NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Serial No. N6749

Fisheries Organization

NAFO SCR Doc. 17/066

SCIENTIFIC COUNCIL MEETING – SEPTEMBER 2017

The *Mterm* projections from the 2017 assessment of beaked redfish (*S. mentella and S. fasciatus*) in NAFO Division 3M

By

A. Ávila de Melo 1

¹ Instituto Português do Mar e da Atmosfera, IPMA, Rua Alfredo Magalhães Ramalho, nº6, 1495-006, Lisboa, Portugal

Introduction

In June 2017 3M beaked redfish was fully assessed, with 2015-2016 natural mortality at 0.1. Results show a stock still high on biomass and spawning biomass (as result of high 2002-2006 recruitment) but declining in abundance and recruitment. In 2015 and 2016 recruiting year classes were among the lowest on record while fishing mortality increased but is kept at low level.

Taking into account the consistency of this latest assessment with the previous ones, the 2017 XSA assessment was accepted. And NAFO Scientific Council agreed to proceed with a 2018-2019 recommendation based on stock projections under most recent level of natural mortality and considering four options for fishing mortality as follows:

- 1. No fishing, Fo
- 2. *F*_{statusquo}@age (last year *F*_{bar6-16,2016} times average partial recruitment for the last three years)
- 3. *F*_{0.1}
- 4. F_{max}

Fishing mortality reference points were given by the revised yield per recruit analysis included in the assessment (Ávila de Melo *et al.*, 2017; NAFO, 2017).

Background, input data and projections tool

Short (three years, 2018-2020) and medium term (ten years, 2018-2027) stochastic projections of yield and female spawning stock biomass (SSB) under the four F options were obtained with *Mterm*, a program of the CEFAS laboratory (Lowestoft/UK), first applied to a NAFO stock in 2000 (Mahe and Darby, 2000). The program has been upgraded to allow projections for long living stocks with a large number of ages included in the analytical assessment (Smith and Darby, *pers. comm.* 2001).

The *Mterm* algorithm use input abundance@age (5 and older) at the beginning of projections (20189 abide to a measure of uncertainty. The initial 2018 population at age (5 and older) is the forward projection of the XSA survivors by the end of 2016 assuming $F_{statusquo}$ @age during 2017. The coefficients of variation for population@age at the beginning of 2018 were set as the internal standard errors from 2017 XSA diagnostics. All other inputs@age are the last three year averages with associated errors at age.

Recruitment (age 4) entering in 2017 and 2018 is assumed constant at the geometric mean of below average recruitments (age 4 XSA, 1989-2014). For 2019 till 2027, recruitment is randomly re sampled with residuals from the geometric mean of below average recruitments.

Input data were aggregated in two categories of files:

- a. *.srr* stock-recruitment file (Table 1), assuming no stock recruitment relationship and with a random recruitment around the geo-mean of the 1989-2014 recruitments (numbers at age 4, from the 2017 XSA). From the third year of projection onwards, age 4 is given by the re-sampling of the *log* residuals of the 1989-2014 recruitments. The recruitment from last years (2015-2016) were excluded from average due to greater uncertainty of their estimates.
- b. *.sen* sensitivity file (Table 2), with the all vectors needed to forward projections. Natural mortality was fixed at 0.1 for all ages and years. Other inputs at age (relative fishing mortality, stock and catch weights and maturity ogive) are the last three year averages with associated errors at age. Each F option was kept constant through projection interval (2018-2027).

Results and discussion

Main results of short term projections for female SSB and yield under several F options and M at 0.1 are summarized on Table 3, extended to medium term SSB trajectories on Table 4 and Fig. 1 (50%_{ile}). All F options are suitable to pursue a short term exploitation that will keep SSB by the entry of 2020 at the 2016 high level of 54 000t, if the historical average low level of recruitment prevails. However, from 2020 onwards SSB will start to decline regardless the F option considered (except no fishing), at faster pace if either one of the two higher options ($F_{statusquo}$ or F_{max}) is implemented. And this decline can be even steeper for all options if instead low recruitments randomly around the historical low average assumed in the projections, extremely low recruitments continue to occur at the minimum most recent level (2015-2016),.

References

- Ávila de Melo, A., Saborido-Rey, F., Fabeiro, M., Rábade, S., González Troncoso D., González-Costas, F., Pochtar M., and R. Alpoim (2017). An assessment of beaked redfish (*S. mentella and S. fasciatus*) in NAFO Division 3M, from a biological based approach to recent levels of natural mortality (2011-2016). *NAFO SCR Doc.* 17/032 Ser. No N6687, 69 pp.
- NAFO (2017). Report of the Scientific Council Meeting, 1-15 June 2017, Halifax, Nova Scotia. *NAFO SCS Doc.* 17-16 Ser. No N6718, 216 pp.

Table 1. stock recruitment 2017 Mterm input file

5	Nparams
5	Geometric mean model
28.262 1989-2	014 age 4 XSA low geomean in millions
0.00000E+000	
0.00000E+000	
0	
0.00000E+000	
26	Ndata log residuals
0.657	
0.404	
-0.176	
-0.252	
-0.129	
-0.129	
-0.020	
-0.765	
-0.542	
-0.626	
-0.178	
-0.048	
0.204	
0.733	
0.695	
0.695	
0.695	
0.695	
0.695	
0.695	
0.695	
0.695	
0.695	
0.656	
0.483	
-0.531	
0	No extra data

Table 2:	: An expla	nation of the r	ed.sen file inp	out data v	with an explo	oitation patter	n corres	ponding to I	statusquo	
N/4-108	0-2014 200		etric mean low	recruitm	onte					
F@age2	2017-2019:	=Fbar2016x av	eragePR@ag	e2014-20)16					
0										
Name	Value	C.V.	Name	Value	C.V.	Name	Value	C.V.	Name	Value
Denvelati		4.4h-a	E ve la itatia			E m la ita			E ve la ita	
Populati	on at age a		Exploitatio	Exploitation pattern		Exploita	tion patter carde)	rn 🔤	(I - Industrials)	
'NA'	28262	0.745	(H - Huma	0 2871	0.180	(D - DISC 'sD4'		0.00	(I - INGUS 'sIA'	
'N5'	19190	0.630	'sH5'	0.7674	0.768	'sD5'	0.00	0.00	'sl5'	0.00
'N6'	2222	0.518	'sH6'	0.4328	0.447	'sD6'	0.00	0.00	'sl6'	0.00
'N7'	1003	0.394	'sH7'	0.1308	0.113	'sD7'	0.00	0.00	'sl7'	0.00
'N8'	2899	0.336	'sH8'	0.0598	0.044	'sD8'	0.00	0.00	'sl8'	0.00
'N9'	14898	0.299	'sH9'	0.0440	0.029	'sD9'	0.00	0.00	'sl9'	0.00
'N10'	20278	0.277	'sH10'	0.0391	0.029	'sD10'	0.00	0.00	'sl10'	0.00
'N11'	37373	0.249	'sH11'	0.0540	0.033	'sD11'	0.00	0.00	'sl11'	0.00
'N12'	42022	0.233	'sH12'	0.0643	0.044	'sD12'	0.00	0.00	'sl12'	0.00
'N13'	37987	0.218	'SH13'	0.0455	0.029	'sD13'	0.00	0.00	'sl13'	0.00
'N14'	20031	0.207	'SH14'	0.0883	0.041	SD14	0.00	0.00	SI14	0.00
N16	0732	0.202	'sH16'	0.1040	0.001	'sD15	0.00	0.00	5115	0.00
'N17'	6231	0.199	'sH17'	0.1071	0.025	'sD17'	0.00	0.00	'sl17'	0.00
'N18'	4155	0.185	'sH18'	0.1578	0.068	'sD18'	0.00	0.00	'sl18'	0.00
'N19'	3107	0.185	'sH19'	0.1578	0.068	'sD19'	0.00	0.00	'sl19'	0.00
Stock we	eight at age	e	Catch wei	ght at age	e	Catch w	eight at ag	ge	Catch w	eight at a
			(H - Huma	n consun	nption)	(D - Disc	cards)		(I - Industrials)	
'WS4'	0.121	0.006	'WH4'	0.109	0.005	'WD4'	0.00	0.00	'WI4'	0.00
'WS5'	0.165	0.003	'WH5'	0.144	0.005	'WD5'	0.00	0.00	'WI5'	0.00
'WS6'	0.212	0.007	'WH6'	0.174	0.004	'WD6'	0.00	0.00	'WI6'	0.00
'WS7'	0.273	0.009	'WH7'	0.234	0.011	'WD7'	0.00	0.00	'WI7'	0.00
10058	0.312	0.003	WH8	0.272	0.012	WD8	0.00	0.00	.0018.	0.00
10059	0.351	0.007		0.328	0.017	WD9	0.00	0.00	VVI9 '\\//14.O'	0.00
'W/S11'	0.402	0.013	V/H10	0.394	0.037	'WD10	0.00	0.00	'\\//111'	0.00
'WS12'	0.404	0.013	'WH12'	0.439	0.020	'WD12'	0.00	0.00	'WI12'	0.00
'WS13'	0.459	0.032	'WH13'	0.449	0.033	'WD13'	0.00	0.00	'WI13'	0.00
'WS14'	0.507	0.037	'WH14'	0.486	0.056	'WD14'	0.00	0.00	'WI14'	0.00
'WS15'	0.511	0.051	'WH15'	0.525	0.053	'WD15'	0.00	0.00	'WI15'	0.00
'WS16'	0.564	0.077	'WH16'	0.552	0.025	'WD16'	0.00	0.00	'WI16'	0.00
'WS17'	0.590	0.054	'WH17'	0.599	0.088	'WD17'	0.00	0.00	'WI17'	0.00
'WS18'	0.609	0.085	'WH18'	0.557	0.051	'WD18'	0.00	0.00	'WI18'	0.00
'WS19'	0.679	0.066	'WH19'	0.793	0.022	'WD19'	0.00	0.00	'WI19'	0.00
Natural r	nortality at	age	Maturity							
'M4'	0.1	0.00	'MT4'	0.006	0.003					
'M5'	0.1	0.00	'MT5'	0.020	0.004					
'M6'	0.1	0.00	'MT6'	0.047	0.017					
	0.1	0.00		0.134	0.102					
	0.1	0.00		0.245	0.176					
'M10'	0.1	0.00	'MT10'	0.573	0.195					
'M11'	0.1	0.00	'MT11'	0.549	0.121					
'M12'	0.1	0.00	'MT12'	0.605	0.120					
'M13'	0.1	0.00	'MT13'	0.614	0.130					
'M14'	0.1	0.00	'MT14'	0.664	0.054					
'M15'	0.1	0.00	'MT15'	0.707	0.218					
'M16'	0.1	0.00	'MT16'	0.753	0.216					
'M17'	0.1	0.00	'MT17'	0.721	0.221					
'M18'	0.1	0.00	'MT18'	0.752	0.182					
'M19'	0.1	0.00	'MT19'	0.790	0.237					
Natural r	nortality m	ltiplier in vear	Effort mult	iplier in w	ear					
			(H - Huma	n consum	nption)					
'K2016'	1	0.0	'HF2014'	1.0	0.0					
'K2017'	1	0.0	'HF2015'	1.0	0.0					
'K2018'	1	0.0	'HE2016'	10	0.0					

Table 3: Female SSB at the beginning 2020	(50th %ile) and
average 2018-2019 yield under four F	options and M at 0.10

SSB 2020 _{50th} % ile 2020 _{25th} % ile		F₀ 64977 60681	F ₂₀₁₆ 53964 50347	F _{0.1} 58437 54611	F _{max} 53319 49747
2016	54017	00001	00011	0.011	101 11
Yield _{beaked red} 2018-2019 2016	^{fish} 6232	F0	F ₂₀₁₆ 10248	F _{0.1} 5778	F _{max} 10230
TAC 2018-2019 2016	7000	F0	F ₂₀₁₆ 12092	F _{0.1} 6817	F _{max} 12070

average beaked redfish proportion in the 2015-20163M redfish catch

0.85

Table 4: SSB 50% probability profiles under under four

F options and M at 0.10, 2018-2027.

Year	SSB 50th %ile					
	F ₀	F ₂₀₁₆	F _{0.1}	F _{max}		
2018	61784	61809	61811	61811		
2019	63682	58639	60683	58145		
2020	64977	53964	58437	53319		
2021	66506	48941	56080	48334		
2022	68144	43285	53160	42883		
2023	70718	37935	50604	37931		
2024	72731	32700	47748	33144		
2025	74604	28094	45023	28908		
2026	75751	24086	42245	25227		
2027	76416	20761	39693	22180		

Fig. 1. SSB 50% probability profiles under under four F options and M at 0.10, 2018-2027.