704 | Jan-Dec            | 35  | 3M 3N 4Vs 4W 6E 6F 6G 6H                |
| Argo    | USA    | 4901707 | Jan-Dec            | 61  | 4Vs 4W 6E 6F                            |
| Argo    | Canada | 4901744 | Jan-Dec            | 37  | 0B 1E 1F 2G                             |
| Argo    | Canada | 4901745 | Mar-Dec            | 29  | 3M 3N 4Vs                               |
| Argo    | Canada | 4901747 | Jan-Dec            | 35  | 2J 3K 3L 3M                             |
| Argo    | Canada | 4901748 | Jan-Dec            | 35  | 0B 1E 1F 2G                             |
| Argo    | Canada | 4901750 | Jan-Dec            | 33  | 2H 2J                                   |
| Argo    | Canada | 4901751 | Jan-Dec            | 37  | 1F 2H                                   |
| Argo    | Canada | 4901752 | Jan-Dec            | 35  | 1F 2H 2J 3K                             |
| Argo    | Canada | 4901753 | Jan-Aug            | 23  | 1F 2H 2J 3K 3L 3M                       |
| Argo    | Canada | 4901755 | Jan-Dec            | 37  | 3M 3N 4Vs 4W 6E 6F 6G                   |
| Argo    | Canada | 4901758 | Feb-Apr            | 6   | 3N 6H                                   |
| -       | Canada | 4901758 | -                  | 37  |                                         |
| Argo    | Canada | 4901762 | Jan-Dec<br>Jan-Dec | 37  | 2G 2H 2J 3K 3L 3M 3N<br>5Ze 6B 6C 6D 6E |
| Argo    | Canada | 4901765 | -                  | 22  | 3N 6G 6H                                |
| Argo    | Canada | 4901785 | Jan-Aug            |     | 4Vs 4W                                  |
| Argo    |        |         | Apr-Sep            | 15  |                                         |
| Argo    | Canada | 4901779 | May-Sep            | 12  | 1F 2H                                   |
| Argo    | Canada | 4901780 | May-Dec            | 20  | 1F 2G 2H 2J                             |
| Argo    | Canada | 4901781 | May-May            | 2   | 1F 2H                                   |
| Argo    | Canada | 4901782 | May-Dec            | 24  | 1F 2G 2H                                |
| Argo    | Canada | 4901783 | May-Dec            | 24  | 1F 2H 2J                                |
| Argo    | Canada | 4901787 | Nov-Dec            | 4   | 3N                                      |
| Argo    | Canada | 4901788 | Nov-Dec            | 5   | 3N 30                                   |
| Argo-eq | Canada | 4901789 | Aug-Dec            | 147 | 4S 4T                                   |
| Argo    | Canada | 4901798 | Apr-Dec            | 25  | 4W 4X 5Ze 6A 6B                         |
| Argo    | Canada | 4901799 | Apr-Apr            | 1   | 4Vs                                     |
| Argo    | Canada | 4901800 | Apr-Jul            | 10  | 4Vs 4W                                  |
| Argo    | Canada | 4901807 | Nov-Dec            | 5   | 30 3Ps                                  |
| Argo    | USA    | 4902099 | Nov-Dec            | 6   | 3Ps 4Vs                                 |
| Argo    | USA    | 4902100 | Nov-Dec            | 2   | 4Vs                                     |
| Argo    | USA    | 4902102 | Dec-Dec            | 1   | 4X                                      |
| Argo    | USA    | 4902288 | Aug-Aug            | 1   | 4X                                      |
| Argo    | France | 5902297 | Jan-Apr            | 11  | 1F                                      |
| Argo    | France | 5902304 | Jan-Jan            | 1   | 2H                                      |
| Argo    | USA    | 5903377 | Jan-Mar            | 13  | 6Н                                      |
| Argo    | USA    | 5903390 | Jan-Dec            | 36  | 1F 2H 2J 3K                             |
| Argo    | USA    | 5903397 | Jan-Feb            | 5   | 3К                                      |
| Argo    | USA    | 5903399 | May-Jun            | 3   | 3M                                      |
| Argo    | USA    | 5903889 | Jan-Dec            | 37  | 4X 5Ze 5Zw 6B 6D                        |
| Argo    | USA    | 5903997 | Jan-Feb            | 4   | 6C 6D                                   |
| Argo    | France | 5904989 | Sep-Dec            | 20  | 1E 1F                                   |

| Ango    | UK     | 6900446                                 | Ion Ion | 3   | 1F                      |
|---------|--------|-----------------------------------------|---------|-----|-------------------------|
| Argo    | UK     |                                         | Jan-Jan |     |                         |
| Argo    |        | 6900614                                 | Aug-Aug | 2   | 1F                      |
| Argo    | UK     | 6900653                                 | Jan-Feb | 9   | 0B                      |
| Argo    | France | 6900897                                 | Jan-Jan | 2   | 1F                      |
| Argo    | France | 6900910                                 | Jan-Dec | 38  | 4Vs 4W 4X 5Ze 6E 6F 6G  |
| Argo    | France | 6900973                                 | Jan-Dec | 36  | 1F 2J 3K 3L 3M          |
| Argo    | France | 6901027                                 | Jun-Nov | 14  | 1F 2J 3K                |
| Argo    | France | 6901030                                 | Jan-Dec | 39  | 0B 1E 1F 2H             |
| Argo    | UK     | 6901147                                 | Jan-Dec | 35  | 0B 1E 1F 2G 2H          |
| Argo    | UK     | 6901149                                 | Oct-Dec | 8   | 1E 1F                   |
| Argo    | France | 6901217                                 | Jan-Feb | 4   | 6F                      |
| Argo    | France | 6901218                                 | Jan-Mar | 6   | 6E 6F                   |
| Argo    | France | 6901480                                 | Jan-Dec | 78  | 2G 2H 2J                |
| Argo    | France | 6901482                                 | Jan-Jan | 4   | 1F                      |
| Argo    | France | 6901485                                 | Jan-Dec | 67  | 0B 1D 1E 2G 2H          |
| Argo    | France | 6901486                                 | Jan-Dec | 118 | 1F 2G 2H                |
| Argo    | France | 6901489                                 | Jan-Feb | 12  | 1F 2G                   |
| Argo    | France | 6901494                                 | Mar-Mar | 3   | 5Ze 6D                  |
| Argo    | France | 6901508                                 | Jan-Dec | 36  | 3M 3N                   |
| Argo    | France | 6901523                                 | Jun-Jun | 5   | 1F                      |
| Argo    | France | 6901524                                 | Mar-Dec | 48  | 1F                      |
| Argo    | France | 6901525                                 | Jan-Dec | 26  | 3M                      |
| Argo    | France | 6901527                                 | Jan-Dec | 105 | 1F 2H 2J                |
| Argo    | France | 6901589                                 | Jan-Dec | 38  | 1F 2G 2H 2J             |
| Argo    | France | 6901758                                 | Oct-Dec | 5   | 1F 2J 3K                |
| Argo    | France | 6902563                                 | Jan-Dec | 36  | 4V s4W 4X 5Ze 6D        |
| Argo    | France | 6902564                                 | Jan-Dec | 35  | 4Vs 4W 4X 5Ze 5Zw 6D 6E |
| Argo    | France | 6902565                                 | Jan-Nov | 34  | 4Vs 4W 6D 6E 6F 6G 6H   |
| Argo    | France | 6902566                                 | Jan-Dec | 37  | 4Vs 4W 4X               |
| Argo    | France | 6902567                                 | Jan-Dec | 37  | 3N 4Vs 4W 6F 6G 6H      |
| Argo    | France | 6902584                                 | Sep-Dec | 10  | 1E 1F                   |
| Argo    | France | 6902586                                 | Jan-Dec | 33  | 1F                      |
| Argo    | France | 6902587                                 | Jan-Jan | 1   | 1F                      |
| Argo    | France | 6902589                                 | Jan-Dec | 35  | 1F 2G 2H 2J             |
| Argo    | France | 6902632                                 | Oct-Dec | 8   | 4Vs 4W                  |
| Argo    | France | 6902633                                 | Oct-Dec | 9   | 4Vs 4W                  |
| Argo    | France | 6902634                                 | Oct-Dec | 8   | 4Vs 4W                  |
| Argo    | France | 6902635                                 | Oct-Dec | 9   | 3Ps 4Vs                 |
| Argo    | France | 6902636                                 | Oct-Dec | 9   | 4W 4X                   |
| Argo    | France | 6902659                                 | Sep-Dec | 10  | 2H 2J 3K                |
| Argo    | France | 6902660                                 | Sep-Dec | 10  | 1F 2G                   |
| Animals | U.K.   | 9900725                                 | Jan-Mar | 87  | 1A                      |
| Animals | U.K.   | 9900787                                 | Sep-Dec | 291 | 1A                      |
| miniais | 0.11.  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Jep-Dec | 271 | 111                     |

| Animals | U.K. | 9900788 | Sep-Oct | 13 | 1A |  |
|---------|------|---------|---------|----|----|--|
| Animals | U.K. | 9900789 | Sep-Nov | 7  | 1A |  |

\*Dates are of first and last data reports within the NAFO Convention Area

Table 2. 2015 Temperature (XBT) and/or salinity (CTD, bottle) profile and surface (thermosalinograph: TSG)data collected aboard ships, processed in 2015

| Platform<br>Name     | Country             | Cruise<br>Number | First<br>Date | Last<br>Date | CTD  | Bottle | XBT  | TSG | NAFO_Subareas                                   |
|----------------------|---------------------|------------------|---------------|--------------|------|--------|------|-----|-------------------------------------------------|
| (various)            | Canada              |                  | 20150101      | 20151022     | 17*  | 0      | 214* | 0   | 3K 3M 3N 4T<br>4Vn4W 4X 5Ze6B<br>6C 6D 6E 6F 6G |
| Sigma-Theta          | Canada              | 18VA15667        | 20150107      | 20151216     | 50   | 50     | 0    | 0   | 4W                                              |
| Teleost              | Canada              |                  | 20150107      | 20150119     | 84*  | 0      | 4*   | 0   | 3L 3N                                           |
| (various)            | Canada              | 189015001        | 20150118      | 20151218     | 44   | 0      | 0    | 0   | 4T                                              |
| Teleost              | Canada              | 18TL15142        | 20150121      | 20150121     | 0    | 1      | 0    | 0   | 3L                                              |
| Viola M.<br>Davidson | Canada              | 18VA15669        | 20150122      | 20151221     | 11   | 11     | 0    | 0   | 4X                                              |
| Teleost              | Canada              |                  | 20150122      | 20150201     | 62*  | 0      | 0    | 0   | 3K 3L                                           |
| Sigma-Theta          | Canada              | 18VA15666        | 20150130      | 20151217     | 10   | 10     | 0    | 0   | 4W                                              |
| Teleost              | Canada              | 18TL15143        | 20150202      | 20150202     | 2*   | 1      | 0    | 0   | 3L                                              |
| Maersk Visby         |                     |                  | 20150217      | 20150422     | 0    | 0      | 96*  | 0   | 5Zw6A 6B 6C 6D<br>6E                            |
| Helicopter           | Canada              | 18HE15002        | 20150303      | 20150312     | 75   | 73     | 0    | 0   | 4R 4S 4T 4Vn                                    |
| Cma Cgm Raci         |                     |                  | 20150303      | 20150520     | 0    | 0      | 92*  | 0   | 6Н                                              |
| Alfred<br>Needler    | Canada              | 18NE15002        | 20150305      | 20150327     | 29   | 28     | 0    | 0   | 4W 5Ze                                          |
| Teleost              | Canada              | 18TL15155        | 20150320      | 20150320     | 0    | 1      | 0    | 0   | 3L                                              |
| Alfred<br>Needler    | Canada              |                  | 20150407      | 20150511     | 186* | 0      | 6*   | 0   | 30 3Ps                                          |
| Oleander             | USA                 |                  | 20150410      | 20151122     | 0    | 0      | 280* | 0   | 6A 6B 6D                                        |
| Teleost              | Canada              | 18TL15144        | 20150410      | 20150427     | 27*  | 71     | 36*  | 0   | 3L 3M 3N 3O 3Ps                                 |
| Hudson               | Canada              | 18HU15004        | 20150417      | 20150427     | 57   | 55     | 0    | 0   | 3Ps4Vn4Vs4W 4X<br>5Ze                           |
| Shippan Island       |                     |                  | 20150422      | 20150627     | 0    | 0      | 78*  | 0   | 6B 6C                                           |
| Teleost              | Canada              |                  | 20150429      | 20150505     | 48*  | 0      | 0    | 0   | 3L 3Ps 4W                                       |
| Celtic<br>Explorer   | Canada /<br>Ireland | 45CE15003        | 20150430      | 20150430     | 1    | 1      | 0    | 0   | 3M                                              |
| Beluga II            | Canada              | 18BG15008        | 20150501      | 20150511     | 2    | 0      | 0    | 0   | 4T                                              |
| Leim                 | Canada              | 18L015005        | 20150502      | 20150507     | 19   | 0      | 0    | 0   | 4S                                              |
| Hudson               | Canada              |                  | 20150503      | 20150503     | 1*   | 0      | 0    | 0   | 4W                                              |
| Vladykov             | Canada              | 18VD15040        | 20150504      | 20150504     | 0    | 1      | 0    | 0   | 3L                                              |
| Hudson               | Canada              | 18HU15006        | 20150505      | 20150518     | 40*  | 16     | 0    | 0   | 1F 2H 2J 3L 4W                                  |
| Teleost              | Canada              | 18TL15146        | 20150507      | 20150511     | 0    | 2      | 0    | 0   | 3L                                              |
| Leim                 | Canada              | 18L015006        | 20150510      | 20150511     | 2    | 0      | 0    | 0   | 4T                                              |
| Teleost              | Canada              |                  | 20150512      | 20150526     | 28*  | 0      | 78*  | 0   | 3K 3L                                           |
| Alfred<br>Needler    | Canada              | 18NE15452        | 20150512      | 20150512     | 0    | 1      | 0    | 0   | 3L                                              |
| Alfred<br>Needler    | Canada              |                  | 20150514      | 20150525     | 98*  | 2*     | 0    | 0   | 3N 30                                           |
| Vladykov             | Canada              | 18VD15041        | 20150516      | 20150516     | 0    | 1      | 0    | 0   | 3L                                              |

| Cap Breton            | Canada  | 18VA15668 | 20150521 | 20151209 | 5    | 5   | 0    | 0    | 4T                       |
|-----------------------|---------|-----------|----------|----------|------|-----|------|------|--------------------------|
| Hudson                | Canada  | 101110000 | 20150522 | 20150920 | 2*   | 0   | 0    | 0    | 4W                       |
| Alfred                | Canada  | 18NE15453 | 20150522 | 20150526 | 0    | 1   | 0    | 0    | 3L                       |
| Needler               | Gunuuu  | 101110100 | 20130320 | 20130320 | 0    | 1   | U    | 0    | 51                       |
| Alfred<br>Needler     | Canada  | 18NE15454 | 20150528 | 20150528 | 0    | 1   | 0    | 0    | 3L                       |
| Alfred<br>Needler     | Canada  |           | 20150529 | 20150617 | 99*  | 0   | 4*   | 0    | 3L 3N                    |
| Vladykov              | Canada  |           | 20150530 | 20150809 | 43*  | 0   | 0    | 0    | 3K 3L 3Ps                |
| Vizconde de<br>Eza    | Spain   | 29VE15260 | 20150531 | 20150619 | 20   | 0   | 0    | 0    | 3N 30                    |
| Teleost               | Canada  | 18TL15016 | 20150531 | 20150620 | 129  | 0   | 0    | 0    | 3Pn4R 4S 4T 4Vn          |
| F.G. Creed            | Canada  | 18FC15025 | 20150607 | 20150616 | 34   | 0   | 0    | 0    | 4T                       |
| L'Alliance            | Canada  | 18K815001 | 20150610 | 20151015 | 41   | 0   | 0    | 0    | 4T                       |
| Alfred<br>Needler     | Canada  | 18NE15455 | 20150619 | 20150619 | 0    | 1   | 0    | 0    | 3L                       |
| F.G. Creed            | Canada  | 18FC15022 | 20150620 | 20150627 | 5    | 0   | 0    | 0    | 4T                       |
| Vizconde de<br>Eza    | Spain   | 29VE15240 | 20150625 | 20150722 | 20   | 0   | 0    | 0    | 3M                       |
| Alfred<br>Needler     | Canada  | 18NE15015 | 20150625 | 20150625 | 1    | 1   | 0    | 0    | 4W                       |
| Alfred<br>Needler     | Canada  | 18NE15017 | 20150629 | 20150817 | 216  | 216 | 0    | 0    | 3Ps4Vn4Vs4W 4X<br>5Y 5Ze |
| Walther<br>Herwig III | Germany | 06NI15385 | 20150708 | 20150708 | 1    | 1   | 0    | 0    | 1F                       |
| Jean<br>Mathieu       | Canada  | 182P15001 | 20150709 | 20151015 | 229  | 0   | 0    | 0    | 4T                       |
| Teleost               | Canada  | 18TL15148 | 20150709 | 20150727 | 73*  | 78  | 130* | 0    | 2H 2J 3K 3L 3M           |
| M. Perley             | Canada  | 18MU15021 | 20150715 | 20150808 | 110  | 0   | 0    | 0    | 4T                       |
| Cma Cgm Moli          | iere    |           | 20150716 | 20151009 | 0    | 0   | 128* | 0    | 6F 6G 6H                 |
| Maersk Vilniu         | S       |           | 20150720 | 20151125 | 0    | 0   | 236* | 0    | 5Zw6A 6B 6D 6E           |
| Vizconde de<br>Eza    | Spain   | 29VE15280 | 20150728 | 20150817 | 20   | 0   | 0    | 0    | 3L                       |
| Teleost               | Canada  | 18TL15031 | 20150802 | 20150901 | 122  | 0   | 0    | 0    | 3Pn4R 4S 4T 4Vn          |
| F.G. Creed            | Canada  | 18FC15023 | 20150803 | 20150811 | 5    | 0   | 0    | 0    | 4S 4T                    |
| Leim                  | Canada  | 18L015032 | 20150806 | 20150816 | 6    | 0   | 0    | 0    | 4T                       |
| Vladykov              | Canada  | 18VD15046 | 20150813 | 20150813 | 1*   | 1   | 2*   | 0    | 3L                       |
| Vladykov              | Canada  |           | 20150813 | 20151104 | 96*  | 0   | 0    | 0    | 3K 3L                    |
| Katsheshuk<br>II      | Canada  |           | 20150819 | 20150921 | 235* | 0   | 0    | 0    | 0B 2G                    |
| Teleost               | Canada  | 18TL15133 | 20150905 | 20150927 | 171  | 170 | 0    | 0    | 4T 4Vn                   |
| Alfred<br>Needler     | Canada  |           | 20150909 | 20150914 | 39*  | 0   | 0    | 0    | 3Ps                      |
| Paamiut               | Canada  | 26PA15007 | 20150911 | 20151010 | 177  | 0   | 0    | 0    | 0A 0B                    |
| Oceanex<br>Connaigra  | Canada  |           | 20150913 | 20151231 | 0    | 0   | 0    | 5387 | 3L 3Pn3Ps4R 4S<br>4T 4Vn |
| Alfred<br>Needler     | Canada  | 18NE15456 | 20150915 | 20150915 | 0    | 1   | 0    | 0    | 3L                       |
| Alfred<br>Needler     | Canada  |           | 20150918 | 20150919 | 3*   | 0   | 0    | 0    | 3L                       |

| Hudson                | Canada  | 18HU15030 | 20150920 | 20151011 | 116  | 106 | 0    | 0 | 3Pn3Ps4Vn4Vs4W<br>4X 5Y 5Ze |
|-----------------------|---------|-----------|----------|----------|------|-----|------|---|-----------------------------|
| Alfred<br>Needler     | Canada  | 18NE15457 | 20150920 | 20150920 | 0    | 1   | 0    | 0 | 3L                          |
| Alfred<br>Needler     | Canada  | 18NE15458 | 20150924 | 20151002 | 37*  | 2   | 4*   | 0 | 3L 30                       |
| M. Perley             | Canada  | 18MU15029 | 20150925 | 20151012 | 21   | 0   | 0    | 0 | 4T                          |
| Conrad S              |         |           | 20150926 | 20151220 | 0    | 0   | 160* | 0 | 6A 6B 6C                    |
| Alfred<br>Needler     | Canada  |           | 20151004 | 20151009 | 38*  | 0   | 0    | 0 | 3N 30                       |
| Teleost               | Canada  | 18TL15150 | 20151007 | 20151007 | 0    | 1   | 0    | 0 | 3L                          |
| Teleost               | Canada  |           | 20151008 | 20151215 | 332* | 0   | 30*  | 0 | 2H 2J 3K 3L                 |
| Alfred<br>Needler     | Canada  | 18NE15459 | 20151010 | 20151010 | 0    | 1   | 0    | 0 | 3L                          |
| Alfred<br>Needler     | Canada  |           | 20151013 | 20151201 | 199* | 0   | 14*  | 0 | 3L 3N 30                    |
| Hudson                | Canada  | 18HU15041 | 20151019 | 20151105 | 77   | 0   | 0    | 0 | 3Pn4R 4S 4T 4Vn             |
| Leim                  | Canada  | 18L015039 | 20151020 | 20151020 | 3    | 0   | 0    | 0 | 4T                          |
| Walther<br>Herwig III | Germany | 06NI15389 | 20151025 | 20151105 | 22   | 22  | 0    | 0 | 1B 1C 1D 1E 1F              |
| Hudson                | Canada  | 18HU15115 | 20151115 | 20151206 | 35*  | 94  | 22*  | 0 | 2J 3K 3L 3M 3N<br>30 3Ps    |

\* Messages formatted for transmission on the GTS. These messages are lower vertical resolution and uncalibrated versions of the data, to be replaced in the future.

\*\* In each case the reporting period corresponds to the period associated with the profiles measured in the NCA only.

| Platform Name     | Country | Cruise    | First        | Last         | СТ       | Bottl | XB | NAFO                         |
|-------------------|---------|-----------|--------------|--------------|----------|-------|----|------------------------------|
| Thatform Nume     | -       | Number    | Date**       | Date**       | D        | е     | Т  | Subareas                     |
| Teleost           | Canada  | 18TL14141 | 201412<br>11 | 201412<br>21 | 0        | 2     | 0  | 3L                           |
| Teleost           | Canada  |           | 201411<br>26 | 201412<br>20 | 171<br>* | 0     | 8* | 3K 3L                        |
| Maersk Visby      |         |           | 201412<br>16 | 201412<br>17 | 0        | 0     | 8* | 6A 6B                        |
| Beluga II         | Canada  | 18BP14001 | 201404<br>22 | 201412<br>16 | 28       | 0     | 0  | 4T                           |
| Hudson            | Canada  | 18HU14114 | 201411<br>16 | 201412<br>07 | 94       | 69    | 0  | 2J 3K 3L 3M<br>3N 30         |
| Teleost           | Canada  | 18TL14137 | 201411<br>13 | 201411<br>24 | 76       | 0     | 0  | 2J 3K                        |
| Pisces            | USA     | 334B14005 | 201411<br>03 | 201411<br>19 | 177      | 0     | 0  | 4X 5Y 5Ze<br>5Zw 6A 6B<br>6C |
| Viola M. Davidson | Canada  | 18AU14003 | 201411<br>13 | 201411<br>13 | 2        | 0     | 0  | 5Y                           |
| Henry B. Bigelow  | USA     | 33HH14005 | 201409<br>10 | 201411<br>13 | 364      | 0     | 0  | 4X 5Y 5Ze<br>5Zw 6A 6B<br>6C |
| Hudson            | Canada  | 18HU14037 | 201410<br>19 | 201411<br>10 | 141      | 0     | 0  | 3Pn 4R 4S 4T<br>4Vn          |
| Teleost           | Canada  | 18TL14136 | 201410<br>30 | 201411<br>10 | 69       | 0     | 0  | 2J 3K                        |
| Vladykov          | Canada  | 18VD14038 | 201410<br>31 | 201410<br>31 | 1        | 1     | 0  | 3L                           |
| Teleost           | Canada  | 18TL14135 | 201410<br>18 | 201410<br>27 | 48       | 0     | 0  | 2J                           |
| Paamiut           | Canada  | 26PA14007 | 201409<br>22 | 201410<br>19 | 142      | 0     | 0  | 0A 0B                        |
| Pandora II        | Canada  | 18P214009 | 201407<br>09 | 201410<br>12 | 328      | 0     | 0  | 4T                           |
| Vladykov          | Canada  | 18VD14036 | 201409<br>30 | 201410<br>05 | 13       | 0     | 0  | 3L                           |
| Teleost           | Canada  | 18TL14134 | 201410<br>04 | 201410<br>04 | 1        | 1     | 0  | 3L                           |
| Vladykov          | Canada  | 18VD14035 | 201409<br>19 | 201409<br>30 | 15       | 0     | 0  | 3L                           |
| Kinguk            | Canada  | 18KU14109 | 201407<br>16 | 201409<br>24 | 251      | 0     | 0  | 0B 2G 2H                     |
| Hugh R. Sharp     | USA     | 33H514002 | 201409<br>04 | 201409<br>15 | 32       | 0     | 0  | 5Y 5Ze 5Zw<br>6B             |
| Vladykov          | Canada  | 18VD14034 | 201408<br>27 | 201409<br>11 | 24       | 0     | 0  | 3К                           |
| Alfred Needler    | Canada  | 18NE14448 | 201409<br>08 | 201409<br>08 | 1        | 1     | 0  | 3L                           |
| F.G. Creed        | Canada  | 18FC14011 | 201408<br>07 | 201408<br>25 | 13       | 0     | 0  | 4S 4T                        |
| Vladykov          | Canada  | 18VD14033 | 201408<br>14 | 201408<br>20 | 18       | 1     | 0  | 3L                           |

Table 3. Pre-2015 temperature (XBT) and/or salinity (CTD, bottle) profile data collected aboard ships, processed in 2015

| Vizconde de Eza  | Spain  | 29VE14007 | 201407       | 201408       | 90  | 0   | 0 | 3L 3M                    |
|------------------|--------|-----------|--------------|--------------|-----|-----|---|--------------------------|
| Vizeonue ue Eza  | •      |           | 30           | 19           | 70  | 0   | 0 | 51 514                   |
| Alfred Needler   | Canada | 18NE14018 | 201406<br>28 | 201408<br>16 | 179 | 188 | 0 | 4Vn 4Vs 4W<br>4X 5Y 5Ze  |
| Vladykov         | Canada | 18VD14032 | 201408<br>04 | 201408<br>12 | 16  | 0   | 0 | 3L                       |
| Vladykov         | Canada | 18VD14031 | 201407<br>27 | 201408<br>02 | 16  | 0   | 0 | 3L                       |
| Henry B. Bigelow | USA    | 33HH14003 | 201407<br>25 | 201407<br>30 | 15  | 0   | 0 | 5Ze 5Zw                  |
| Teleost          | Canada | 18TL14132 | 201407<br>09 | 201407<br>28 | 105 | 72  | 0 | 2H 2J 3K 3L<br>3M        |
| Hugh R. Sharp    | USA    | 33H514001 | 201407<br>01 | 201407<br>24 | 70  | 0   | 0 | 5Ze 6A 6B                |
| Vizconde de Eza  | Spain  | 29VE14006 | 201406<br>25 | 201407<br>23 | 66  | 0   | 0 | 3L 3M                    |
| Vladykov         | Canada | 18VD14030 | 201407<br>02 | 201407<br>05 | 2   | 0   | 0 | 3K 3L                    |
| Beluga II        | Canada | 18BP14013 | 201406<br>23 | 201406<br>23 | 1   | 0   | 0 | 4T                       |
| Teleost          | Canada | 18TL14140 | 201406<br>12 | 201406<br>23 | 2   | 2   | 0 | 3L                       |
| Vladykov         | Canada | 18VD14029 | 201406<br>16 | 201406<br>22 | 16  | 0   | 0 | 3L                       |
| Vizconde de Eza  | Spain  | 29VE14005 | 201406<br>02 | 201406<br>21 | 121 | 0   | 0 | 3N 30                    |
| Alfred Needler   | Canada | 18NE14447 | 201406<br>07 | 201406<br>19 | 3   | 2   | 0 | 3L                       |
| Teleost          | Canada | 18TL14139 | 201405<br>29 | 201406<br>11 | 1   | 2   | 0 | 3L                       |
| Vladykov         | Canada | 18VD14028 | 201405<br>26 | 201406<br>05 | 26  | 0   | 0 | 3Ps                      |
| Henry B. Bigelow | USA    | 33HH14001 | 201404<br>02 | 201405<br>31 | 297 | 0   | 0 | 4X 5Y 5Ze<br>5Zw 6A 6B   |
| Teleost          | Canada | 18TL14131 | 201405<br>13 | 201405<br>25 | 3   | 2   | 0 | 3L                       |
| Hudson           | Canada | 18HU14007 | 201405<br>02 | 201405<br>24 | 1   | 1   | 0 | 3L 4W                    |
| Teleost          | Canada | 18TL14130 | 201405<br>01 | 201405<br>11 | 2   | 2   | 0 | 3L                       |
| Ann Harvey       | Canada | 18AV14005 | 201403<br>05 | 201405<br>03 | 1   | 1   | 0 | 3L                       |
| Knorr            | USA    | 316N14021 | 201405<br>02 | 201405<br>02 | 0   | 3   | 0 | 5Zw                      |
| Teleost          | Canada | 18TL14129 | 201404<br>11 | 201404<br>29 | 96  | 67  | 0 | 3K 3L 3M 3N<br>30 3Ps    |
| Gordon Gunter    | USA    | 33GG14002 | 201403<br>11 | 201404<br>26 | 193 | 0   | 0 | 4X 5Ze<br>5Zw6A 6B<br>6C |
| Alfred Needler   | Canada | 18NE14451 | 201404<br>23 | 201404<br>23 | 1   | 0   | 0 | 3Ps                      |
| Alfred Needler   | Canada | 18NE14446 | 201404<br>17 | 201404<br>18 | 12  | 0   | 0 | 3Ps                      |
| Alfred Needler   | Canada | 18NE14445 | 201404<br>04 | 201404<br>15 | 67  | 1   | 0 | 3L 3Ps                   |

| Gordon Gunter         | USA     | 33GG14001 | 201403<br>01 | 201403<br>08 | 73  | 0  | 0 | 4X 5Y 5Ze                |
|-----------------------|---------|-----------|--------------|--------------|-----|----|---|--------------------------|
| Teleost               | Canada  | 18TL14127 | 201402<br>03 | 201402<br>03 | 3   | 2  | 0 | 3L                       |
| Hudson                | Canada  | 18HU13113 | 201311<br>18 | 201312<br>08 | 0   | 78 | 0 | 2J 3K 3L 3M<br>3N 3O 3Ps |
| Beluga II             | Canada  | 18BP13005 | 201304<br>09 | 201312<br>03 | 26  | 25 | 0 | 4T                       |
| Alfred Needler        | Canada  | 18NE13440 | 201310<br>28 | 201310<br>28 | 0   | 1  | 0 | 3L                       |
| Alfred Needler        | Canada  | 18NE13439 | 201310<br>15 | 201310<br>15 | 0   | 1  | 0 | 3L                       |
| Paamiut               | Canada  | 26PA13008 | 201309<br>22 | 201310<br>14 | 88  | 0  | 0 | 0B                       |
| Alfred Needler        | Canada  | 18NE13438 | 201309<br>18 | 201310<br>01 | 0   | 2  | 0 | 3L                       |
| F.G. Creed            | Canada  | 18FC13018 | 201308<br>11 | 201308<br>21 | 6   | 0  | 0 | 4S 4T                    |
| Vizconde de Eza       | Spain   | 29VE13008 | 201307<br>30 | 201308<br>19 | 101 | 0  | 0 | 3L                       |
| Vladykov              | Canada  | 18VD13023 | 201308<br>13 | 201308<br>13 | 0   | 1  | 0 | 3L                       |
| Teleost               | Canada  | 18TL13117 | 201307<br>09 | 201307<br>28 | 0   | 64 | 0 | 2H 2J 3K 3L<br>3M        |
| Vizconde de Eza       | Spain   | 29VE13007 | 201306<br>26 | 201307<br>23 | 68  | 0  | 0 | 3L 3M                    |
| Walther Herwig<br>III | Germany | 06NI13024 | 201306<br>30 | 201307<br>10 | 28  | 28 | 0 | 1F 2H 2J                 |
| Vladykov              | Canada  | 18VD13014 | 201306<br>13 | 201306<br>24 | 0   | 2  | 0 | 3L                       |
| Alfred Needler        | Canada  | 18NE13435 | 201305<br>31 | 201306<br>21 | 0   | 2  | 0 | 3L                       |
| Vizconde de Eza       | Spain   | 29VE13006 | 201306<br>01 | 201306<br>21 | 120 | 0  | 0 | 3N 30                    |
| G.O. Sars             | Norway  | 58GS13107 | 201305<br>20 | 201305<br>30 | 13  | 13 | 0 | 1D 1E 1F                 |
| Teleost               | Canada  | 18TL13116 | 201305<br>11 | 201305<br>27 | 0   | 2  | 0 | 3L                       |
| Alfred Needler        | Canada  | 18NE13434 | 201305<br>17 | 201305<br>26 | 0   | 2  | 0 | 3L                       |
| Alfred Needler        | Canada  | 18NE13433 | 201305<br>06 | 201305<br>14 | 0   | 2  | 0 | 3L                       |
| Teleost               | Canada  | 18TL13115 | 201304<br>30 | 201305<br>10 | 0   | 2  | 0 | 3L                       |
| Vladykov              | Canada  | 18VD13011 | 201305<br>03 | 201305<br>09 | 95  | 0  | 0 | 3Ps                      |
| Teleost               | Canada  | 18TL13114 | 201304<br>10 | 201304<br>29 | 0   | 74 | 0 | 3K 3L 3M 3N<br>30 3Ps    |
| Teleost               | Canada  | 18TL13113 | 201304<br>03 | 201304<br>09 | 0   | 3  | 0 | 3L                       |
| Alfred Needler        | Canada  | 18NE13430 | 201303<br>25 | 201303<br>25 | 0   | 1  | 0 | 3L                       |
| Teleost               | Canada  | 18TL13124 | 201303<br>08 | 201303<br>08 | 0   | 1  | 0 | 3L                       |

| Teleost                | Canada  | 18TL12112 | 201212       | 201212       | 0   | 1  | 0 | 3L                       |
|------------------------|---------|-----------|--------------|--------------|-----|----|---|--------------------------|
| Teleost                | Guilduu | 101111111 | 21           | 201212       | U   | -  | U | 51                       |
| Hudson                 | Canada  | 18HU12112 | 201211<br>20 | 201212<br>09 | 0   | 71 | 0 | 2J 3K 3L 3M<br>3N 30 3Ps |
| Beluga II              | Canada  | 18BP12009 | 201204<br>03 | 201211<br>27 | 26  | 25 | 0 | 4T                       |
| Alfred Needler         | Canada  | 18NE12425 | 201210<br>18 | 201210<br>30 | 0   | 2  | 0 | 3L                       |
| Paamiut                | Canada  | 26PA12007 | 201209<br>29 | 201210<br>27 | 194 | 0  | 0 | 0A                       |
| Alfred Needler         | Canada  | 18NE12424 | 201209<br>29 | 201210<br>13 | 0   | 2  | 0 | 3L                       |
| Vladykov               | Canada  | 18VD12003 | 201208<br>20 | 201208<br>20 | 0   | 1  | 0 | 3L                       |
| Knorr                  | USA     | 316N12019 | 201208<br>15 | 201208<br>16 | 0   | 3  | 0 | 5Zw                      |
| Teleost                | Canada  | 18TL12104 | 201207<br>09 | 201207<br>27 | 0   | 71 | 0 | 2H 2J 3K 3L<br>3M        |
| Sarmiento de<br>Gamboa | Spain   | 29AH12581 | 201207<br>18 | 201207<br>20 | 0   | 8  | 0 | 1F 2J                    |
| Paamiut                | Denmark | 26PA12019 | 201206<br>10 | 201207<br>01 | 39  | 39 | 0 | 1A 1B                    |
| Alfred Needler         | Canada  | 18NE12421 | 201206<br>13 | 201206<br>20 | 0   | 2  | 0 | 3L                       |
| Shamook                | Canada  | 180K12611 | 201206<br>18 | 201206<br>18 | 0   | 1  | 0 | 3L                       |
| Tulugaq                | Denmark | 26TU12020 | 201206<br>08 | 201206<br>18 | 53  | 53 | 0 | 1B 1C 1D 1E<br>1F        |
| Martha L. Black        | Canada  | 18MF12001 | 201206<br>01 | 201206<br>12 | 46  | 13 | 0 | 1F 2H 2J 4W              |
| Alfred Needler         | Canada  | 18NE12420 | 201205<br>31 | 201206<br>12 | 0   | 2  | 0 | 3L                       |
| Teleost                | Canada  | 18TL12103 | 201205<br>10 | 201205<br>29 | 0   | 2  | 0 | 3L                       |
| Alfred Needler         | Canada  | 18NE12419 | 201205<br>16 | 201205<br>16 | 0   | 1  | 0 | 3L                       |
| Teleost                | Canada  | 18TL12102 | 201205<br>01 | 201205<br>09 | 0   | 2  | 0 | 3L                       |
| Alfred Needler         | Canada  | 18NE12418 | 201205<br>02 | 201205<br>02 | 0   | 1  | 0 | 3L                       |
| Alfred Needler         | Canada  | 18NE12417 | 201205<br>01 | 201205<br>01 | 0   | 1  | 0 | 3L                       |
| Teleost                | Canada  | 18TL12101 | 201204<br>11 | 201204<br>30 | 0   | 85 | 0 | 3K 3L 3M 3N<br>30 3Ps    |
| Alfred Needler         | Canada  | 18NE12415 | 201203<br>30 | 201203<br>30 | 0   | 1  | 0 | 3L                       |
| Ann Harvey             | Canada  | 18AV12003 | 201203<br>24 | 201203<br>24 | 0   | 1  | 0 | 3L                       |
| Teleost                | Canada  | 18TL12111 | 201203<br>04 | 201203<br>04 | 0   | 1  | 0 | 3L                       |
| Teleost                | Canada  | 18TL12100 | 201201<br>07 | 201201<br>07 | 0   | 1  | 0 | 3L                       |
| Teleost                | Canada  | 18TL11098 | 201112<br>13 | 201112<br>13 | 0   | 1  | 0 | 3L                       |

| Hudson          | Canada            | 18HU11111 | 201111<br>20 | 201112<br>10 | 0   | 76 | 0 | 2J 3K 3L 3M<br>3N 3O 3Ps |
|-----------------|-------------------|-----------|--------------|--------------|-----|----|---|--------------------------|
| Alfred Needler  | Canada            | 18NE11414 | 201111<br>29 | 201111<br>29 | 0   | 1  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11413 | 201111<br>16 | 201111<br>28 | 0   | 2  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11411 | 201110<br>20 | 201110<br>20 | 0   | 1  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11410 | 201110<br>04 | 201110<br>18 | 0   | 2  | 0 | 3L                       |
| Paamiut         | Canada            | 26PA11007 | 201109<br>23 | 201110<br>15 | 95  | 0  | 0 | 0B 1C                    |
| Beluga II       | Canada            | 18BG11033 | 201104<br>13 | 201110<br>12 | 19  | 0  | 0 | 4T                       |
| Teleost         | Canada            | 18TL11094 | 201109<br>13 | 201110<br>09 | 0   | 77 | 0 | 3L 4T 4Vn                |
| Alfred Needler  | Canada            | 18NE11409 | 201110<br>02 | 201110<br>02 | 0   | 1  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11408 | 201109<br>23 | 201109<br>27 | 0   | 2  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11407 | 201109<br>10 | 201109<br>10 | 0   | 1  | 0 | 3L                       |
| Shamook         | Canada            | 180K11600 | 201108<br>16 | 201108<br>16 | 0   | 1  | 0 | 3L                       |
| Half Moon Bay   | USA               | 320C11018 | 201108<br>02 | 201108<br>02 | 0   | 2  | 0 | 5Zw                      |
| Teleost         | Canada            | 18TL11093 | 201107<br>08 | 201107<br>25 | 0   | 53 | 0 | 2G 2H 2J 3K<br>3L 3M     |
| Alfred Needler  | Canada            | 18NE11406 | 201106<br>14 | 201106<br>23 | 0   | 2  | 0 | 3L                       |
| Shamook         | Canada            | 180K11595 | 201106<br>19 | 201106<br>19 | 0   | 1  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11405 | 201106<br>01 | 201106<br>14 | 0   | 2  | 0 | 3L                       |
| Alfred Needler  | Canada            | 18NE11404 | 201105<br>19 | 201105<br>31 | 0   | 2  | 0 | 3L                       |
| Teleost         | Canada            | 18TL11092 | 201105<br>06 | 201105<br>27 | 0   | 30 | 0 | 3K 3L                    |
| Alfred Needler  | Canada            | 18NE11403 | 201105<br>17 | 201105<br>17 | 0   | 1  | 0 | 3L                       |
| Teleost         | Canada            | 18TL11091 | 201104<br>26 | 201105<br>02 | 0   | 24 | 0 | 3L 3M 3N 3O              |
| Teleost         | Canada            | 18TL11090 | 201104<br>05 | 201104<br>05 | 0   | 2  | 0 | 3L                       |
| Celtic Explorer | Canada<br>Ireland | 45CE11002 | 201103<br>03 | 201103<br>03 | 0   | 1  | 0 | 3L                       |
| Celtic Explorer | Canada<br>Ireland | 45CE11001 | 201102<br>06 | 201102<br>06 | 0   | 1  | 0 | 3L                       |
| Shamook         | Canada            | 180K11964 | 201101<br>23 | 201101<br>23 | 0   | 1  | 0 | 3L                       |
| Beluga II       | Canada            | 18BG10033 | 201003<br>12 | 201011<br>30 | 29  | 29 | 0 | 4T                       |
| Paamiut         | Canada            | 26PA10009 | 201010<br>17 | 201011<br>08 | 153 | 0  | 0 | 0A                       |

| Atlantis        | USA    | 33AT10017 | 201010<br>10 | 201010<br>10 | 0   | 3  | 0 | 5Zw                   |
|-----------------|--------|-----------|--------------|--------------|-----|----|---|-----------------------|
| Hudson          | Canada | 18HU10014 | 201005<br>13 | 201005<br>30 | 56  | 26 | 0 | 1F 2H 2J 3K<br>3L 4W  |
| Hudson          | Canada | 18HU10009 | 201005<br>01 | 201005<br>12 | 51  | 0  | 0 | 3K 3L<br>3Ps4Vs4W     |
| Teleost         | Canada | 18TL10971 | 201004<br>15 | 201005<br>04 | 129 | 0  | 0 | 3K 3L 3M 3N<br>30 3Ps |
| Hudson          | Canada | 18HU09015 | 200905<br>17 | 200905<br>31 | 46  | 20 | 0 | 1F 2H 2J 3K<br>3L 4W  |
| Teleost         | Canada | 18TL09886 | 200904<br>25 | 200905<br>15 | 107 | 0  | 0 | 3K 3L 3M 3N<br>30 3Ps |
| Paamiut         | Canada | 26PA08007 | 200810<br>08 | 200811<br>04 | 170 | 0  | 0 | 0A 0B                 |
| Paamiut         | Canada | 26PA07007 | 200710<br>25 | 200710<br>30 | 31  | 0  | 0 | 0B 2G                 |
| Martha L. Black | Canada | 18MF98014 | 199806<br>18 | 199806<br>18 | 1   | 0  | 0 | 4S                    |

\* Messages formatted for transmission on the GTS. These messages are lower vertical resolution and uncalibrated versions of the data, to be replaced in the future. \*\* In each case the reporting period corresponds to the period associated with the profiles in the NCA only.

 Table 4: Real-time air/water temperature, atmospheric parameters and wave\* data from buoys, collected and processed in 2015

| Platform Type        | Buoy Type /<br>Platform Name | Country | WMO /<br>NDBC ID | First Date** | Last Date** | NAFO Subareas                                   |
|----------------------|------------------------------|---------|------------------|--------------|-------------|-------------------------------------------------|
| Drifting Buoy        |                              | USA     | 13527            | 20150101     | 20150722    | 6G 6H                                           |
| Drifting Buoy        |                              | USA     | 13598            | 20151006     | 20151015    | 6E                                              |
| <b>Drifting Buoy</b> |                              | USA     | 13634            | 20151104     | 20151104    | 6F                                              |
| Drifting Buoy        |                              | USA     | 13635            | 20150923     | 20151019    | 6E 6F                                           |
| <b>Drifting Buoy</b> |                              | USA     | 13636            | 20151019     | 20151220    | 6F 6G                                           |
| Drifting Buoy        |                              | USA     | 13640            | 20151114     | 20151117    | 6F                                              |
| Drifting Buoy        |                              |         | 25535            | 20150210     | 20150210    | 1A                                              |
| Drifting Buoy        |                              | USA     | 41501            | 20150101     | 20150609    | 6F 6G                                           |
| <b>Drifting Buoy</b> |                              | USA     | 41503            | 20150101     | 20150925    | 4Vs4W 6D 6E 6F 6G                               |
| Drifting Buoy        |                              | USA     | 41504            | 20150101     | 20150518    | 6G 6H                                           |
| <b>Drifting Buoy</b> |                              | USA     | 41506            | 20150902     | 20151005    | 6B 6C 6D                                        |
| Drifting Buoy        |                              | USA     | 41553            | 20150127     | 20150517    | 3M 3N 4Vs6E 6F 6G                               |
| Drifting Buoy        |                              | USA     | 41575            | 20150608     | 20150614    | 6C                                              |
| Drifting Buoy        |                              | USA     | 41576            | 20150101     | 20150822    | 6C 6D                                           |
| Drifting Buoy        |                              | USA     | 41604            | 20150410     | 20150416    | 6Н                                              |
| Drifting Buoy        |                              | USA     | 41606            | 20151119     | 20151231    | 4W 4X 6B 6C 6D 6E                               |
| Drifting Buoy        |                              | USA     | 41608            | 20150101     | 20150217    | 3M 6H                                           |
| Drifting Buoy        |                              | USA     | 41609            | 20150101     | 20150609    | 3M 3N 3O 4Vs4W 6F 6G<br>6H                      |
| Drifting Buoy        |                              | USA     | 41619            | 20150407     | 20151020    | 30 4Vs6D 6E 6F                                  |
| Drifting Buoy        |                              | USA     | 41622            | 20150809     | 20151231    | 3M 3N 3O 4Vs4W 4X<br>5Ze5Zw6B 6C 6D 6E 6G<br>6H |
| <b>Drifting Buoy</b> |                              | EU      | 41644            | 20150131     | 20150319    | 6Н                                              |
| <b>Drifting Buoy</b> |                              | EU      | 41646            | 20150926     | 20151231    | 3N 4Vs6F 6G                                     |
| Drifting Buoy        |                              | EU      | 41648            | 20150831     | 20151004    | 6D 6E                                           |
| <b>Drifting Buoy</b> |                              | EU      | 41651            | 20150223     | 20150331    | 6Н                                              |
| Drifting Buoy        |                              | EU      | 41653            | 20150128     | 20150201    | 6F                                              |
| Drifting Buoy        |                              | USA     | 41669            | 20150816     | 20151028    | 6E 6F 6G                                        |
| Drifting Buoy        |                              | USA     | 41670            | 20150328     | 20150401    | 6Н                                              |
| Drifting Buoy        |                              | USA     | 41680            | 20150101     | 20150125    | 6G 6H                                           |
| Drifting Buoy        |                              | USA     | 41705            | 20150315     | 20150504    | 6G 6H                                           |
| Drifting Buoy        |                              |         | 41725            | 20150222     | 20150728    | 3N 6G 6H                                        |
| Drifting Buoy        |                              | EU      | 41739            | 20150126     | 20150127    | 6C                                              |
| Drifting Buoy        |                              | USA     | 41855            | 20150101     | 20150313    | 3M 3N 3O 4Vs6G 6H                               |
| Drifting Buoy        |                              | USA     | 41918            | 20150101     | 20150802    | 6G 6H                                           |
| Drifting Buoy        |                              | USA     | 41925            | 20151008     | 20151231    | 6E 6F 6G                                        |
| Drifting Buoy        |                              | USA     | 41926            | 20150101     | 20150104    | 6H                                              |
| Drifting Buoy        |                              | USA     | 41933            | 20150205     | 20150605    | 6F 6G 6H                                        |
| <b>Drifting Buoy</b> |                              | USA     | 41936            | 20150213     | 20151002    | 6D 6E 6F 6G                                     |
| Drifting Buoy        |                              | USA     | 41938            | 20150101     | 20150114    | 6E 6F                                           |
| Drifting Buoy        |                              | USA     | 41939            | 20150523     | 20150716    | 6G 6H                                           |
| Drifting Buoy        |                              | USA     | 41954            | 20150412     | 20150730    | 6G 6H                                           |
| Drifting Buoy        |                              | USA     | 41956            | 20150101     | 20150217    | 3M 3N 30                                        |
| Drifting Buoy        |                              | USA     | 41975            | 20150101     | 20150505    | 3M 3N 6G 6H                                     |
| <b>Drifting Buoy</b> |                              | USA     | 41976            | 20150128     | 20150321    | 6H                                              |
| Drifting Buoy        |                              | USA     | 41981            | 20150106     | 20151231    | 6F 6G 6H                                        |
| Drifting Buoy        |                              | USA     | 41983            | 20150101     | 20150130    | 3M                                              |
| Drifting Buoy        |                              | USA     | 42501            | 20150101     | 20150808    | 4Vs4W 6D 6E 6F 6G 6H                            |

| Drifting Buoy | USA    | 42502 | 20150101          | 20150302 | 3M 3N 3O 4Vs         |
|---------------|--------|-------|-------------------|----------|----------------------|
| Drifting Buoy | USA    | 42503 | 20150114          | 20150423 | 3M 3N 4W 6B 6C 6D 6E |
|               |        |       |                   |          | 6F 6G 6H             |
| Drifting Buoy | USA    | 43518 | 20150101          | 20150301 | 3M                   |
| Drifting Buoy | USA    | 43555 | 20150704          | 20151231 | 3M 3N 4Vs4W 6B 6C 6D |
| 2             | 0011   | 10000 |                   | _0101_01 | 6E 6F 6G 6H          |
| Drifting Buoy | USA    | 43556 | 20150101          | 20150602 | 4W 6E 6F 6G 6H       |
| Drifting Buoy | USA    | 43565 | 20150101          | 20150002 | 4Vs4W 4X 5Ze6B 6C 6D |
| Diffung Duby  | USA    | 43303 | 20131022          | 20131231 | 6E                   |
| Drifting Duoy | USA    | 43577 | 20150520          | 20151222 | 3M 3N 30 4Vs4W 6B 6C |
| Drifting Buoy | USA    | 43377 | 20150520          | 20151222 |                      |
|               |        | 44500 | 00450540          | 00450005 | 6D 6E 6F             |
| Drifting Buoy | USA    | 44502 | 20150512          | 20150807 | 3K 3L 3M             |
| Drifting Buoy | USA    | 44503 | 20150622          | 20150808 | 3L 3M 3N             |
| Drifting Buoy | USA    | 44506 | 20150326          | 20150825 | 3L 3N                |
| Drifting Buoy | USA    | 44507 | 20150413          | 20150416 | 3M                   |
| Drifting Buoy | USA    | 44508 | 20150413          | 20150420 | 3L 3M                |
| Drifting Buoy | USA    | 44509 | 20150506          | 20150627 | 3L                   |
| Drifting Buoy | USA    | 44510 | 20150506          | 20150627 | 3L                   |
| Drifting Buoy | USA    | 44514 | 20150601          | 20150814 | 4X 5Y 5Ze            |
| Drifting Buoy | EU     | 44515 | 20150307          | 20150603 | 4Vs                  |
| Drifting Buoy | USA    | 44516 | 20150705          | 20151231 | 3M 3N 3O 4Vs4W 4X 6C |
| 5 7           |        |       |                   |          | 6D 6E 6G             |
| Drifting Buoy | USA    | 44519 | 20150718          | 20150813 | 1F 2J                |
| Drifting Buoy | USA    | 44520 | 20150101          | 20150201 | 6H                   |
| Drifting Buoy | USA    | 44521 | 20150714          | 20151231 | 6B 6C 6D 6E 6F       |
| Drifting Buoy | EU     | 44548 | 20150101          | 20150216 | 1F                   |
| Drifting Buoy | KARS   | 44553 | 20150101          | 20150210 | 3M 6H                |
| Drifting Buoy | KARS   | 44558 | 20150101          | 20150120 | 6F 6G 6H             |
| Drifting Buoy | KARS   | 44559 | 20150211          | 20150525 | 3M 6H                |
| Drifting Buoy | KARS   | 44562 | 20150831          | 20150901 | 3M 3N                |
|               |        |       |                   |          |                      |
| Drifting Buoy | EU     | 44603 | 20150101          | 20150307 | 4Vs4W                |
| Drifting Buoy | EU     | 44604 | 20150101          | 20150602 | 3L 3M 3N 30          |
| Drifting Buoy | EU     | 44609 | 20150209          | 20150223 | 3M 3N                |
| Drifting Buoy | Canada | 44670 | 20150721          | 20151231 | 2J 3K                |
| Drifting Buoy | Canada | 44671 | 20150730          | 20151022 | 2J 3K 3L             |
| Drifting Buoy | Canada | 44672 | 20150724          | 20151104 | 2J 3K 3L             |
| Drifting Buoy | EU     | 44739 | 20150101          | 20150603 | 3M 3N 3O 4Vs         |
| Drifting Buoy | EU     | 44760 | 20150516          | 20150603 | 1F                   |
| Drifting Buoy | EU     | 44761 | 20150209          | 20150227 | 1F 2J 3K             |
| Drifting Buoy | EU     | 44762 | 20150209          | 20150603 | 3K 3L 3M             |
| Drifting Buoy | EU     | 44764 | 20150317          | 20150506 | 1F 2J 3K             |
| Drifting Buoy | EU     | 44766 | 20150317          | 20150329 | 3L                   |
| Drifting Buoy | EU     | 44768 | 20150523          | 20150603 | 4Vs4W                |
| Drifting Buoy | EU     | 44769 | 20150523          | 20150603 | 4W 6E 6F             |
| Drifting Buoy | EU     | 44774 | 20150101          | 20150603 | 4Vs4W 4X 5Ze6B 6D 6E |
| 5 7           |        |       |                   |          | 6F                   |
| Drifting Buoy | EU     | 44775 | 20150511          | 20150603 | 6B 6C 6D             |
| Drifting Buoy | EU     | 44776 | 20150101          | 20150531 | 3M 3N 3O 4Vs6F 6G    |
| Drifting Buoy | EU     | 44777 | 20150101          | 20150216 | 6H                   |
| Drifting Buoy | EU     | 44778 | 20150101          | 20150522 | 6G 6H                |
| Drifting Buoy | EU     | 44779 | 20150101          | 20150322 | 3M                   |
|               | EU     | 44779 | 20130101 20150101 | 20130203 | 1F                   |
| Drifting Buoy |        |       |                   |          |                      |
| Drifting Buoy | EU     | 44867 | 20150101          | 20150123 | 3K                   |
| Drifting Buoy | EU     | 44872 | 20150101          | 20150224 | 3M 3N 30 3Ps4Vs      |
| Drifting Buoy | EU     | 44876 | 20150101          | 20150317 | 6G 6H                |
|               |        |       |                   |          |                      |

| <b>Drifting Buoy</b> |                         | EU     | 44880 | 20150101 | 20150330 | 3L 3M 3N 30          |
|----------------------|-------------------------|--------|-------|----------|----------|----------------------|
| Drifting Buoy        |                         | EU     | 44887 | 20150101 | 20150421 | 6G 6H                |
| Drifting Buoy        |                         | EU     | 44890 | 20150101 | 20150117 | 6F                   |
| Drifting Buoy        |                         | EU     | 44892 | 20150101 | 20150107 | 3M 3N                |
| Drifting Buoy        |                         | Canada | 47537 | 20150101 | 20151031 | 0A 0B 1F 2G 2H 2J 3K |
| Drifting Buoy        |                         | Canada | 47539 | 20151006 | 20151231 | 2J 3K 3L 3N          |
| Drifting Buoy        |                         | Canada | 47540 | 20151006 | 20151231 | 2J 3K                |
| Drifting Buoy        |                         | Canada | 47546 | 20151006 | 20151231 | 2H 2J 3K 3L          |
| Drifting Buoy        |                         | Canada | 47549 | 20151006 | 20151231 | 2H 2J 3K 3L          |
| Drifting Buoy        |                         | Canada | 47550 | 20150101 | 20150414 | 0A                   |
| Drifting Buoy        |                         | Canada | 47551 | 20151001 | 20151231 | 0A 0B 2G 2H          |
| Drifting Buoy        |                         | Canada | 47552 | 20151022 | 20151231 | 0A                   |
| Drifting Buoy        |                         | Canada | 47555 | 20151101 | 20151231 | 3K 3L                |
| Drifting Buoy        |                         | Canada | 47557 | 20151101 | 20151231 | 2J 3K                |
| Drifting Buoy        |                         | Canada | 47560 | 20151101 | 20151231 | 2J 3K 3L             |
| Drifting Buoy        |                         | Canada | 47562 | 20151006 | 20151231 | 2H 2J 3K             |
| Drifting Buoy        |                         | Canada | 47567 | 20151006 | 20151231 | 2J 3K                |
| Drifting Buoy        |                         | Canada | 47568 | 20151006 | 20151231 | 1D 2J 3K 3L          |
| Drifting Buoy        |                         | Canada | 47569 | 20151006 | 20151231 | 2J 3K 3L 3N          |
| Drifting Buoy        |                         | Canada | 47574 | 20151101 | 20151231 | 2J 3K                |
| Drifting Buoy        |                         | Canada | 47582 | 20150329 | 20150906 | 0A 1F 2G 2H 2J 3K    |
| Drifting Buoy        |                         | Canada | 47584 | 20151006 | 20151231 | 2J 3K 3L             |
| <b>Drifting Buoy</b> |                         | Canada | 47585 | 20150101 | 20151101 | 0A                   |
| Drifting Buoy        |                         | Canada | 47586 | 20150101 | 20150618 | 0B 1F 2G 2H 2J 3K    |
| <b>Drifting Buoy</b> |                         | Canada | 47589 | 20151022 | 20151231 | 0A                   |
| Drifting Buoy        |                         | Canada | 47590 | 20150911 | 20151127 | 0A 0B 1A 2G          |
| Drifting Buoy        |                         | USA    | 48568 | 20150619 | 20151006 | 1F                   |
| Drifting Buoy        |                         | USA    | 48779 | 20150625 | 20150927 | 1F                   |
| Drifting Buoy        |                         |        | 64532 | 20150321 | 20151023 | 1F 2H 2J             |
| Drifting Buoy        |                         |        | 64533 | 20150324 | 20150327 | 1F                   |
| Drifting Buoy        |                         |        | 64535 | 20150730 | 20150922 | 1F                   |
| Drifting Buoy        |                         | EU     | 64546 | 20150517 | 20150525 | 1F                   |
| Drifting Buoy        |                         | EU     | 64670 | 20150316 | 20150317 | 3K                   |
| Drifting Buoy        |                         | EU     | 64691 | 20150101 | 20150306 | 2H 2J 3K             |
| Drifting Buoy        |                         | USA    | 64938 | 20150101 | 20150529 | 3K 3L 3M             |
| Drifting Buoy        |                         | EU     | 65595 | 20150101 | 20150603 | 1F 2G 2H 2J          |
| Drifting Buoy        |                         | EU     | 65596 | 20150101 | 20150603 | 1F 2J                |
| Drifting Buoy        |                         | EU     | 65599 | 20150511 | 20150603 | 1F                   |
| Drifting Buoy        |                         | EU     | 65600 | 20150512 | 20150603 | 1F                   |
| Drifting Buoy        |                         | EU     | 65601 | 20150513 | 20150603 | 1F                   |
| Drifting Buoy        |                         | EU     | 65602 | 20150518 | 20150603 | 1F                   |
| Moored Buoy          | Northeast<br>Channel    | USA    | 44024 | 20150101 | 20151231 | 4X                   |
| Moored Buoy          | Mass.<br>Bay/Stellwagen | USA    | 44029 | 20150101 | 20151231 | 5Y                   |
| Moored Buoy          | Western Maine<br>Shelf  | USA    | 44030 | 20150101 | 20151231 | 5Y                   |
| Moored Buoy          | Central Maine<br>Shelf  | USA    | 44032 | 20150101 | 20151231 | 5Y                   |
| Moored Buoy          | West Penobscot<br>Bay   | USA    | 44033 | 20150101 | 20151231 | 5Y                   |
| Moored Buoy          | Eastern Maine<br>Shelf  | USA    | 44034 | 20150101 | 20151231 | 5Y                   |
| Moored Buoy          | Jordan Basin            | USA    | 44037 | 20150101 | 20151231 | 5Y                   |
| Moored Buoy          | Potomac, MD             | USA    | 44042 | 20150101 | 20151231 | 6B                   |
|                      | r otomat, MD            | 0.011  | 11012 | 20130101 | 20131231 | 00                   |

| <b>Moored Buoy</b> | Patapsco, MD                                      | USA    | 44043  | 20150101 | 20151208 | 6B  |
|--------------------|---------------------------------------------------|--------|--------|----------|----------|-----|
| Moored Buoy        | Susquehanna,<br>MD                                | USA    | 44057  | 20150411 | 20151202 | 6B  |
| Moored Buoy        | Singray Point,<br>MD                              | USA    | 44058  | 20150101 | 20151231 | 6B  |
| Moored Buoy        | Gooses Reef,<br>MD                                | USA    | 44062  | 20150119 | 20151231 | 6B  |
| <b>Moored Buoy</b> | Annapolis                                         | USA    | 44063  | 20150101 | 20151208 | 6B  |
| Moored Buoy        | First Landing                                     | USA    | 44064  | 20150101 | 20151231 | 6B  |
| Moored Buoy        | Great South Bay                                   | USA    | 44069  | 20150422 | 20151231 | 6A  |
| Moored Buoy        | East Scotian<br>Slope*                            | Canada | 44137* | 20150101 | 20151231 | 4W  |
| Moored Buoy        | Banquereau<br>Bank*                               | Canada | 44139* | 20150101 | 20151231 | 4Vs |
| <b>Moored Buoy</b> | Laurentian Fan*                                   | Canada | 44141* | 20150101 | 20151231 | 4Vs |
| <b>Moored Buoy</b> | La Have Bank*                                     | Canada | 44150* | 20150101 | 20151231 | 4X  |
| Moored Buoy        | Nickerson<br>Bank*                                | Canada | 44251* | 20150101 | 20151231 | 3L  |
| Moored Buoy        | NE Burgeo<br>Bank*                                | Canada | 44255* | 20150101 | 20151231 | 3Ps |
| Moored Buoy        | Halifax<br>Harbour*                               | Canada | 44258* | 20150101 | 20151231 | 4W  |
| <b>Moored Buoy</b> | Mont-Louis*                                       | Canada | 45138* | 20150422 | 20151117 | 4S  |
| Moored Buoy        | Bay du Verde F-<br>67*                            | Canada |        | 201411_  | 201502_  | 3M  |
| <b>Moored Buoy</b> | Terra Nova*                                       | Canada |        | 201401   | 201402_  | 3L  |
| Fixed<br>Platform  | Buoy 126,<br>Jacques<br>Cousteau<br>Reserve       | USA    | JCTN4  | 20150101 | 20151231 | 6A  |
| Fixed<br>Platform  | T-Wharf<br>Bottom,<br>Narragansett<br>Bay Reserve | USA    | NAQR1  | 20150101 | 20151231 | 5Zw |
| Fixed<br>Platform  | Menauhant,<br>Waquoit Bay<br>Reserve              | USA    | WAQM3  | 20150101 | 20151231 | 5Zw |

\*Buoys marked by this symbol measure waves \*\* In each case the reporting period corresponds to the period associated with measurements in the NCA only.

| Number | Name                            | Reporting<br>period<br>(months) | Longitude | Latitude | NAFO<br>Subarea |
|--------|---------------------------------|---------------------------------|-----------|----------|-----------------|
| 65     | Saint John                      | Jan-Dec                         | 66.0630   | 45.2510  | 3L              |
| 365    | Yarmouth                        | Jan-Dec                         | 66.1167   | 43.8333  | 4X              |
| 491    | Bedford Institute               | Jan-Dec                         | 63.6167   | 44.6833  | 4W              |
| 612    | North Sydney                    | Jan-Dec                         | 60.2500   | 46.2167  | 4Vn             |
| 665    | Port aux Basques                | Jan-Dec                         | 59.1333   | 47.5667  | 3Pn             |
| 755    | St. Lawrence                    | Jan-Dec                         | 55.3901   | 46.9168  | 3Ps             |
| 835    | Argentia                        | Mar-Dec                         | 53.9833   | 47.3000  | 3Ps             |
| 905    | St. John's                      | Jan-Dec                         | 52.7167   | 47.5667  | 3L              |
| 990    | Bonavista                       | Jan-Dec                         | 53.1150   | 48.6510  | 3L              |
| 1430   | Nain                            | Jan-Dec                         | 61.6833   | 56.5500  | 2H              |
| 1700   | Charlottetown                   | Jan-Dec                         | 63.1167   | 46.2333  | 4T              |
| 1805   | Shediac Bay                     | Jan-Dec                         | 64.5460   | 46.2270  | 4T              |
| 2000   | Lower Escuminac                 | Jan-Dec                         | 64.8833   | 47.0833  | 4T              |
| 2145   | Belledune                       | Jan-Dec                         | 65.8500   | 47.9000  | 4T              |
| 1970   | Cap-aux-Meules                  | Jan-Dec                         | 61.8573   | 47.3789  | 4T              |
| 2330   | Rivière-au-Renard               | Jan-Dec                         | 64.3805   | 48.9970  | 4T              |
| 2780   | Sept-Îles                       | Jan-Dec                         | 66.3768   | 50.1948  | 4S              |
| 2985   | Rimouski                        | Jan-Dec                         | 68.5137   | 48.4783  | 4T              |
| 3057   | Saint-Joseph-de-la-Rive         | Jan-Dec                         | 70.3655   | 47.4488  | 4T              |
| 3100   | Saint-Francois Île<br>d'Orléans | Jan-Dec                         | 70.8082   | 46.9965  | 4T              |
| 3248   | Vieux-Québec                    | Jan-Dec                         | 71.2019   | 46.8111  | 4T              |

Table 5. Water level data collected in 2015

Table 6. Mooring data processed in 2015

| Mooring/ Project                                             | Longitud<br>e (W) | Latitude (N) | First Date | Last Date | Instruments            | NAFO<br>Sub<br>area |
|--------------------------------------------------------------|-------------------|--------------|------------|-----------|------------------------|---------------------|
| Scotian Shelf - St. Anns<br>Bank                             | 63.1703           | 44.2482      | 20140929   | 20150923  | ADCP, CTD              | 4W                  |
| OSNAP - 53N Line #1874                                       | 51.6937           | 52.8187      | 20140704   | 20150515  | ADCP, CTD,<br>RCM, MTR | 2J                  |
| OSNAP - 53N Line #1872                                       | 52.1010           | 52.6656      | 20140703   | 20150507  | CTD, MTR               | 2J                  |
| OSNAP - 53N Line #1881                                       | 52.1029           | 52.6655      | 20140703   | 20150507  | ADCP, CTD              | 2J                  |
| OTN Mooring Site 1                                           | 63.3044           | 44.3470      | 20140919   | 20150421  | ADCP, CTD              | 4W                  |
| OTN Mooring Site 2                                           | 63.1701           | 44.2486      | 20140920   | 20150421  | ADCP, CTD              | 4W                  |
| OTN Mooring Site 3                                           | 63.0335           | 44.1347      | 20140920   | 20150421  | ADCP, CTD              | 4W                  |
| OSNAP - Sackville Spur,<br>Flemish Pass North<br>Grand Banks | 47.2813           | 47.0959      | 20130701   | 20140711  | ADCP, CTD              | 3L                  |
| OSNAP - Sackville Spur,<br>Flemish Cap North<br>Flank        | 45.5998           | 48.7877      | 20130704   | 20140707  | ADCP, CTD,<br>RCM      | 3M                  |
| Labrador Sea - Slope                                         | 54.0873           | 55.1144      | 20130511   | 20140514  | RCM                    | 2J                  |
| Labrador Sea - Slope<br>West                                 | 53.6363           | 55.6282      | 20131105   | 20140428  | RCM                    | 2H                  |
| Labrador Sea #1823                                           | 53.6862           | 55.5583      | 20120610   | 20130519  | RCM                    | 2H                  |
| Labrador Sea #1824                                           | 54.0920           | 55.1197      | 20120605   | 20130519  | RCM                    | 2J                  |
| Labrador Sea #1822                                           | 48.6178           | 60.2167      | 20120610   | 20130516  | RCM                    | 1F                  |
| Scotian Slope - RAPID                                        | 61.0703           | 42.1636      | 20090930   | 20100906  | RCM                    | 4W                  |
| Scotian Shelf - Station 3*                                   | 62.6758           | 43.3333      | 19681018   | 19681215  | MTR                    | 4W                  |
| Scotian Shelf - Station 2*                                   | 62.9892           | 43.7485      | 19681024   | 19681212  | MTR                    | 4W                  |
| Scotian Shelf - Station<br>13*                               | 63.8252           | 44.2618      | 19681017   | 19681128  | MTR                    | 4X                  |
| Scotian Shelf - Station 3*                                   | 63.4983           | 42.6733      | 19680913   | 19681025  | MTR                    | 4W                  |
| Scotian Shelf - Station 2*                                   | 62.9948           | 43.7530      | 19680906   | 19681024  | MTR                    | 4W                  |
| Scotian Shelf - Station 3*                                   | 62.6800           | 43.3400      | 19680907   | 19681018  | MTR                    | 4W                  |
| Scotian Shelf - Station 12*                                  | 63.9467           | 44.4383      | 19680905   | 19681017  | MTR                    | 4X                  |
| Scotian Shelf - Station<br>13*                               | 63.8300           | 44.2700      | 19680905   | 19681017  | MTR                    | 4X                  |
| Scotian Shelf - Station 3*                                   | 63.5033           | 44.4083      | 19680905   | 19681016  | MTR                    | 4W                  |
| Scotian Shelf - Station<br>12*                               | 63.9333           | 44.4365      | 19680603   | 19680813  | MTR                    | 4X                  |
| Scotian Shelf - Station<br>13*                               | 63.8283           | 44.2683      | 19680603   | 19680813  | MTR                    | 4X                  |
| Scotian Shelf - Station 2*                                   | 62.9966           | 43.7616      | 19680604   | 19680813  | MTR                    | 4W                  |
| Scotian Shelf - Station 3*                                   | 63.5023           | 44.4007      | 19680604   | 19680813  | MTR                    | 4W                  |
| Scotian Shelf - Sambro*                                      | 63.5033           | 44.4100      | 19671114   | 19680104  | MTR                    | 4X                  |
| Scotian Shelf - Station 4*                                   | 63.5000           | 42.6666      | 19670826   | 19671101  | MTR                    | 4W                  |
| Scotian Shelf - Station 3*                                   | 62.6583           | 43.2883      | 19670827   | 19671029  | MTR                    | 4W                  |
| Scotian Shelf - Sambro*                                      | 63.5050           | 44.4133      | 19670705   | 19670902  | MTR                    | 4X                  |

| Scotian Shelf - Station 2* | 63.0117 | 43.7616 | 19670706 | 19670828 | MTR | 4W |
|----------------------------|---------|---------|----------|----------|-----|----|
| Scotian Shelf - Station 4* | 63.5000 | 42.6666 | 19670707 | 19670826 | MTR | 4W |
| Scotian Shelf - Station 5* | 63.5167 | 42.4100 | 19670810 | 19670825 | MTR | 4W |
| Scotian Shelf - Station 5* | 63.5033 | 42.4200 | 19670803 | 19670810 | MTR | 4W |
| Scotian Shelf - Station 4* | 63.5000 | 42.6666 | 19670514 | 19670707 | MTR | 4W |
| Scotian Shelf - Station 3* | 62.6583 | 43.2883 | 19670514 | 19670706 | MTR | 4W |
| Scotian Shelf - Station 3* | 62.6745 | 43.3380 | 19670514 | 19670706 | MTR | 4W |
| Scotian Shelf - Sambro*    | 63.5050 | 44.4133 | 19670514 | 19670705 | MTR | 4X |
| Scotian Shelf - Station 2* | 63.0143 | 43.7658 | 19670514 | 19670705 | MTR | 4W |
| Scotian Shelf - Station 2* | 63.0172 | 43.7336 | 19670129 | 19670603 | MTR | 4W |
| Scotian Shelf - Sambro*    | 63.4370 | 44.3700 | 19670313 | 19670514 | MTR | 4X |
| Scotian Shelf - Sambro*    | 63.4370 | 44.3700 | 19670313 | 19670403 | MTR | 4X |
| Scotian Shelf - Station 3* | 62.6583 | 43.2883 | 19670121 | 19670310 | MTR | 4W |

\*Recalibration / reprocessing