NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Serial No. N7310

Fisheries Organization

NAFO SCR Doc. 22/035

SCIENTIFIC COUNCIL MEETING – JUNE 2022

Commercial data for the Greenland halibut fishery in Upernavik.

by

Rasmus Nygaard

Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland

Abstract

Although the commercial fishery in for Greenland halibut started around 1910, the first available catch statistics from the Upernavik area is from the 1960's. The fishery is traditionally performed with longline from small open boats or dog sledges through a hole in the sea ice. This document presents catch statistics combined from various resources, for the fjords in the Upernavik district. The document includes statistics of commercial sampling effort done by the Greenland Institute of Natural Resources - GINR, calculations of mean size in the landings, a preliminary CAA. Also provided are three commercial CPUE indices. Two CPUE indices are based on log logbooks (one for longline logbooks and one for Gillnet logbooks) and one CPUE index based factory landings data (longline).

Introduction

The first available catch statistics from the Upernavik area is from 1964. The area consists deep branching fjords separeded from the Baffin Bay by a shallow archipelago with many settlements. The fishery is traditionally performed with longline from small open boats or dog sledges through a hole in the sea ice. Licences requirements were introduced in 1998 and in 2008 TAC and quota regulations were introduced for the inshore fishery. Logbooks have been mandatory for vessels larger than 30th since 2008. In 2012, the TAC was split in two components with ITQ's for vessels and a shared quota for open boats. The ITQ system currently does not specify catch to a certain district which causes a discrepancy between the ITQ and total quota set for each district. In 2014, it was decided by the Government og Greenland that only traditional fishing grounds should be taken from the Quota, whereas in other areas there should be free fishery. In 2021 the quota free areas were finally abandoned and the TAC now applies to the whole area. The inshore stock in division 1A is considered to be recruited from the stock in the Davis Strait, but the adults appear resident in the fjords and isolated by the banks from the offshore spawning stock (Riget and Boje, 1989).

In the 1980s, small vessels entered the fishery and the use of gillnets increased in the following years. In the late 1990s, the first regulations limiting areas open to gillnet fishery were introduced, limiting gillnet fishery to the winter season. Competence to regulate seasons and areas open to gillnet fishery, was transferred to municipalities in 2004, and areas open to gillnet fishery has expanded since then.

In 2017, the minimum mesh-size in the Greenland halibut fishery was reduced to 95 mm, which catches Greenland halibut as small as 50 cm and have a maximal selection in the interval 55-70 cm.

Materials and methods

Recent catch statistics (factory landing and logbooks) are available from a centralized database managed by the Greenland Fisheries License Control Authority (GFLK). Both logbook (haul by haul) and factory landings (daily individual landings) are reported as individual fishing events containing dates, field code or position,

effort, sorting categories and many more items. Catch can practically be broken in any thinkable way.

Commercial sampling

Commercial samples are collected by the Greenland Institute of Natural Resources (GINR). During surveys or in sampling campaigns factories are visited and the size of the landed fish by species and gear is registered. However due to the logistic challenges in Greenland (size of Greenland and mainly transport by air or sea), sampling catch is challenging. In this regard, Upernavik poses a special challenge due to the many settlements with factories in the area. Factories are located in Upernavik (2) Aappilattoq (2) Inarsuit (1) Tasiusaq (1) Nuussuaq (1) Inarsuit (1) and Kullorsuaq (1). Fish landed to the different factories are however often taken in the same areas leading to the biased sampling location being a smaller problem. Only Kullorsuaq is rarely or never visited. To ensure sufficient length information from the commercial catches, GINR do commercial length measurements in factories during the winter months (jan-April). Factories are also visited during the gillnet survey conducted with the GINR research vessel R/V Sanna.

Due to low survey activity with the old and now sold research vessel R/V Adolf Jensen (Effort directed to Disko Bay and Uummannaq) a gab exists in the sampling around 2002 to 2007. Although no length frequencies exists from this period, it may be possible to reconstruct the missing data (data currently digitally archived)

In the recent years many of these factories have installed graders (a sorting machine weighing each individual fish), providing a valuable source of statistics for fish stock assessment. However, in Upernavik there is not the same great difference in the distribution of the fishery between summer and winter as seen in the Disko Bay, and sampling is less dependant on season. Commercial sampling is only separated by gear (longline or gillnet) and if possible also summer and winter.

ALK

Age information is occasionally obtained from commercial landings, but the majority of otoliths collected in the area is through biological surveys with the GINR research vessel R/V Sanna during summer gillnet surveys. See SCR 22-009 for details on age readings of otoliths from surveys. No otoliths are available from 2002 to 2007.

Logbook CPUE calculation

A general linear model (GLM) with year, month and boat as factors is applied to the longline and gillnet fishery logbook data since 2010. Only longline setting with more than 200 hooks and gillnets with catches between 0 and 1000 kg/gillnet are included to omit obvious outlier values and limit the influence of data potential errors on the analysis. Prior to 2022 runs the longline logbook CPUE excluded >200kg/gillnet and May to October. CPUE observations are log-transformed prior to the GLM analysis. Least-mean square estimates were used as standardized CPUE series. For more information about the standardized logbook CPUE see SCR 18/023.A new CPUE based on factory landings data from longline fishery calculated in the same way as the logbook CPUE, but from a different source of statistics (see SCR 22-024 for details).

Results

Catches

The inshore fishery targeting Greenland halibut started in the beginning of the 1900 century with the introduction of the longline in Greenland. The fishery started in the Disko Bay and gradually spread to South Greenland and later the Uummannaq fjord and Upernavik districts. First available catch statistics is from 1964. Although the fishery started around 1910 total landings remained at a low level until the beginning of the 1980s (fig 1, table 1). A breakdown of catch by gear and month is provided in table 2.

In Upernavik, catches increased from the mid 1980's and peaked in 1998 at a level of 7 000 tons (tab.1, figure 1). Catches then decreased sharply, for unknown reasons, but during the past 15 years catches has gradually returned to and surpassed the former levels. Since 2014, factory vessels receiving catch from small boats have been used, in order to increase the factory capacity and increase competition and prices in the area. Total catch reached a record high 8955 t in 2019, and have remained high since then. A change in reporting procedure

caused an underestimate of catch in the 2020 assessment.

Distribution of catch

The Upernavik area consists of several large ice fjords, but the main fishing grounds are the deep lkeq fjord (Upernavik Icefjord) and Gultegarffik (Gultegarffik is the Inuit word for "where the gold is collected"). Since the large icefjords are often not accessible due to glacier ice, the fishery is sometimes restricted to the shallower fjords near Upernavik and the settlements in the area or less active icefjords like Tasiusaq Bay located between Gulteqarffik and Ikeq (fig 2).

3

Breakdown of catch

The catch by gear (longline or gillnet) and month is combined with the length frequencies from the commercial landings (table 3). The Catch by gear and month is used to calculate mean size in the landings and the CAA. Due to the logistical challenges in Greenland not all months or even years have commercial length information (table 3). In recent years the sampling has been challenged by Covid and other challenges leaving gaps in the sampling of the 3 different categories (Upernavik longline winter, Upernavik gillnet winter and Upernavik longline summer). Grader data from the area is available in 2020 and 2021 and can replace the lagging sampling in these years.

Mean size in the landings.

In Upernavik there is little difference between summer and winter fishing grounds and only small differences in the summer and winter length distributions are observed. Mean individual length in the commercial landings decreased from 1993 to 1998 (fig 3). From 1999 to 2009 the mean length in the longline fishery remained constant, but then decreased gradually until 2021, where mean length in the landings reached 54.5 cm.

ALK – Age Length Key

Age reading of Greenland halibut was suspended from 2011 to 2017 at GINR due to low quality of the age readings and lack of an internationally agreed method. However, the age readings have since then been reinitiated and an ALK is currently being constructed back in time. Until 2020 the CAA was created with an ALK was constructed using age readings from whole frozen otoliths from all 3 inshore areas collected from 2008. 2009 and 2010. However the 2021 CAA was constructed with individual years ALK from otolith readings of Upernavik Greenland from 2021. In spite of the ALK still being preliminary and unverified CAA reveal the dominance of the 2015 and 2016 year class in the CAA bubble plot (figure 4)

Factory landings CPUE (longline)

The new CPUE based on Factory landings data consists of more than 10 000 observations in all years and covers all longline fishery and therefore >90% of all the yearly catch (table 5). The CPUE shows a decrease from 2013 to 2017, but has remained around this level since then. (figure 5).

Logbook CPUE (longline)

Longline CPUE based on logbooks show a gradual decrease from the beginning of the timeseries. Although the CPUE is based on only the larger vessels and a different source of statistics, the CPUE shows an almost identical trend as the Factory landings longline CPUE (table 6 and figure 6). The standardised longline log-CPUE series show a gradual but slow decreasing trend since 2007, when disregarding the outlier year 2020 (fig 6). The decrease is however very slow, if at all, since 2015.

Logbook CPUE (Gillnet)

The Gillnet CPUE based on logbooks should be taken with some caution, due to reduction of the allowed

meshsize in 2017 from 110mm half mesh to 95mm halfmesh (table 7 and figure 7). In spite of these issues making the gillnets increasing the "effective ness" of the gillnets the CPUE gradually decrease from 2009 to 2019 with a sudden drop in 2013 and 2014 and again in 2020 and 2021. Both the previous old 110mm gillnets and new the 95mm gillnets mainly selects Greenland larger than the mean length in the landings (See figure 8). This implies a poor overlap with the selection curve and a gradual decrease in the number of older fish in the stock. The apparently large 2015 YC is currently too small (~50cm) to be fully selected by the commercial 95mm gillnets (figure 8). Since the gillnets mainly selects larger Greenland halibut the decrease in the gillnet CPUE could imply a decrease in the number of older and large individuals in the area.

References

- Riget, F. and J. Boje (1989). Fishery and some biological aspects of Greenland halibut (*Reinhardtius hippoglossoides*) in West Greenland waters. NAFO Sci.Council Studies(13): 41-52.
- Riget and Nygaard (2017). An analyses of logbooks of Greenland Halibut Stock Component in NAFO Division 1A Inshore. NAFO SCR 18/023. Serial No N

Bjare and Nygaard (2022). A new longline based CPUE for Greenland halibut in NAFO division 1A inshore based on factory landing reports. NAFO SCR 12/024. Serial No N

	Upernavik	[Notes
Year	Longline	Gillnet	Unknown	Catch	
1964	Longinic	annet	Shiniowii	9	
1965				33	
1966				20	
1967				20	
1967				2 1	
				1	
1969 1070				6	
1970					
1971				3	
1972				3	Cuese due to leak of data
1973				3	Guess due to lack of data
1974				3	Guess due to lack of data
1975				5	
1976				7	Guess due to lack of data
1977				10	
1978				7	
1979				3	
1980				14	
1981				57	
1982				138	
1983				123	
1984				111	
1985				244	
1986				1000	Guess - due to lack of data
1988				777	
1989				1253	
1990				1245	
1991				1495	
1992				2156	
1993				3805	
1994				4844	
1995				3269	
1996				4846	
1997				4879	
1998				7012	
1999				5258	
2000	3764	0	0	3764	
2001	3239	0	0	3239	
2002				3019	
2003	2509	1378	0	3884	
2004	2476	2097	0	4573	
2005	3096	1743	0	4839	
2006	3535	1598	0	5132	
2007	4218	659	0	4877	
2008				5478	
2009				6497	
2010	5443	411	0	5941	
2011	6176	362	0	6471	
2012	6204	514	0	6718	
2013	5606	433	0	6039	
2014	6964	409	0	7374	
2015	5491	783	0	6274	
2016	6954	408	0	7362	
2010	0954	400	U	/ 502	l

Table 1. Catches (t) of Greenland halibut in the Upernavik area by gear.

2017	6365	418	0	6783	
2018	7230	319	0	7549	
2019	8277	688	0	8966	Catch corrected in 2020
2020	6884	690	0	7574	
2021	7269	1211	0	8480	

6

Notes.

1998 License requirements introduced.

2002 Offshore shrimp trawlers equipped with grid separators.

2008 First Quota regulations introduced

2009 Logbooks mandatory for vessels larger than 30^{ft}.

2011 Inshore shrimp trawlers equipped with grid separators.

2012 Separate TAC set for vessels and small boats.

2014 Quota free areas outside TAC placed by the fisheries minister.

2017 Minimum mesh size in gillnets reduced from 110 halfmesh (220mm) to 95mm half mesh (190mm).

2019. Error in total catch due to change in reporting practice. Corrected in 2020.

	Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОКТ	NOV	DEC	Total
Í	2011	243	99	579	571	407	538	830	1292	942	323	352	0	6176
	2012	391	517	448	328	379	657	1026	987	597	547	217	111	6204
	2013	198	493	492	400	320	490	927	1018	821	313	71	61	5606
	2014	222	432	570	490	260	871	1369	853	870	665	314	48	6964
	2015	209	376	626	392	241	537	937	769	650	557	99	98	5491
	2016	502	590	424	343	555	801	1023	1026	740	427	270	255	6954
	2017	366	453	408	309	184	545	957	1053	1089	593	160	247	6365
بە	2018	460	532	472	534	327	763	918	1068	1021	514	290	331	7230
Longline	2019	454	578	513	345	538	908	1120	1349	1364	636	277	195	8277
ŝuo	2020	207	555	498	359	436	759	951	1234	1002	495	183	208	6884
L	2021	281	446	552	256	338	913	1090	1398	1023	512	149	314	7269
	Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OKT	NOV	DEC	Total
	2011	48	129	60	66	13	40	0	0	0	0	6	0	362
	2012	1	70	87	131	2	0	0	0	31	55	45	92	514
	2013	21	14	37	84	19	0	0	0	0	0	172	85	433
	2014	22	64	61	72	9	0	0	0	0	0	50	131	409
	2015	12	12	2	56	32	0	51	289	167	0	108	53	783
	2016	10	87	89	99	4	0	0	0	1	0	97	22	408
	2017	16	33	43	88	105	13	1	0	14	0	51	55	418
	2018	7	24	30	70	9	0	0	0	0	0	136	43	319
net	2019	3	20	72	116	11	0	0	0	7	11	181	268	688
Gillnet	2020	31	33	41	158	34	0	0	0	0	0	215	177	690
	2021	144	39	74	82	214	39	3	1	0	275	309	31	1211
	Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОКТ	NOV	DEC	Total
-	2011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THD	MIII	min	1.11.11	Jon	JOH	nou	011	UNI	1107	DIG	Total
	2012	392	587	535	459	380	657	1026	987	628	602	262	204	6718
	2013	220	507	530	484	339	490	927	1018	821	313	244	146	6039
	2014	244	495	632	562	269	871	1369	853	870	665	364	179	7374
	2015	221	388	628	448	273	537	988	1058	817	557	207	152	6274
	2016	512	677	513	442	559	801	1023	1026	740	427	366	277	7362
	2017	382	485	451	397	289	558	958	1020	1103	593	211	302	6783
	2018	467	556	502	603	336	763	919	1068	1021	514	426	374	7549
	2019	457	598	585	461	549	908	1120	1349	1371	647	458	463	8966
Total	2020	238	588	540	517	469	759	951	1234	1002	495	398	385	7574
T	2021	424	485	626	337	552	952	1093	1399	1023	786	458	345	8480

Table 2. Catch of Greenland halibut (t) by gear and month month and year.

	Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
	2010	736	669	1920				1939					
	2011		474	5721					6462	1250			
	2012			3551				3378	1743				
	2013			117	3892			1820		101			
a	2014		3268	1250	86					4729	777		
Longline	2015	108	5752	480	462	77	245	195	2823	516		158	
ŝuo,	2016			616	892			2101	2871				
	2017												
	2018		611						3385			1415	
	2019								2860				
	2020								3265				
	2021								1333				

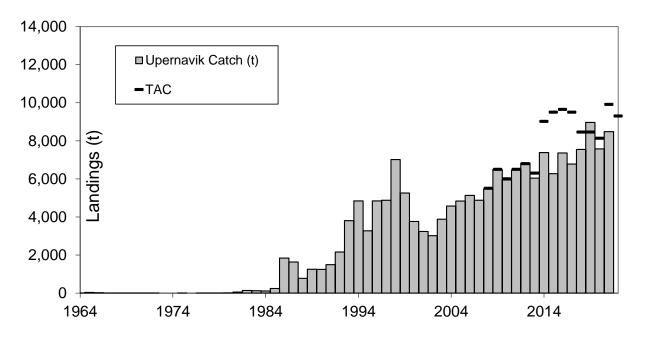
Table 3Number of length measured Greenland halibut by gear, division and month from the inshore areas
in 2019. Blocks indicates the use of length distributions in the CAA calculation.

	Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
	2010			517									
	2011		238	257									
	2012	-	1803	-	-	-	-	-	-	-	-	-	-
	2013		651	1464									553
	2014		475	338	2144								
net	2015		1144									301	
Gillnet	2016			632									
	2017												
	2018	76	1038									484	
	2019												
	2020												
	2021		958										

age/year	3	4	5	6	7	8	9	10	11	12	13	14	15+	16+	Total
1988	0	0	0	0	0	6	33	55	80	74	68	62	31	22	431
1989	0	0	0	0	0	2	16	34	59	66	69	73	40	31	390
1990	0	0	0	0	0	2	17	41	62	57	52	48	25	17	321
1991															
1992															
1993	0	0	0	0	0	2	16	86	252	268	143	95	40	46	948
1994	0	0	0	2	51	188	316	217	239	154	155	51	23	0	1396
1995	0	0	0	0	13	55	84	128	133	147	117	103	45	42	867
1996	0	0	3	0	16	114	359	275	238	206	151	90	48	39	1539
1997	0	0	4	25	142	428	500	430	278	175	67	37	19	8	2111
1998	0	0	0	116	343	538	535	505	410	275	112	84	39	10	2968
1999	0	14	55	172	449	619	566	343	229	138	51	36	16	5	2693
2000	0	0	2	108	420	446	302	160	133	116	48	38	17	9	1800
2001	0	0	28	144	404	422	258	103	104	87	36	14	9	3	1611
2002															
2003															
2004															
2005															
2006															
2007															
2008	0	0	4	65	197	429	274	788	372	135	10	6	0	6	2284
2009	0	0	5	51	333	579	465	421	262	187	112	65	94	7	2579
2010	0	0	3	47	376	707	471	484	242	126	70	27	15		2568
2011	0	5	51	175	555	772	468	484	260	141	80	31	18		3040
2012	0	2	28	111	375	620	445	504	312	188	117	50	27		2778
2013	0	12	42	107	387	581	368	401	259	161	113	55	34		2520
2014	3	31	177	349	773	919	483	475	243	131	88	45	27		3743
2015	5	25	98	205	574	752	405	388	200	117	92	52	43		2957
2016	2	17	138	308	736	867	460	452	251	142	103	52	34		3566
2017	2	30	188	325	679	799	423	406	214	122	97	51	32		3368
2018	4	58	332	546	990	1015	477	441	217	107	76	30	19		4310
2019	1	24	167	281	641	806	454	477	285	177	124	64	38		3539
2020	4	65	429	626	1177	1093	444	380	169	81	68	36	21		4593
2021	3	100	685	1218	1304	597	450	195	163	91	37	41	2	35	4923

Table 4.CAA – Catch at age for Greenland halibut in the Upernavik district. No ALK available for
Upernavik in some years to calculate the CAA.

Table 5. Upernavik Factory landings data and CPUE


Year	No of OBS in	Total longline	Available for	% of total longline	CPUE Kg/100
	the dataset	catch (t)	CPUE calculation	fishery covered	hooks
2013	10661	5606	5067	90	54.3
2014	11432	6964	5939	85	54.3
2015	11345	5491	4953	90	51.6
2016	15419	6954	5884	85	49.9
2017	14179	6365	5766	91	46
2018	14876	7230	6581	91	51.7
2019	16610	8277	7484	90	46.3
2020	15906	6884	6233	91	40.8
2021	14596	7269	6507	90	46.5

Year	No of	Total longline	longline logbook	% of longline fishery	CPUE
	longline	catch (t)	catch (t)	covered	Kg/100
	observations				hooks
2006	170		158		74.1
2007	1932		1607		59.5
2008	1849		1491		56.4
2009	1819		1611		57.8
2010	2534	5443	2114	39	51.8
2011	2471	6176	1992	32	46.4
2012	2153	6204	2136	34	57.7
2013	1415	5606	1235	22	51.2
2014	1822	6964	1820	26	55.3
2015	996	5491	827	15	46.4
2016	906	6954	739	11	47.2
2017	1013	6365	849	13	45.8
2018	989	7230	857	12	45
2019	1296	8277	1465	18	49.5
2020	1146	6884	933	14	34.2
2021	970	7269	1133	16	46.7

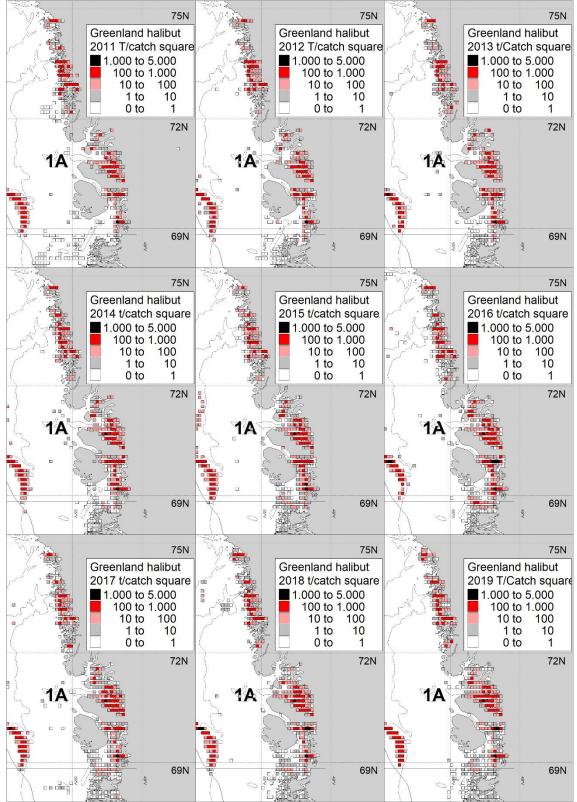

Table 6. Upernavik Longline logbooks data available for the CPUE calculation

Table 7. Upernavik Gillnet logbooks data available for the CPUE calculation

Year	No of gillnet	Total gillnet	Gillnet logbook	% of gillnet fishery	CPUE
	observations	catch (t)	catch (t)	covered.	Kg/gillnet
2009	989		645		77.5
2010	674	411	366	89	86.4
2011	574	362	252	70	77.5
2012	662	514	342	67	86.7
2013	843	433	388	90	56.9
2014	948	409	403	99	60.6
2015	400	783	201	26	78.5
2016	713	408	275	67	77.6
2017	695	418	282	67	69.4
2018	439	319	212	66	75.8
2019	758	688	480	70	76.6
2020	1080	690	499	72	47
2021	1807	1211	1032	85	40.7

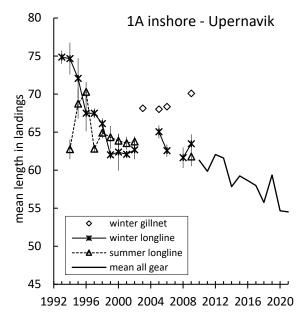
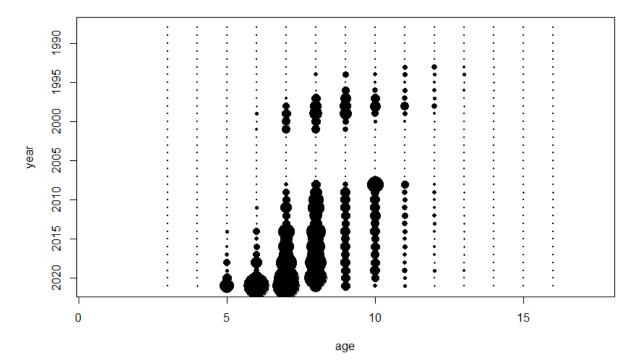


Figure 1. Catches of Greenland halibut in NAFO Subarea 1 Division 1Ainshore since 1904. 2013 LTQ for vessels >30ft imposed. Still shared quota for open boats, dogsledge and ice fishery.



12

Figure 2. Greenland halibut catch by statistical square in the

Figure 3. Upernavik mean length in the landings: longline summer and winter and overall mean weighted by season and gear (Mean all gear) (left) and in the gillnet fishery (right).

Commercial CAA - Upernavik

Figure 4. Catch At Age CAA bubble plot for the commercial landings in Upernavik. Only 2021 have been recalculated with the new ALK from Upernavik 2021. Missing years (1991,1992,2002-2007)

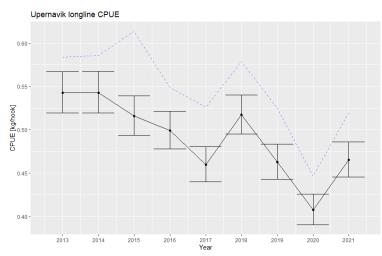
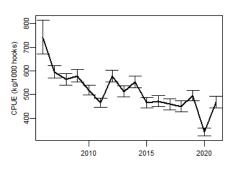
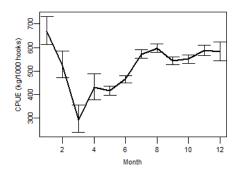
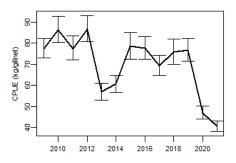




Figure 5. Commercial CPUE (Kg/hook) based on factory landing reports from all factories in Upernavik.


Upernavik, Standardized CPUE, 95% CI

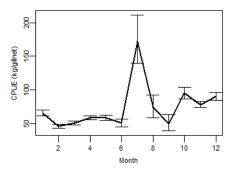
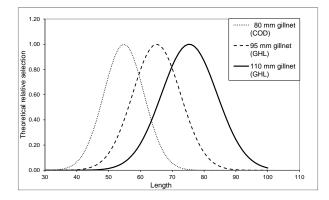


Figure 6. Upernavik Longline logbooks - Standardized mean and 95% CI CPUE based on logbooks from vessels larger than 30ft since 2006.


Upernavik, Standardized CPUE, 95% CI

Upernavik, Standardized CPUE, 95% CI

Figure 7. Gillnet logbooks - standardized mean and 95% CI CPUE based on logbooks from vessels larger than 30ft in Upernavik.

Figure 8. Relative selection curves for Greenland halibut with the most recently used gillnets. After a period with increasing use of illegal use of cod gillnets to target Greenland halibut the legal meshsize was changed from 110 mm halfmesh to 95mm halfmesh in 2017.

16

lm(formula = lcpue ~ Year + Month + Boat)

Residuals:

Min 1Q Median 3Q Max -7.7250 -0.2744 0.0419 0.3234 2.8151

Coefficients:

coefficients:	
	timate Std. Error t value Pr(> t)
(Intercept)	7.023661 0.094541 74.292 < 2e-16 ***
Year2007	-0.218962 0.045778 -4.783 1.74e-06 ***
Year2008	-0.272362 0.045988 -5.922 3.22e-09 ***
Year2009	-0.247274 0.047395 -5.217 1.83e-07 ***
Year2010	-0.357555 0.047059 -7.598 3.12e-14 ***
Year2011	-0.467400 0.047283 -9.885 < 2e-16 ***
Year2012	-0.249720 0.047465 -5.261 1.44e-07 ***
Year2013	-0.369919 0.047935 -7.717 1.24e-14 ***
Year2014	-0.292733 0.047646 -6.144 8.18e-10 ***
Year2015	-0.466808 0.049497 -9.431 < 2e-16 ***
Year2016	-0.451219 0.049867 -9.048 < 2e-16 ***
Year2017	-0.480129 0.049585 -9.683 < 2e-16 ***
Year2018	-0.499076 0.049776 -10.027 < 2e-16 ***
Year2019	-0.403406 0.049050 -8.224 < 2e-16 ***
Year2020	-0.773775 0.049522 -15.625 < 2e-16 ***
Year2021	-0.461938 0.050274 -9.188 < 2e-16 ***
Month2	-0.240275 0.066358 -3.621 0.000294 ***
Month3	-0.828098 0.106944 -7.743 1.01e-14 ***
Month4	-0.441194 0.078110 -5.648 1.64e-08 ***
Month5	-0.473720 0.046286 -10.235 < 2e-16 ***
Month6	-0.361488 0.044019 -8.212 2.29e-16 ***
Month7	-0.156803 0.043670 -3.591 0.000331 ***
Month8	-0.114227 0.043560 -2.622 0.008740 **
Month9	-0.207796 0.043588 -4.767 1.88e-06 ***
Month10	-0.193034 0.043882 -4.399 1.09e-05 ***
Month11	-0.128418 0.044539 -2.883 0.003939 **
Month12	-0.138099 0.053289 -2.592 0.009561 **
BoatA-MADS	-0.332186 0.090979 -3.651 0.000262 ***
BoatAGGU S	0.057749 0.077602 0.744 0.456782
BoatAKKA AQ	
BoatAKKA NUI	KA -0.407251 0.079837 -5.101 3.40e-07 ***
BoatANE-ABE	L -0.263974 0.075192 -3.511 0.000448 ***
BoatANE-ANN	A 0.089223 0.079536 1.122 0.261961
BoatANE KARI	EN -0.108523 0.118154 -0.918 0.358377
BoatANGAJE-N	
BoatANGAJOO	
BoatANGERLA	
BoatANGAANN	
BoatANITSI	0.034218 0.096931 0.353 0.724083

0.044209 0.085789 0.515 0.606336 BoatANNA-NUKA **BoatAPUTSIAO** 0.306868 0.098607 3.112 0.001860 ** BoatAQQA 0.219342 0.074833 2.931 0.003381 ** BoatAOOALUULU 0.039582 0.076864 0.515 0.606583 BoatARNAQ 0.188562 0.077356 2.438 0.014794 * -0.527899 0.089411 -5.904 3.59e-09 *** **BoatARNAQ ZEEB BoatARNARISSOQ** $0.122923 \quad 0.077853 \quad 1.579 \ 0.114372$ BoatARNAALUK MALIK -0.279203 0.178279 -1.566 0.117339 BoatBJ. NUKARLEO -0.348228 0.123497 -2.820 0.004810 ** -1.332283 0.103496 -12.873 < 2e-16 *** BoatCECILIA -0.122008 0.091590 -1.332 0.182839 BoatDORTINNGUAO BoatELIASSEN -0.010297 0.075767 -0.136 0.891898 BoatERNEERAQ L 0.017153 0.079554 0.216 0.829293 -0.096617 0.103358 -0.935 0.349907 BoatFALIK L **BoatHANS KUNUUT** -0.037564 0.090538 -0.415 0.678222 **BoatHANS PAALU** 0.273923 0.073520 3.726 0.000195 *** 0.018220 0.075260 0.242 0.808706 BoatHANS VILLAS 0.257057 0.073898 3.479 0.000505 *** BoatHILDA 0.460486 0.110222 4.178 2.95e-05 *** BoatIINANNGUAQ **BoatINUNNGUA** -0.001419 0.084783 -0.017 0.986648 -0.641662 0.099335 -6.460 1.07e-10 *** BoatIPIUTAQ **BoatITATTAAQ** -0.107485 0.124101 -0.866 0.386441 **BoatJENS HENRIK** 0.271049 0.100239 2.704 0.006855 ** **Boat**JESS -0.265886 0.251430 -1.057 0.290297 **BoatJULIA NADUK** -0.144546 0.102635 -1.408 0.159040 **BoatJULIANE** -0.099799 0.078186 -1.276 0.201818 **BoatJUUKA** -0.010471 0.079751 -0.131 0.895541 Boat JUULUT -0.274930 0.161239 -1.705 0.088188. **BoatJUUNTAAT** -0.544647 0.080771 -6.743 1.59e-11 *** -0.232476 0.097018 -2.396 0.016573 * BoatJAAKU-MALIK BoatKABENA -0.369790 0.092085 -4.016 5.94e-05 *** BoatKAMMA -0.009421 0.079365 -0.119 0.905512 BoatKATTANNGUAO -0.740329 0.318349 -2.326 0.020052 * 0.058095 0.074301 0.782 0.434291 BoatKLEEMANN **BoatKUNUK** -0.012918 0.107215 -0.120 0.904096 -0.548923 0.136003 -4.036 5.45e-05 *** **BoatKUUIUK** BoatKAAKA-AQQALU 0.284600 0.216495 1.3150.188663BoatKAALEERAQ -0.172317 0.160788 -1.072 0.283865 BoatL. CHRISTINA -0.133530 0.130067 -1.027 0.304607 BoatL.CHRISTINA 0.239166 0.108370 2.207 0.027328* BoatLAILA S. 0.172519 0.088953 1.939 0.052459. **BoatLENE BOHM** 0.185392 0.161214 1.150 0.250165 BoatLYDIA -1.394440 0.156826 -8.892 < 2e-16 *** BoatLAARSEERAQ LARSEN 0.150216 0.215799 0.696 0.486377 -0.012934 0.129626 -0.100 0.920522 BoatM.A.FRENA -0.140870 0.074041 -1.903 0.057105. BoatMADS P. BoatMALIGIAO S -0.166885 0.098734 -1.690 0.090994. **BoatMARY WEST** -0.854035 0.156639 -5.452 5.02e-08 *** BoatMASIK -0.010089 0.135873 -0.074 0.940807 BoatMASILIK -1.159898 0.541867 -2.141 0.032320 * 0.070507 0.076674 0.920 0.357809 BoatMIILU 0.404440 0.078977 5.121 3.06e-07 *** BoatNANOQ -0.221621 0.094298 -2.350 0.018771 * BoatNANUVIK BoatNAPÃ\u0081RTOQ 0.328034 0.123049 2.666 0.007684 ** **BoatNAVARANA** 0.108156 0.073760 1.466 0.142576

0.562880 0.251308 2.240 0.025113* BoatNEQITAQ **BoatNIELS** -0.560782 0.088275 -6.353 2.15e-10 *** **BoatNIISE** 0.063038 0.101368 0.622 0.534031 BoatNIISI 0.208132 0.075284 2.765 0.005704 ** BoatNIISIKA PAALU -0.292117 0.073466 -3.976 7.02e-05 *** -0.075392 0.250938 -0.300 0.763845 **BoatNILAK BoatNINO JAKOB** 0.377496 0.079437 4.752 2.02e-06 *** BoatNIVI K. -0.190208 0.074143 -2.565 0.010311 * BoatNONO -0.410258 0.140562 -2.919 0.003518 ** 0.054086 0.083034 0.651 0.514816 BoatNORSAO **BoatNUKA** 0.238274 0.318662 0.748 0.454630 0.394912 0.098308 4.017 5.91e-05 *** **BoatNUKANU S** -0.332660 0.074540 -4.463 8.13e-06 *** **BoatNUKARIIT III** -0.021429 0.077821 -0.275 0.783039 **BoatNUKARIIT IV** BoatNUKARLEQ -0.266400 0.125005 -2.131 0.033090 * **BoatNUUNU MALIK** -0.367358 0.122277 -3.004 0.002665 ** -0.076969 0.104599 -0.736 0.461827 BoatOLE DAVID BoatOVE 0.138364 0.098030 1.411 0.158125 -1.024987 0.113589 -9.024 < 2e-16 *** BoatPANITUAQ **BoatPAPEROO** -0.080568 0.318389 -0.253 0.800232 **BoatPIITAARAQ** 0.169585 0.088493 1.916 0.055333. **BoatPILO** -0.251567 0.128820 -1.953 0.050849. -0.531003 0.090314 -5.879 4.17e-09 *** **BoatPIPALUK** BoatPAARNAQ -1.325651 0.112657 -11.767 < 2e-16 *** BoatPAATAO 0.178913 0.204096 0.877 0.380705 **BoatOASIGIAO** -0.138423 0.138074 -1.003 0.316098 0.053109 0.078835 0.674 0.500529 BoatQILANNGAQ 0.109375 0.156757 0.698 0.485349 BoatQULLEQ **BoatOAASIINA** -0.413589 0.153147 -2.701 0.006926 ** 0.044611 0.083729 0.533 0.594174 BoatRENA G. BoatRAASI -0.537658 0.278334 -1.932 0.053408. BoatSAGDLEQ -0.285055 0.103601 -2.751 0.005938 ** -0.054979 0.231009 -0.238 0.811887 BoatSAVIK -0.223217 0.231321 -0.965 0.334573 BoatSOFIE BoatSUSSI LAILA 0.305565 0.386510 0.791 0.429200 -0.820368 0.149524 -5.487 4.14e-08 *** **BoatSVENDSEN** -0.081687 0.156710 -0.521 0.602190 BoatTHOMASSEN II **BoatTIA** -0.792818 0.386506 -2.051 0.040255 * -0.260364 0.074002 -3.518 0.000435 *** **BoatTUPERNA** BoatTUPPI 0.406896 0.074528 5.460 4.82e-08 *** BoatTUUKKAQ VII 0.461219 0.324662 1.421 0.155442 BoatULLORIAO -0.396740 0.143390 -2.767 0.005665 ** BoatULU 0.110976 0.113327 0.979 0.327465 BoatUUMAANNGUAQ -0.083683 0.088330 -0.947 0.343450 0.004540 0.128086 0.035 0.971722 BoatAAJU S. -0.876386 0.541827 -1.617 0.105791 BoatAALIPAARAQ BoatAANNGUAO P 0.029254 0.074222 0.394 0.693483 **BoatAANAA RUTH** -0.181683 0.081474 -2.230 0.025760 * BoatAAPIKANNA -0.039139 0.541827 -0.072 0.942416 BoatAAQA AQQALU 0.290422 0.231502 1.255 0.209669 -1.618841 0.129348 -12.515 < 2e-16 *** BoatAAQA JULIE **BoatAARSU** -0.038102 0.086340 -0.441 0.659004 BoatAAVU 0.221605 0.096927 2.286 0.022245 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 0.5367 on 23334 degrees of freedom Multiple R-squared: 0.2689, Adjusted R-squared: 0.2643 F-statistic: 58.79 on 146 and 23334 DF, p-value: < 2.2e-16

UPERNAVIK GILLNET LOGBOOK CPUE ALL MONTHS MAX CATCH 1001 KG/Gillnet

lm(formula = lcpue ~ Year + Month + Boat)

Residuals:

Min 1Q Median 3Q Max -4.4818 -0.3391 0.0209 0.3501 2.9740

Coefficients:

Coefficients:	
Es	timate Std. Error t value Pr(> t)
(Intercept)	4.7467179 0.4077708 11.641 < 2e-16 ***
Year2010	$0.1087351 \ 0.0374835 \ 2.901 \ 0.003729 **$
Year2011	$0.0003119 \ 0.0399458 \ 0.008 \ 0.993771$
Year2012	0.1123012 0.0397284 2.827 0.004712 **
Year2013	-0.3082115 0.0382250 -8.063 8.25e-16 ***
Year2014	-0.2451012 0.0375098 -6.534 6.69e-11 ***
Year2015	$0.0138644 \ 0.0435013 \ 0.319 \ 0.749950$
Year2016	$0.0019375 \ 0.0381658 \ 0.051 \ 0.959513$
Year2017	-0.1096710 0.0367033 -2.988 0.002814 **
Year2018	-0.0212564 0.0427127 -0.498 0.618734
Year2019	$-0.0107911 \ 0.0388890 \ -0.277 \ 0.781414$
Year2020	-0.4998084 0.0372720 -13.410 < 2e-16 ***
Year2021	-0.6424723 0.0337333 -19.046 < 2e-16 ***
Month2	-0.3582124 0.0303307 -11.810 < 2e-16 ***
Month3	-0.2666113 0.0295831 -9.012 < 2e-16 ***
Month4	-0.1191008 0.0290585 -4.099 4.19e-05 ***
Month5	-0.1175216 0.0345882 -3.398 0.000682 ***
Month6	-0.2666223 0.0612884 -4.350 1.37e-05 ***
Month7	0.9644033 0.1092945 8.824 < 2e-16 ***
Month8	$0.1140759 \ 0.1244758 \ 0.916 \ 0.359452$
Month9	-0.2765344 0.1297021 -2.132 0.033024 *
Month10	0.3689604 0.0499644 7.384 1.65e-13 ***
Month11	0.1766416 0.0312050 5.661 1.55e-08 ***
Month12	
	LIK 0.1778463 0.4264206 0.417 0.676637
	UKA -1.0847958 0.4144727 -2.617 0.008876 **
	EL -0.5645310 0.4101561 -1.376 0.168733
	NA -0.3283859 0.4218342 -0.778 0.436309
	-NUKA -0.1139056 0.5372328 -0.212 0.832093
	NGU -0.5084732 0.4081141 -1.246 0.212825
BoatANNA-N	IUKA 0.4590611 0.4238682 1.083 0.278821
BoatAQQA	-0.1006869 0.4093120 -0.246 0.805694
	-0.2793093 0.4191948 -0.666 0.505234
	ZEEB -0.6271484 0.4160848 -1.507 0.131774
	SSOQ -0.5915958 0.4176738 -1.416 0.156686
	N -0.9477600 0.4114777 -2.303 0.021281 *
	AQ L-0.39230280.4089766-0.9590.337465AALU-0.58067010.4071421-1.4260.153837
	ILLAS -0.2479835 0.4170565 -0.595 0.552121
BoatHILDA	-0.3077869 0.4063009 -0.758 0.448747
	NRIK -0.7705175 0.4149449 -1.857 0.063351.
	ADUK -0.3131885 0.4215969 -0.743 0.457582
BoatJULIANE	
BoatJUUKA	-0.3810549 0.4642653 -0.821 0.411796
2000,00101	

```
BoatJAAKU-MALIK 0.0105617 0.4345350 0.024 0.980609
BoatKABENA
               -0.6800003 0.4419502 -1.539 0.123923
               -0.5480414 0.4416415 -1.241 0.214663
BoatKAMMA
BoatKLEEMANN
                 -1.1446450 0.4074738 -2.809 0.004977 **
BoatLAILA S.
             -0.3063768 0.4490803 -0.682 0.495107
BoatMADS P.
              -0.2758137 0.4067093 -0.678 0.497686
BoatMALIGIAQ S -0.6001599 0.4543648 -1.321 0.186571
              -1.2053980 0.5245390 -2.298 0.021581 *
BoatNANOQ
BoatNANUVIK
                0.0697179 0.4134416 0.169 0.866092
BoatNAVARANA -0.4306893 0.4069924 -1.058 0.289978
BoatNIISE
            -0.6242789 0.4697337 -1.329 0.183875
            -1.0718214 0.4086190 -2.623 0.008728 **
BoatNIISI
BoatNIISIKA PAALU -0.7809786 0.4061321 -1.923 0.054511.
BoatNINO JAKOB -0.2314220 0.4107726 -0.563 0.573187
            -0.7641533 0.4063568 -1.880 0.060068.
BoatNIVI K.
               -1.6425338 0.4434222 -3.704 0.000213 ***
BoatNUKANU S
BoatNUKARIIT III -0.6924973 0.4061915 -1.705 0.088251.
BoatNUKARIIT IV -0.9719628 0.4067405 -2.390 0.016882 *
                0.0805349 0.4169953 0.193 0.846860
BoatPANITUAQ
BoatPAARNAO
                -0.1834676 0.4207319 -0.436 0.662797
                0.0661189 \ 0.4254821 \ 0.155 \ 0.876511
BoatQAASIINA
BoatSAGDLEQ
               -0.6271327 0.4084897 -1.535 0.124753
BoatSVENDSEN
                0.0197141 \ 0.7040652 \ \ 0.028 \ 0.977662
BoatTUPERNA
               -1.3725288 0.4093292 -3.353 0.000802 ***
BoatTUPPI
             -0.8879578 0.4451383 -1.995 0.046091 *
                0.1185494 0.4195922 0.283 0.777539
BoatULLORIAO
BoatAANNGUAQ P -0.1218777 0.4072193 -0.299 0.764723
BoatAANAA RUTH 0.0507392 0.4105997 0.124 0.901655
BoatAARSU
              0.0874000 0.4692523 0.186 0.852249
              0.2231781 \ 0.4451326 \ 0.501 \ 0.616118
BoatAAVU
---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5731 on 10508 degrees of freedomMultiple R-squared: 0.3749,Adjusted R-squared: 0.3706F-statistic: 86.34 on 73 and 10508 DF, p-value: < 2.2e-16</td>