Northwest Atlantic

Fisheries Organization

Serial No. N6594 NAFO SCR Doc. 16/045

NAFO/ICES PANDALUS ASSESSMENT GROUP MEETING - SEPTEMBER 2016

Results of the Greenland Bottom Trawl Survey for Northern shrimp (*Pandalus borealis*)
Off East Greenland (ICES Subarea XIV b), 2008-2016

by

Helle Siegstad. Greenland Institute of Natural Resources Box 570, 3900 Nuuk, Greenland

Abstract

The 2016 survey for Northern Shrimp (*Pandalus borealis*) in East Greenland estimate the biomass of shrimp to be at the same level as in 2015 and that the shrimp stock is concentrated in the area north of 64°N and in depth between 200 and 400 meter. The biomass for the entire survey area are low compared to West Greenland and the absence of the smaller male and juvenile shrimp in the survey area stresses that the total area of distribution and recruitment patterns of the stock are still unknown.

Introduction

Since 2008 stratified-random trawl surveys has been conducted to assess the stock status of northern shrimp in East Greenland. The main objectives were to obtain indices for stock biomass, abundance, recruitment and demographic composition. The area was also surveyed in 1985-1988 (Norwegian survey) and in 1989-1996 (Greenlandic survey), but the historic surveys is not directly comparably with the recent survey due to different area coverage, survey technique and trawling gear. However, both showed similar levels of biomass and abundance and the presence of large shrimps. Absence of the smaller male and juvenile shrimp in the survey area stresses that the total area of distribution and recruitment patterns of the stock are still unknown.

This document presents results on biomass, abundance and sex-composition from 2008 - 2016 surveys, and attempt to compare these results with survey conducted in 1989-1996.

Materiel and Methods

The survey is carried out with the same gear and survey protocols as used in West Greenland (Burmeister 2016). Stratification was based on the "Q-areas" used for the Greenland halibut survey (Fig. 1.) and the area are further depth stratified into 0-200 m, 200-400m and 400-600 m zones (area sizes are given in table 1). Total survey area has been estimated to 118.107 km². Standard tow duration was set to 15 minutes at all stations. Towing speed have been about 2.5 knots in all cases.

Stations were randomly selected from historical known trawlable sites, however, a number of the selected positions were not deemed trawlable. A total number of 101 valid hauls were made in 2016 (table 1). Trawling has been carried out days and nights (24 hours). The influence of light induced nocturnal vertical migrations of shrimp has not been taking into account in the estimation of biomass.

Biomass estimation

For each tow, the catch was divided by the estimated swept area calculated from wingspread and track length to estimate haul by haul biomass density. Mean stratum densities were multiplied by the stratum area to compute stratum biomass, and corresponding coefficients of variation (CV, in %) for each stratum were calculated from the swept area estimate of the biomass (B) and the standard deviation of the density times the stratum area (STD) – see Burmeister 2016 for details.

Demography

From each catch a sample of about 0.5 to 3 kg of shrimp was taken and sorted to species. All specimens of Northern shrimp were grouped into males, primiparous and multiparous females based on their sexual characteristics according to Allen (1959) and McCrary (1971). The oblique carapace length (CL) of each shrimp in the sub sample was furthermore measured to the nearest 0.1 mm using callipers.

Temperature

Bottom temperature was measured with a *Starmon* sensor mounted on one of the trawl doors. It records at intervals of 30 s with a resolution of 0.01°C. The average temperature for each haul was calculated after retrieval of the sensor. All measurements taken at greater depths than 150 m were used to calculate a mean bottom temperature weighted for the areas of the survey strata between 150 and 600 m depth.

Results and Discussion

Biomass and Stock composition

For all strata biomass estimates have been calculated (Tab.2 and Tab.3) on the basis of the nominal swept area (Burmeister 2016). Total biomass has been low since 2012 and the stock is mainly located in the northern part in Q1 with more than 90% of total biomass (Fig. 1 and Fig. 3). Shrimp biomass in the remaining southerly offshore areas (Q2-Q6) showed very low densities (Tab. 2 and Fig. 3). The shrimp occurs mainly between 200 - 400 meter and in 2016, more than 80% of the biomass is found in here.

The demographic structure in East Greenland general shows large males with 20mm CL as the smallest (Fig. 4a and 4b). A calculation of the fishable biomass of individuals equal to and above 17 mm CL has therefore not been calculated. For the first time smaller males between 10 and 17mm was registered in 2016 - although in small numbers. Biomass and abundance of female and males weighted up to total biomass are presented in Tab 6 and Tab 7. Female biomass is on average on 1.806 tons (8 years). In 2016 female biomass was on 778 tons (tab. 6) the lowest in the timeserie.

Total numbers of shrimp (males and females) in 2016 was estimated to 145 million and at the same low level since 2014. The average on 372 million for the nine years' time series. The abundance of males in 2016 is 55 million – a proportion on 56% and one of the lowest on time series.

Bottom temperature and biomass

The overall mean bottom temperature in the shrimp survey area was stable near 4° C from 2008 -2016 (Fig. 7). From 2008-2016 the areas south of 65°30 N (Q2-Q6) all have an average temperature between 3°C and 5°C, however temperature in the north of 65°30 N (Q1) average temperature is between 1°C and 2°C. Almost all shrimp biomass is located in north of 65°30 N (Q1)

Comparison with earlier surveys

Stratified-random trawl surveys has been carried out in Denmark Strait in 1989-1992 and in 1994-1996 the surveys was conducted by a sampling technique based on the Spline Designer Software System. The surveys in the 1980ties and 1990ties was conducted in the shrimp fishing area north of 65N up to 67N. The recent surveys since 2008 covered the shelf area from Cap Farwell to Dorhn area up to 67N. To compare the two survey time series only the areas Q1 and Q2 in recent surveys are used. Table 8 list the biomass estimates, numbers of stations, area covered, cod-end mesh size and survey technique from all surveys in 1980ties and 1990ties and the recent surveys since 2008. It is difficult to compare the different surveys due to different survey technique and trawling gear. However, the low biomass estimate and the demographic structure in all surveys is very must in correspondence.

Conclusions

The biomass of shrimp in East Greenland in 2016 is the lowest in the series and estimated to be at the same low level as in 2008, 2012-2015. The 2009-2011 biomass was more than double of the 2012-2015 value. Absence of the smaller male and juvenile shrimp in the survey area stresses that the total area of distribution and recruitment patterns of the stock are still unknown.

References

- ANDERSEN, M., CARLSSON, D. M. AND P. KANNEWORFF. 1994. Trawl survey for shrimp (*Pandalus borealis*) in Denmark Strait, 1994. *NAFO SCR Doc.*, No. 90, Serial No. N2477.
- BURMEISTER, A, 2016. The West Greenland trawl survey for *Pandalus borealis*, 2016, with reference to earlier results. *NAFO SCR Doc.*, No. 16/041 Serial No.N6590.
- CARLSSON, D. M. 1996. Trawl survey for shrimp (*Pandalus borealis*) in Denmark Strait, 1996. *NAFO SCR Doc.*, No. 116, Serial No. N2813.
- CARLSSON, D. M., and P. KANNEWORFF. 1995. Trawl survey for shrimp (*Pandalus borealis*) in Denmark Strait, 1995. *NAFO SCR Doc.*, No. 109, Serial No. N2648.
- KANNEWORFF, P. and K.M. Lehmann 1993. Stratified-Random Trawl Survey for shrimp (*Pandalus borealis*) in Denmark Strait, 1990. *NAFO SCR Doc.*, No. 52, Serial No. N1935.

 $\begin{tabular}{ll} Table 1. Vessels, trawl types and rigging parameters used in the Greenland Bottom Trawl Survey for shrimp and fish, $2008-2016$ \end{tabular}$

	Vessel	Trawl	Bridle length (m)	Wing- spread (m)	
2008-2016	Paamiut	Cosmos	54.0	28.1-30	

 $Table\ 2.\ Survey\ estimates\ of\ total\ biomass\ 2016$

Stratum	Area	Stations	Biomass	Biomass	Biomass	Err. coefft
	(km^2)		density	(Kt)	error	variat
			(t/km2)		variance	(%)
Q1-0	0	0	0.00	0.00	0.00	0.00
Q1-2	35662	21	0.03	1.19	0.16	33.59
Q1-4	6975	8	0.04	0.27	0.01	33.22
Overall Q1	42637	29	0.03	1.46	0.17	28.01
Q2-0	93	1	0.00	0.00	0.00	0.00
Q2-2	7657	7	0.00	0.00	0.00	100.00
Q2-4	1246	2	0.00	0.00	0.00	0.00
Overall Q2	8996	11	0.00	0.00	0.00	100.01
Q3-0	3363	4	0.00	0.00	0.00	75.33
Q3-2	22547	13	0.00	0.04	0.00	70.88
Q3-4	9830	9	0.00	0.03	0.00	83.08
Overall Q3	35740	26	0.00	0.07	0.00	53.41
Q4-0	1337	1	0.00	0.00	0.00	0.00
Q4-2	7770	11	0.00	0.00	0.00	100.00
Q4-4	2054	1	0.00	0.00	0.00	0.00
Overall Q4	11161	13	0.00	0.00	0.00	100.01
Q5-0	469	3	0.00	0.00	0.00	100.00
Q5-2	2785	3	0.00	0.00	0.00	0.00
Q5-4	1819	1	0.00	0.00	0.00	95.00
Overall Q5	5073	7	0.00	0.00	0.00	82.12
Q6-0	6307	7	0.00	0.00	0.00	52.70
Q6-2	6130	7	0.00	0.02	0.00	93.68
Q6-4	2063	2	0.00	0.00	0.00	64.19
Overall Q6	14500	16	0.00	0.02	0.00	75.78
Survey totals	118107	101	0.01	1.55	0.17	26.44

Table 3. Biomass estimates (t) for survey subdivisions and standard errors for the entire survey, 2008-2016

Year	Q1	Q2	Q3	Q4	Q5	Q6	Total	SE ⁴
2008	1,591	7	312	4	24	17	1,955	882
2009	6,945	325	1,157	1	1	17	8,446	1861
2010	4,307	44	1,882	1	3	2	6,240	1990
2011	5,701	0	367	0	0	9	6,077	1432
2012	2,044	5	335	0	3	1	2,388	687
2013	2,532	9	37	0	1	3	2,581	1041
2014	2,485	1	56	6	3	5	2,555	921
2015	1,559	15	103	1	3	8	1,688	451
2016	1,491	0	73	1	0	22	1,587	420

Table 4. Error coefficients of variation (%) for the biomass estimates for the entire survey area 2008-2016

Year	Q1	Q2	Q3	Q4	Q5	Q6	Total	Number of hauls
2008	54.7	69.3	45.2	100.0	62.9	30.7	45.1	52
2009	25.2	99.8	47.4	52.8	75.0	33.6	22.0	97
2010	22.4	79.0	92.6	75.0	92.5	42.4	31.9	82
2011	25.0		44.6	100.0		40.0	23.6	85
2012	30.7	100.0	83.4	100.0	93.7	93.7	28.8	99
2013	41.1	74.3	56.8	100.0	82.0	82.0	40.3	92
2014	37.1	66.7	41.9	42.6	49.4	49.4	36.0	80
2015	28.6	94.4	63.4	26.7	34.8	34.8	26.7	95
2016	28.0	100.0	53.6	100.0	65.4	65.4	26.4	101
Mean 2008-								
2016							31.2	

Table 5. Estimated mean densities (kg/km²) for survey subdivisions in 2008-2016

Year	Q1	Q2	Q3	Q4	Q5	Q6	Total
2008	37.3	0.4	7.6	0.3	3.4	1.2	14.0
2009	162. 9	17.0	28.2	0.1	0.2	1.2	60.6
2010	101. 0	2.3	45.9	0.1	0.4	0.2	44.8
2011	133. 7	0.0	8.9	0.0	0.0	0.6	43.6
2012	47.9	0.3	8.2	0.0	0.4	0.1	17.1
2013	59.4	0.5	0.9	0.0	0.1	0.2	18.5
2014	58.3	0.1	1.4	0.4	0.4	0.3	18.3
2015	36.6	8.0	2.5	0.0	0.4	0.5	12.1
2016	35.0	0.0	1.8	0.1	0.0	1.5	11.4

Table 6. Survey biomass estimates (tons) by sex based on length-weight distributions 1988-2016

Year	Males	Females	Total	Males %	Females %
2008	1025	930	1955	52.4	47.6
2009	5572	2874	8446	66.0	34.0
2010	2940	3300	6240	47.1	52.9
2011	3414	2663	6077	56.2	43.8
2012	1230	1158	2388	51.5	48.5
2013	1425	1156	2581	55.2	44.8
2014	1081	1474	2555	42.3	57.7
2015	769	918	1687	45.6	54.4
2016	809	778	1587	51.0	49.0
Average	2029	1695	3724	52	48

Table 7. Estimated numbers ('000) by sex from length analyses 2008-2016

Year	Males	Females	Total	Males %	Females %
2008	129	72	202	64.1	35.9
2009	670	222	893	75.1	24.9
2010	320	244	564	56.7	43.3
2011	364	196	560	65.0	35.0
2012	127	84	211	60.2	39.8
2013	148	79	227	65.2	34.8
2014	97	94	191	50.8	49.2
2015	71	55	126	56.3	43.7
2016	96	49	145	66.2	33.8
Average	225	122	346	62	38

Table 8. Two Greenlandic surveys from 1989-1996 and 2008-2015 for comparision

Q1-Q2 (N. for 65)	Biomass	No. Station	Area	Cod-end	Surveymethode
1989	4,879	87	33,971	44	Stratified random technique
1990	1,860	99	33,971	44	Stratified random technique
1991					•
1992	1,044	37	43,439	44	Stratified random technique
1993					•
1994	3,800	69		20	Spline Designer Designer
1995	4,558	72		20	Spline Designer Designer
1996	No estimate	40		20	Spline Designer Designer
2008	1,598	16	54,903	20	Stratified random technique
2009	7,270	33	51,633	20	Stratified random technique
2010	4,352	33	51,633	20	Stratified random technique
2011	5,701	31	51,633	20	Stratified random technique
2012	2,050	36	51,633	20	Stratified random technique
2013	2,541	37	51,633	20	Stratified random technique
2014	2,486	35	51,633	20	Stratified random technique
2015	1,574	37	51,633	20	Stratified random technique
2016	1,491	39	51,633	20	Stratified random technique

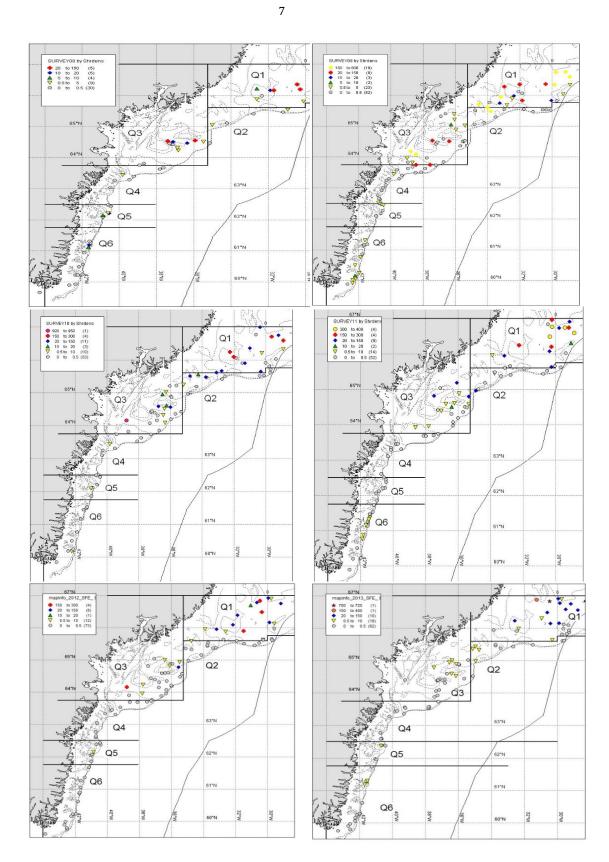


Fig. 1a. Shrimp densitet in surveyarea in 2008-2013

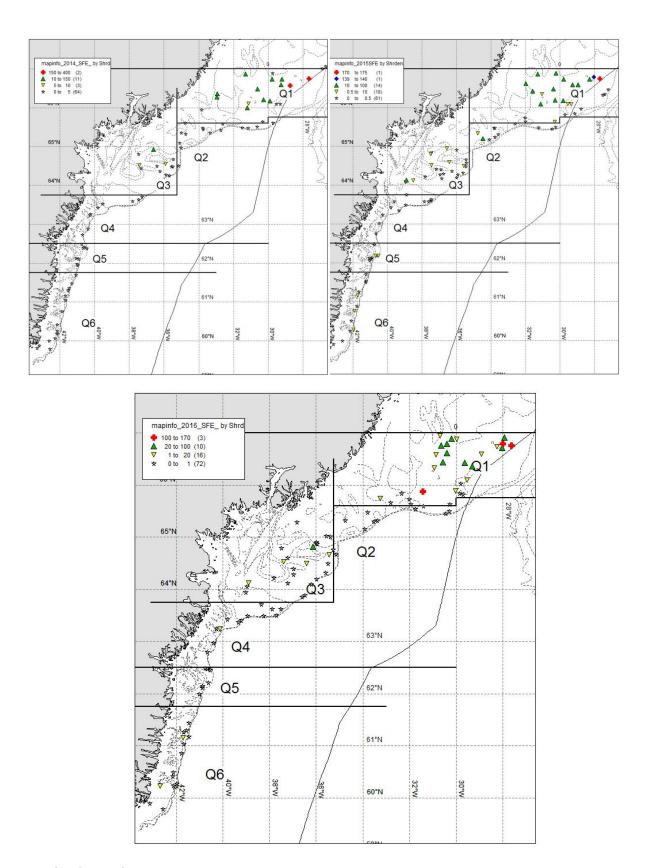


Fig. 1b. Shrimp densitet in surveyarea in 2014 to 2016

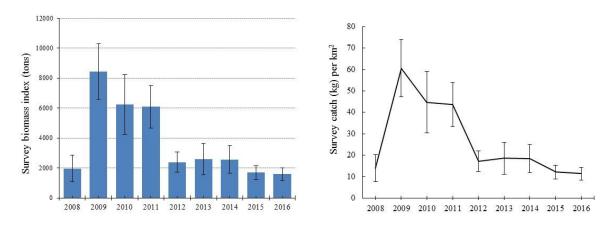


Fig. 2. Estimated total survey biomass (t) and average survey biomass density (kg/km) of Northern shrimp with standard errors 2008-2016

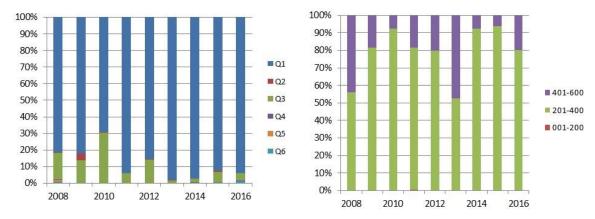


Fig. 3. Survey biomass in percent in different areas and depths 2008-2016

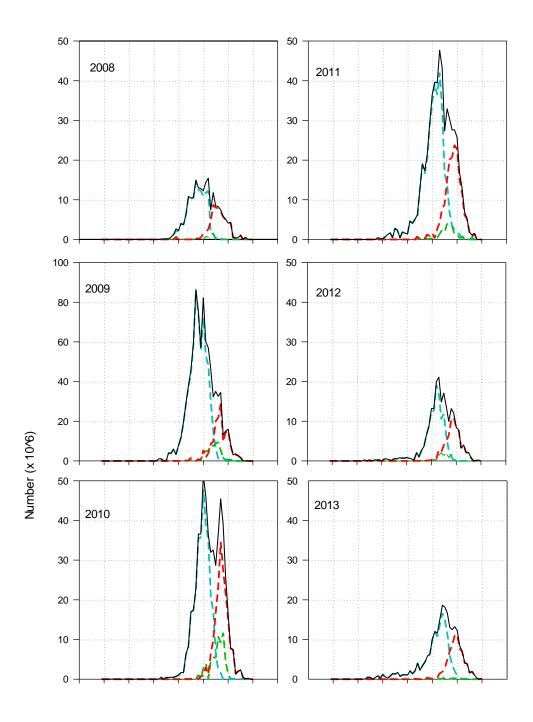


Fig. 4a. Numbers of shrimp by length group (CL) in the total survey area in 2008 - 2013 (Please note that the scale in the figure for 2009 differs from other years)

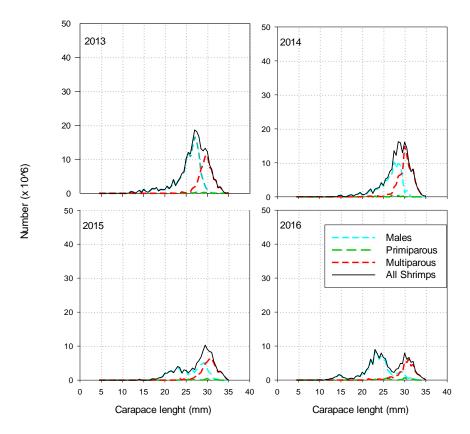


Fig.4b. Numbers of shrimp by length group (CL) in the total survey area in 2013 - 2016

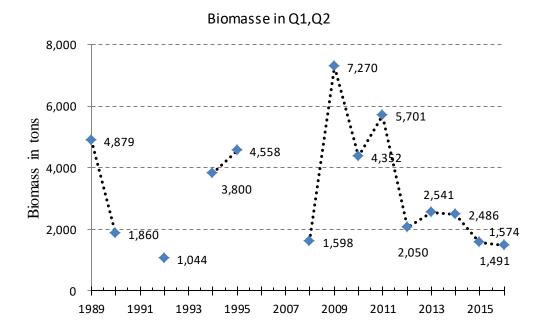


Fig.5. Biomass from two different surveys series from 1989-1995 and 2008-2016 for the areas North of $65^\circ N$ and stratumarea Q1 and Q2 for comparison

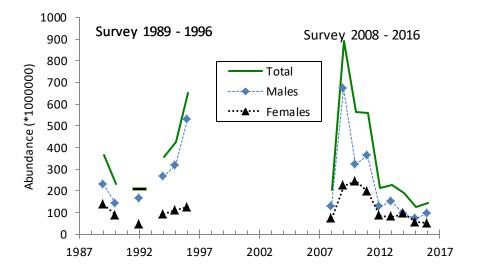


Fig.6. bundance of males and females in two different surveys series from 1989-1995 and 2008-2016

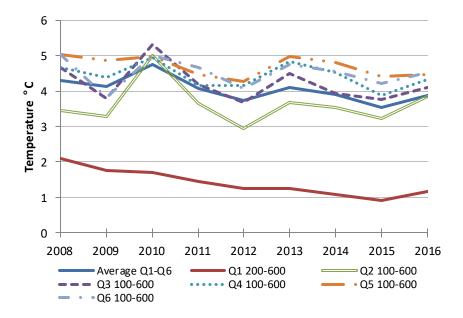


Fig. 7. Temperature in the surveyarea Q1-Q6 from 2008-2016