Fisheries Organization

NAFO SCR Doc. 23/036

SCIENTIFIC COUNCIL MEETING - JUNE 2023

An Assessment of White Hake (Urophycis tenuis, Mitchill 1815)

in
NAFO Divisions 3N, 30, and Subdivision 3Ps

K. Sosebee, M.R. Simpson, and C.M. Miri
Fisheries and Oceans Canada
P.O. Box 5667
St. John's, NL, Canada A1C 5X1

Abstract

White Hake in NAFO Divisions 3NO and Subdivision 3Ps inhabit the southern Grand Bank and St. Pierre Bank of Newfoundland and Labrador. The spring survey index for Divs. 3NOPs peaked in 2000, due to a very large 1999 year-class. Annual landings, which were at low levels in 1995-2001 (422 t average), increased to 6718 t in 2002 and 4823 t in 2003, following recruitment of the very large 1999 year-class. Since 2004, the stock has remained at a level of abundance similar to that observed in the mid-1990s. Over 2002-2020, this population exhibited little recruitment; however, during Canadian spring 2019 and autumn 2020 surveys, there were increases in White Hake numbers less than 27 cm relative to previous years. It should be noted that these recent increases were not comparable to those observed in 1999-2000. The primary index for this stock, the Canadian spring Divs. 3NOPs survey, has not been completed since 2019. Current status of the stock must be inferred from the EU- 3NO survey, Canadian 3Ps spring survey and catch metrics.

Introduction

White Hake (Urophycis tenuis, Mitchill 1815) is a highly fecund gadoid species distributed in the Northwest Atlantic from Cape Hatteras to southern Labrador. Present knowledge of its biology for the Grand Banks has been summarized in previous stock assessments of this species (Han and Kulka 2007, Simpson and Miri. 2021).

Formerly one of the most commercially important species in the Southern Gulf of St. Lawrence (NAFO Division 4T) and the Scotian Shelf (NAFO Division 4VWX and 5), White Hake stocks have declined in these regions in recent years. Their status as a commercial resource was assessed by Fisheries and Oceans Canada for Div. 4T (Swain et al. 2012) and Divs. 4VWX5 (Simon and Cook 2013) in 2012. More recently, White Hake populations in Atlantic Canada have been assessed by Fisheries and Oceans Canada within a Species at Risk recovery potential context (Nozères et al. 2015, Guénette and Clark 2016, Simpson et al. 2016, Swain et al. 2016). Stock structure of White Hake has been investigated using morphological and parasite load data (Hurlbut and Clay 1998, Melendy et al. 2005), tagging work (Kohler 1971), and allozyme data (Clay et al. 1992). In addition, polymorphic micro-satellite loci have been applied to investigate stock structure in this species (Seibert and Ruzzante 2006, Zinck 2007, Roy et al. 2012). Three genetically distinct populations were identified, which straddle several NAFO Divisions and overlap in their distribution (Roy et al. 2012). One such population of White Hake includes Divs. 30ps.

This paper presents an updated assessment of White Hake in Divs. 3NO and Subdiv. 3Ps (Fig. 1), focusing on available research survey information and fisheries data.

Fisheries and Management

A. TAC Regulation

White Hake in Divs. 3NO came under quota regulation in September 2004, when the Fisheries Commission established a Total Allowable Catch (TAC) of 8500 t for 2005-2007, which was maintained for 2008-2009. In September 2009, the Fisheries Commission reduced the TAC for White Hake in Divs. 3NO to 6000 t for 20102011. The TAC was further reduced to 5000 t for 2012, and to 1000 t for 2013-2023.

In 2018, Canada established a TAC of 500 t for Subdiv. 3Ps for the 2018-2020 fishing seasons, which has been extended until the end of the 2023-2024 management period.

B. Catch Trends

Reported landings of White Hake in Divs. 3NO (all countries combined; STATLANT-21A) peaked in 1985 and 1987 at approximately 8100 t (with about half reported by non-Canadian sources as bycatch), then declined to an average of 1765 t in 1988-1994 (Table 1; Fig. 2). With the restriction of fishing by other countries to areas outside Canada's Exclusive Economic Zone (Divs. 3NO in the NAFO Regulatory Area, or NRA) in 1992, reported non-Canadian landings suddenly decreased to zero. Average landings were low over 1994-2001 (406 t), then increased to 5365 t in 2002 and 6158 t in 2003, following recruitment of the very large 1999 year-class. Reported landings declined to an average of 333 t during 2009-2018, 388 t over 2019-2021, and xxx t in 2022 (Table 2).
Commercial landings of White Hake in Subdiv. 3Ps were less variable (Tables 1, 2; Fig. 2): averaging 1114 tons in 1985-93, then decreasing to an average of 619 t in 1994-2002. Subsequently, reported landings increased to an average of 1374 t in 2003-2007, then decreased to a 300 t average over 2009-2018. Subdiv. 3Ps landings averaged 218 t over 2019-2021, and totalled XXX t in 2022.

Fisheries Interactions

White Hake are captured in directed fisheries in Divs. 3NOPs, and as bycatch primarily in fisheries targeting Atlantic Cod (Gadus morhua), Atlantic Halibut (Hippoglossus hippoglossus), Monkfish (Lophius americanus), Redfish (Sebastes spp.) and, since 2015, Witch Flounder (Glyptocephalus cynoglossus; Fig. 3). Over the same time period, there was a decline in the bycatch of White Hake in Atlantic Cod-directed fisheries. White Hake are caught mainly by gillnets, longlines, and otter trawls; however, since 2015, there has been a decline in bycatch in gillnet fisheries, and an increase in the proportion caught by otter trawls (Fig. 4). In White Hake-directed fisheries, bycatch of other commercially important species also occurs: including Atlantic Cod, Haddock (Melanogrammus aeglefinus), American Plaice (Hippoglossoides platessoides), Atlantic Halibut, and Monkfish.

Size
Length distributions for White Hake taken in Canadian commercial directed fisheries in Divs. 3NO from 20182022 indicated that trawls captured $21-82 \mathrm{~cm}$ fish, with $48-58 \mathrm{~cm}$ modes in 2019-2020 (Fig. 5a). Canadian longlines in Div. 30 caught 41-103 cm White Hakes in 2019 (86 cm mode); although only representing 27 fish. In 2018, the Canadian longline fishery in Subdiv. 3Ps caught 41-120 cm White Hakes (61 cm mode), and 45126 cm in 2021 (59 cm mode; Fig. 5a). Canadian trawlers in Subdiv. 3Ps captured a contracted range of 4190 cm fish in 2019, with the majority $43-67 \mathrm{~cm}$ in length (59 and 66 cm modes), and 51-104 cm White Hakes in 2022 (68 cm mode). Note that there were no gillnet samples taken after 2012, and almost no Canadian AtSea Observer coverage in 2020 (due to COVID-19).
Although EU-Portugal did not sample White Hake in 2018-2020, commercial catches of this species by Portuguese trawlers in the NRA of Div. 30 in 2021-2022 contained 18-96 cm fish (Fig. 5b). Although few were sampled in 2018, Russian trawl fisheries in the NRA of Divs. 3NO reported 30-107 cm White Hakes in 20192020, but none were measured in 2021-2022 (Fig. 5c). Spanish trawlers using 130 mm mesh in the NRA of Divs. 3NO in 2018 caught $18-87 \mathrm{~cm}$ White Hakes in 2018 (Fig. 5d). EU-Spain reported a contracted range of 3171 cm fish in 2019, $13-77 \mathrm{~cm}$ in 2020-2021, and 19-86 cm White Hakes in 2022. EU-Spain did not sample this species from 280 mm mesh gear in 2018-2022.
www.nafo.int

C. Research Surveys

Canadian Research Surveys -Spring

Stratified-random demersal surveys have been conducted by Canadian research vessels in the spring (AprilJune) of each year since 1971. The most significant alterations in Canadian standardized survey design were changes in survey gear. The spring survey can be separated into three time periods, based on the trawl used in each period: 1971-1983 (Yankee 41.5), 1984-spring 1995 (Engel 145), and spring 1996 to 2019 (Campelen 1800). McCallum and Walsh (1996) and Walsh and McCallum (1996) described the geometry and specifications of the Engel and Campelen trawls. While survey design remained constant, additional strata were included, along with modifications to some of the original strata (Bishop 1994). A significant change in the surveys was the addition of shallower and deeper strata after 1993. Additional causes of variation in spring survey coverage are discussed in detail most recently by Rideout et al. (2022). No size-based conversion factors for the two gears were derived for White Hake from comparative surveys; therefore, catch rate data and resulting biomass and abundance indices cannot be directly compared between trawl types. Similarly, no conversion factor exists for White Hake between Yankee and Engel trawls.

In the 2006 Canadian spring survey, most of Subdiv. 3Ps was not surveyed, and only shallow strata in Divs. 3NO were surveyed, due to Canadian research vessels' mechanical difficulties. Thus, survey estimates for that year are not comparable to others in the Campelen time-series. Due to COVID-19, the Canadian spring survey was not conducted in 2020. Only Subdiv. 3Ps was surveyed in spring 2021, due to mechanical difficulties aboard the research vessel. In 2022, Divs. 3LNO were not surveyed, and Subdiv. 3Ps was surveyed with a new research vessel for which catchability conversion factors are not yet available.

Spring Survey Biomass and Abundance Indices

Spring survey estimates of biomass and abundance are presented for Divs. 3NO and Subdiv. 3Ps in Table 3. Mean weights and mean numbers per tow with 95% confidence intervals are presented in Figure 6a.

The spring biomass index for White Hake on the Grand Banks in Divs. 3NOPs increased rapidly in 1999-2000, to approximately 26000 t , but then steeply declined and is presently at low levels which are comparable to earlier estimates in the Campelen time series. During the Canadian spring survey of 2000, the estimated abundance of about 117000000 fish was 10 -times greater than that observed in either the first years of the Campelen series or during recent years Average biomass over 2015-2018 was 8858 t . The average spring abundance estimate was 13837907 White Hakes during this same period. In 2019, the spring biomass was 9208 t , with an abundance estimate of 69379530 White Hakes, which is comparable to the abundance observed in 1999. No recent updates are available for 3NOPs, however the 3Ps survey in 2021 indicated no significant change in either biomass or abundance relative to 2019.

Canadian Research Surveys -Autumn

Stratified-random autumn surveys have been conducted by Canada in Divs. 3NO from 1990 to the present. Beginning in autumn 1995, Canadian survey gear was changed from the Engel 145 otter trawl to the Campelen 1800 shrimp trawl. Additional causes of variation in autumn survey coverage are discussed in detail most recently by Rideout et al. (2022). In addition, Canada does not survey Subdiv. 3Ps in autumn. Furthermore, autumn surveys reach deeper maximum depths ($\sim 1400 \mathrm{~m}$) than those in spring ($\sim 750 \mathrm{~m}$). Therefore, autumn survey data are not directly comparable to spring survey data. Because the autumn series is not spatially complete, as it does not cover the entire designated stock area, Canadian spring surveys are used as the primary estimator of biomass and abundance trends for White Hake. Divs. 3LNO was not surveyed in autumn in 2021-2022.

Autumn Survey Biomass and Abundance Indices

Autumn biomass and abundance estimates (1990-present) are restricted to Divs. 3NO. These indices show a large increase in Divs. 3NO White Hake between 1998 and 1999 (Table 4; Fig. 6b). Of particular interest is the large increase in abundance in Div. 3N in 1999, to levels never previously observed (~ 83000000 fish). The pattern of Campelen autumn indices is offset by one year (earlier) as compared to that from spring surveys, because autumn surveys catch newly-settled YOY that were spawned in the previous spring (Kulka et al. $2005 b$). About twenty-five weeks later, the next spring survey samples the previous year's cohort as 1-yearold White Hakes. This pattern was most apparent when a very large year-class was produced in 1999. After
www.nafo.int

2003, autumn abundance indices drastically declined to low levels (4 500 000-average annually in 2004-2010). In 2011-2013, the autumn abundance index for Divs. 3NO increased to approximately 16400000 White Hakes, but then declined to 6500000 fish over 2015-2018. Abundance increased in 2019 to approximately 13000000 White Hakes, and then tripled to 36000000 hakes during the 2020 autumn survey. Biomass has declined from the 2010-2013 average of $9423 t$ to an average of 5254 t over 2015-2018. In 2019 and 2020, abundance of White Hake in Divs. 3NO was 13100000 and 36500000 fish (respectively), while biomass was 4501 t and 10286 t, respectively. No recent updates are available.

EU-Spain Divs. 3NO Survey

Spain initiated a survey in the NRA of Divs. 3NO in 1995. Initially, the survey was carried out in spring with the C/V Playa de Menduiña using a Pedreira bottom trawl. Since 2001, the R/V Vizconde de Eza replaced the C/V Playa de Menduíña, and a Campelen 1800 trawl replaced the Pedreira (González-Troncoso et al. 2020). Results of this survey are available for White Hake from 2001-2019. This survey did not proceed in 2020 (due to COVID19), but resumed in 2021, and was also conducted in 2022.

The generally-increasing trend of the EU-Spain biomass index over 2008-2013 is similar to that depicted by Canadian spring surveys, which cover all of Divs. 3NO (Fig. 7). The Canadian index continued to increase in 2014, followed by declines over 2015-2017; whereas the EU-Spain index increased in 2015 and 2016, followed by a decline in 2018 and 2019. The Canadian index increased in 2019. In recent years, while no comparison with the Canadian 3NO survey was available, the EU-Spain 3NO index increased in 2021, but declined again in 2022.Survey Length Frequencies

Survey length frequencies were available from Canadian spring and autumn research surveys and the EU-Spain 3NO survey. Prior to 2019, the dominant feature of the length frequency distributions was the 1999 cohort observed in autumn with the increase in 10-20 cm fish that can be tracked until 2004 (Fig. 8a). The same cohort is apparent in the spring survey as an increase in 15-28 cm fish from 2000-2004 (Fig. 8b). In the EU-Spain survey, this cohort is visible in 2001 as $26-30 \mathrm{~cm}$ White Hakes (Fig. 30; Garrido et al. 2023). An increase in small fish (15-25 cm) was visible in the Canadian 2019 spring survey, and also tracked as 20-30 cm White Hakes in the autumn 2020 survey. These peaks are not comparable to those observed during 1999 and 2000, but are a positive sign of small fish entering this population and, due to a lack of recent Canadian surveys, cannot currently be tracked. A small peak of 40-50 cm White Hakes in 2021 is apparent in the EU- 3NO survey.

Landings/Biomass Ratios

Using NAFO STACFIS-reported landings and the Canadian spring survey biomass index, estimates of Relative F were calculated for White Hake in Divs. 3NO and in Divs. 3NO + Subdiv. 3Ps. Relative fishing mortality (Rel. F = NAFO-reported landings/Can. Spring biomass) declined to low levels in 1999-2001, increased to a high peak in 2002-2003 (supported by the very large 1999 year-class), then declined to its lowest levels in 2012 (Fig. 10). Relative F was higher in Divs. 3NO than in Subdiv. 3Ps during 2002-2003, because of new directed fisheries for White Hake by EU-Spain, EU-Portugal, and Russia. Relative F increased marginally over 2012-2018, and declined slightly in 2019. Due to a lack of the primary Canadian survey index, Relative F cannot be updated.

D. Biological Studies

Recruitment

In Canadian spring research surveys, the number of White Hakes $\leq 26 \mathrm{~cm}$ in length is assumed to be an index of recruitment at Age 1. Abundance of Age 1 White Hakes in 2000 was very large, but no comparable large yearclasses were observed since then (Fig. 11). The index of recruitment (sexes combined) for 2019 was the largest value observed since the year 2000, but is not comparable to that large value. Due to a lack of the primary Canadian spring survey index from 2020-2022, this index cannot be updated.

Given the lack of spring surveys in Divs. 3NO during 2020 and 2021, a fall index of fish $\leq 26 \mathrm{~cm}$ in length was developed to monitor the potential recruitment in both missing years. Canadian autumn surveys catch newlysettled young-of-the-year (YOY) that were spawned in the previous spring, which appear in the following spring survey as 1-year-old White Hakes. Overall, this new fall index has been increasing since 2017, and the 2020 value is the largest observed since 1999, but not comparable to the magnitude of the latter (Fig. 12). Due to a lack of the Canadian fall survey index from 2021-2022, this index cannot be updated.

E. Environmental Relationships

It should be noted that the marine ecosystem in Divs. 3NOPS is changing. In particular, Silver Hake (Merluccius bilinearis), a competitor and predator of White Hake (Garrison and Link 2000), has increased significantly in research surveys over the last decade and, in recent years, catches of Silver Hake have significantly increased in unregulated Divs. 3NO fisheries. The potential impact of a large Silver Hake population may impede recovery of White Hake through both competition for food and direct predation.

F. Stock Distribution

White Hake in Divs. 3NO and Subdiv. 3Ps are confined largely to an area associated with the warmest bottom temperatures $\left(4-8^{\circ} \mathrm{C}\right)$ along the southwest fringe of the Grand Banks, edge of the Laurentian Channel, and the south-west coast of Newfoundland (Kulka et al. 2005a).

Distributions of White Hake from Canadian spring surveys in Divs. 3NOPs during 2015-2019 are shown in Figure 17. Earlier distribution maps are available in Simpson et al. (2019). In addition, distributions of White Hake from Canadian autumn surveys in Divs. 3NO during 2016-2020 are shown in Figure 18. As in previous years, this stock continues to occupy the southwest shelf edge areas of Divs. 3NO. It is important to note that, during the 2019 spring survey and the 2020 autumn survey, there was a noticeable increase in White Hakes distributed along the shelf in Div. 30 and into Div. 3N. Strata with higher stratified biomass estimates on the slope edge of Div. 30 during 2014, and less so in 2015, were not present in 2016-2018, but reappeared in 2019 (Fig. 19). In Subdiv. 3Ps, White Hakes were distributed along the shelf edge, and in the Laurentian and Hermitage Channels. Due to a lack of the primary Canadian survey index from 2020-2022, no distribution updates are available.

G. Assessment Results

Resource Status

Recent Canadian spring survey indices are not available to provide information on recent stock size. Furthermore, the EU-Spain 3NO index is near a time-series low.

References

Bishop, C.A. MS 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. NAFO Sci. Coun. Res. Doc. 94/43. 23p.

Clay, D., M.M. Ferguson, T.R. Hurlbut, and W. Stott. 1992. An allozyme survey of White Hake (Urophycis tenuis) from the southern Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 1908. 12p.

Garrido, I., D. González-Troncoso, F. González-Costas, E. Román, and L. Ramilo. 2023. Biomass and length distribution for Roughhead grenadier, Thorny Skate, White Hake, squid and capelin from the surveys conducted by Spain in NAFO 3NO. NAFO SCR Doc. 23/002. 74p.
Garrison, L.P., and J.S. Link. 2000. Diets of five hake species in the northeast United States continental shelf ecosystem. Mar. Ecol. Prog. Ser. 204: 243-255.

Guénette, S., and D. Clark. 2016. Information in Support of Recovery Potential Assessment for White Hake (Urophycis tenuis) from the Scotian Shelf (NAFO Divs. 4VWX5z). DFO Can. Sci. Advis. Sec. Res. Doc. 2016/100. v + 38p.

Han, G., and D.W. Kulka. 2007. Dispersion of eggs, larvae and pelagic juveniles of white hake (Urophycis tenuis, Mitchill 1815) on the Grand Banks of Newfoundland in relation to subsurface currents. NAFO Sci. Coun. Res. Doc. 07/021. 27p.

Hurlbut, T.R., and D. Clay. 1998. Morphometric and meristic differences between shallow and deep-water populations of white hake (Urophycis tenuis) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 55(10): 2274-2282.

Kohler, A.C. 1971. Tagging of white hake, Urophycis tenuis Mitchill, in the Southern Gulf of St. Lawrence. Int. Comm. Northw. Atl. Fish. Res. Bull. 8: 21-25.
www.nafo.int

Kulka, D.W., C.M. Miri, and M.R. Simpson. 2005a. Distribution and aspects of the life history of White Hake (Urophycis tenuis, Mitchill 1815) on the Grand Banks of Newfoundland. NAFO SCR Doc. 05/60. 40p.
Kulka, D.W., C.M. Miri, and M.R. Simpson. 2005b. The status of White Hake (Urophycis tenuis, Mitchill 1815) in NAFO Divisions 3L, 3N, 30 and Subdivision 3Ps. NAFO SCR Doc. 05/66. 55p.

McCallum, B., and S.J. Walsh. 1996. Groundfish survey trawls used at the Northwest Atlantic Fisheries Centre, 1971-present. NAFO Sci. Coun. Studies 29: 93-103.

Melendy, J., G. McClelland, and T.R. Hurlbut. 2005. Use of parasite tags in delineating stocks of white hake (Urophycis tenuis) from the southern Gulf of St. Lawrence and Cape Breton Shelf. Fish. Res. 76 (3): 392400. doi:10.1016/j.fishres.2005.07.006.

Nozères, C., J. Gauthier, H. Bourdages, and Y. Lambert. 2015. Review of White Hake (Urophycis tenuis) in the Northern Gulf of St. Lawrence in Support of a Recovery Potential Assessment. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/076: vi + 56p.
Rideout, R.M., B. Rogers, L.Wheeland, and M. Koen-Alonso. 2022. Temporal and spatial coverage of Canadian (Newfoundland and Labrador Region) Spring and Autumn multi-species RV bottom trawl surveys, with an emphasis on surveys conducted in 2021. NAFO SCR 22/007, Ser. No. N7271. 46p.
Roy, D., T.R. Hurlbut, and D.E. Ruzzante. 2012. Biocomplexity in a demersal exploited fish, white hake (Urophycis tenuis): depth-related structure and inadequacy of current management approaches. Can. J. Fish. Aquat. Sci. 69: 415-429.

Seibert, J., and D.E. Ruzzante. 2006. Isolation and characterization of eight microsatellite loci for White Hake (Urophycis tenuis). Mol. Ecol. Notes 6: 924-926. doi:10.1111/j.1471-8286.2006.01401.x

Simon, J., and A. Cook. 2013. Pre-COSEWIC review of White Hake (Urophysis tenuis) for the Maritimes Region. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/024. iv + 82p.
Simpson, M.R., and C.M. Miri. 2021. Assessment of White Hake (Urophycis tenuis, Mitchill 1815) in NAFO Division 3P. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/022. 37p.
Simpson, M.R., R.K. Collins, and C.M. Miri. 2019. Assessment of White Hake (Urophycis tenuis, Mitchill 1815) in NAFO Division 3P. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/022. 33p.

Simpson, M.R., R.K. Collins, C.M. Miri, and J.A. Bailey. 2016. Evaluation of White Hake (Urophycis tenuis) populations in the NL Region in support of a Recovery Potential Assessment. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/051.v+59p.

Swain, D.P., T.R. Hurlbut, and H.P. Benoît. 2012. Pre-COSEWIC review of variation in the abundance, distribution and productivity of white hake (Urophycis tenuis) in the southern Gulf of St. Lawrence, 19712010. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/066. iii +74p.

Swain, D.P., L. Savoie, and S.P. Cox. 2016. Recovery potential assessment of the Southern Gulf of St. Lawrence Designatable Unit of White Hake (Urophycis tenuis Mitchill), January 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/045.

Walsh, S.J., and B.R. McCallum. 1996. Performance of the Campelen 1800 Shrimp Trawl during the 1995 Northwest Atlantic Fisheries Centre autumn groundfish survey. NAFO Sci. Coun. Studies 29: 105-116.
Zinck, J.W.R. 2007. Estimated population structure of white hake, Urophycis tenuis, in the Northwest Atlantic Ocean using microsatellites. M.Sc. thesis, Department of Biology, Dalhousie University, Halifax, N.S. 51p.
www.nafo.int

Table 1. NAFO STATLANT-21A reported landings of White Hake (in tonnes) by NAFO Division in 19602022.

| | 3 N | | | 30 | | | | $3 P s$ | | $3 N O$ | 3NOPs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | non-
 Can | Canada | Total | non-
 Can | Canada | Total | non-
 Can | Canada | Total | Total | Total |
| 1960 | 164 | 37 | 201 | 210 | 181 | 391 | 500 | 232 | 732 | 592 | 1324 |
| 1961 | 9 | 17 | 26 | 25 | 152 | 177 | 32 | 100 | 132 | 203 | 335 |
| 1962 | 1 | 2 | 3 | 1384 | 406 | 1790 | 1 | 74 | 75 | 1793 | 1868 |
| 1963 | - | 12 | 12 | 5 | 129 | 134 | 8 | 103 | 111 | 146 | 257 |
| 1964 | - | 14 | 14 | - | 113 | 113 | - | 124 | 124 | 127 | 251 |
| 1965 | 125 | 5 | 130 | 18 | 28 | 46 | 60 | 71 | 131 | 176 | 307 |
| 1966 | 4 | 9 | 13 | 102 | 51 | 153 | 45 | 39 | 84 | 166 | 250 |
| 1967 | 549 | 24 | 573 | 967 | 34 | 1001 | 43 | 67 | 110 | 1574 | 1684 |
| 1968 | - | 5 | 5 | 22 | 64 | 86 | 20 | 403 | 423 | 91 | 514 |
| 1969 | 9 | 1 | 10 | 7 | 49 | 56 | 6 | 375 | 381 | 66 | 4477 |
| 1970 | 21 | 48 | 54 | 44 | 107 | 151 | 227 | 397 | 624 | 205 | 829 |
| 1971 | 366 | 132 | 498 | 4110 | 2584 | 6694 | 221 | 1443 | 1664 | 7192 | 8856 |
| 1972 | 259 | 34 | 293 | 1594 | 1998 | 3592 | 115 | 2062 | 2177 | 3885 | 6062 |
| 1973 | 33 | 59 | 92 | 307 | 2508 | 2815 | 84 | 1330 | 1414 | 2907 | 4321 |
| 1974 | 214 | 31 | 245 | 358 | 2476 | 2834 | 18 | 1305 | 1323 | 3079 | 4402 |
| 1975 | 1186 | 43 | 1227 | 2430 | 1926 | 4356 | 765 | 1432 | 2197 | 5583 | 7780 |
| 1976 | 663 | 237 | 900 | 1272 | 1225 | 2497 | 10 | 1344 | 1354 | 3397 | 4751 |
| 1977 | 1005 | 22 | 1027 | 976 | 1095 | 2071 | - | 1683 | 1683 | 3098 | 4781 |
| 1978 | 670 | 42 | 712 | 1199 | 682 | 1881 | - | 1051 | 1051 | 2593 | 3644 |
| 1979 | 246 | 44 | 290 | 919 | 360 | 1279 | - | 660 | 660 | 1569 | 2229 |
| 1980 | 209 | 242 | 451 | 1856 | 311 | 2167 | - | 546 | 546 | 2618 | 3164 |
| 1981 | 809 | 22 | 831 | 564 | 310 | 874 | - | 1030 | 1030 | 1705 | 2735 |
| 1982 | 687 | 5 | 692 | 913 | 336 | 1249 | - | 773 | 773 | 1941 | 2714 |
| 1983 | 271 | 30 | 301 | 1912 | 683 | 2595 | - | 425 | 425 | 2896 | 3321 |
| 1984 | 400 | 108 | 508 | 3182 | 645 | 3827 | - | 683 | 683 | 4335 | 5018 |
| 1985 | 1542 | 110 | 1652 | 2835 | 1672 | 4507 | - | 1156 | 1156 | 6159 | 7315 |
| 1986 | 473 | 394 | 867 | 1569 | 2169 | 3738 | 14 | 1228 | 1242 | 4605 | 5847 |
| 1987 | 4019 | 1321 | 5340 | 990 | 1731 | 2721 | - | 1318 | 1318 | 8061 | 9379 |
| 1988 | 866 | 830 | 1696 | 111 | 954 | 1065 | 12 | 683 | 695 | 2761 | 3456 |
| 1989 | 5 | 878 | 883 | 23 | 1103 | 1126 | 3 | 706 | 709 | 2009 | 2718 |
| 1990 | 228 | 832 | 1060 | 7 | 1053 | 1060 | 35 | 1441 | 1476 | 2120 | 3596 |
| 1991 | 1507 | 20 | 1527 | - | 960 | 960 | 36 | 1445 | 1481 | 2487 | 3968 |
| 1992 | - | 19 | 19 | - | 1647 | 1647 | - | 1208 | 1208 | 1666 | 2874 |
| 1993 | - | 18 | 18 | - | 1004 | 1004 | - | 741 | 741 | 1022 | 1763 |
| | | | | | | | | | | | |

Table 1. continued-

	3 N				30				3 3 s		3NO	3NOPs
Year	non- Can	Canada	Total	non- Can	Canada	Total	non- Can	Canada	Total	Total	Total	
1994	20	16	36	4	253	257	-	382	382	293	675	
1995	5	-	5	1	276	277	-	420	420	282	702	
1996	28	-	28	1	311	312	-	362	362	340	702	
1997	92	-	92	6	329	335	-	315	315	427	742	
1998	81	-	81	8	188	196	1	561	562	277	839	
1999	51	43	94	13	322	335	-	575	575	429	1004	
2000	124	21	145	29	393	422	134	976	1108	567	1677	
2001	73	18	91	49	493	542	10	920	930	633	1563	
2002	1221	-	1221	3132	1014	4146	3	915	918	5365	6285	
2003	2688	-	2688	3053	417	3470	3	1105	1108	6158	7266	
2004	170	6	176	1364	375	1739	22	1361	1383	1915	3298	
2005	21	0	21	258	685	943	23	1615	1638	964	2602	
2006	73	2	75	178	950	1128	1	1484	1485	1203	2688	
2007	12	10	22	74	627	701	2	1253	1255	723	1978	
2008	26	6	32	60	778	838	6	659	665	870	1535	
2009	19	3	22	70	389	459	3	362	365	481	843	
2010	20	13	33	65	174	239	-	378	378	272	650	
2011	3	0	3	94	66	160	-	200	200	163	363	
2012	3	3	9	84	49	133	5	208	213	139	352	
2013	10	10	20	112	101	213	-	191	191	233	424	
2014	26	15	41	216	59	275	1	384	385	316	701	
2015	18	18	36	269	106	375	1	330	331	411	742	
2016	51	6	57	192	198	390	3	299	302	447	749	
2017	54	1	55	109	333	442	-	308	308	497	805	
2018	42	-	42	90	233	265	-	328	328	269	693	
2019	16	1	17	93	192	285	1	273	274	302	576	
2020	38	51	89	164	91	255	11	223	234	343	578	
2021	34	12	46	359	113	472	0	145	145	518	663	
2022		1			65			58				

Table 2. White Hake NAFO STACFIS estimates (in 000s of tonnes), STATLANT-21A reported landings, and Total Allowable Catch (TAC) limits for NAFO Divisions 3NO and Subdivision 3Ps.

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Divs. 3NO:												
TAC	5	1	1	1	1	1	1	1	1	1	1	1
STATLANT-21A ${ }^{1}$	0.1	0.2	0.3	.4	.3	.5	.3					
STACFIS	0.1	0.2	0.3	.5	.4	.5	.4	.3	.3	.5		
Subdiv. 3Ps:												
TAC							.5	.5	.5	.5	.5	.5
STATLANT-21A	0.2	0.2	0.4	.3	.4	.3	.3	.3	.2	.1	0.1	

Table 3. Biomass and abundance of White Hake from Canadian spring research vessel surveys, 1971-2019. Surveys were conducted with a Yankee bottom trawl (1971-1983), an Engel trawl (1984-spring 1995), and a Campelen trawl (spring 1996-2016). NAFO Subdiv. 3Ps was not surveyed in 1971, 2006; Div. 30 was not surveyed in 1971, 1972, 1974, 1983; and Div. 3N was not surveyed in 1983. Note that deep strata in Divs. 3NO and all of Subdiv. 3Ps were not surveyed in spring 2006, due to Canadian research vessels' mechanical difficulties. There was no spring survey in 2020, due to COVID-19.

	Biomass (tonnes)				Abundance (000s)			
Year	3N	30	3 Ps	3NOPs	3N	30	3 Ps	3NOPs
Yankee series								
1971	0	0		0	0	0		0
1972	354		2,725	3,079	61		1,556	1,618
1973	36	1,532	465	2,033	11	327	247	585
1974	0		5,224	5,224	0		2,055	2,055
1975	0	3,173	4,491	7,664	0	1,080	2,646	3,726
1976	110	5,623	4,778	10,511	32	1,413	3,856	5,301
1977	50	1,339	7,168	8,557	43	466	3,935	4,444
1978	0	6,188	6,774	12,962	0	4,361	4,058	8,420
1979	165	1,978	6,310	8,453	34	1,065	3,077	4,176
1980	0	1,385	3,970	5,356	0	1,015	2,053	3,068
1981	139	96	7,448	7,682	28	93	4,743	4,865
1982	0	1,058	4,283	5,342	0	399	1,340	1,739
1983			0	0			0	0
Engel series								
1984	258	3,531	2,558	6,348	57	1,085	1,179	2,321
1985	46	2,878	5,303	8,227	8	1,315	3,045	4,368
1986	356	2,438	11,105	13,899	70	574	4,186	4,830
1987	43	2,752	9,866	12,661	95	1,114	4,438	5,647
1988	32	5,431	13,005	18,469	63	690	5,533	6,286
1989	0	925	6,884	7,809	0	251	4,130	4,382
1990	0	754	3,988	4,742	0	236	2,941	3,177
1991	0	1,039	4,591	5,630	0	1,118	3,800	4,918
1992	0	606	3,008	3,614	0	574	2,699	3,274
1993	0	522	2,929	3,451	0	301	2,670	2,970
1994	0	1,079	2,433	3,512	0	885	2,274	3,159
1995	0	334	2,334	2,668	0	189	2,104	2,294
Campelen series								
1996	4	2,020	6,282	8,306	75	2,982	8,089	11,145
1997	4	2,221	8,507	10,733	91	2,987	12,432	15,510
1998	7	2,205	4,007	6,219	79	2,249	4,765	7,093
1999	20	12,194	8,236	20,450	29	26,010	8,654	34,693
2000	30	15,900	10,294	26,224	716	104,360	11,743	116,819
2001	269	14,908	8,092	23,269	517	39,384	13,792	53,692
2002	96	10,808	10,118	21,022	105	11,334	15,098	26,537
2003	234	7,981	5,762	13,977	176	7,250	6,904	14,330
2004	33	10,369	6,622	17,024	53	8,477	6,977	15,506
2005	20	5,932	5,249	11,205	35	9,725	5,506	15,306
2006	247	12,267		12,517	69	10,370		10,463
2007	2	3,510	6,940	10,452	7	2,734	6,061	8,802
2008	108	4,660	3,633	8,400	23	5,689	3,991	9,703
2009	183	4,656	2,582	7,435	152	2,804	4,547	7,548

Table 3. continued-

	Biomass (tonnes)				Abundance (000s)			
Year	3N	30	3Ps	3NOPs	3N	30	3Ps	3NOPs
Campelen series								
2010	52	4,283	3,739	8,074	30	5,085	5,285	10,400
2011	571	6,423	4,727	11,722	2,175	17,834	6,745	26,754
2012	1,548	6,215	3,686	11,449	2,933	7,383	4,657	14,972
2013	49	7,755	3,987	11,792	178	11,807	5,581	17,566
2014	482	9,494	3,630	13,606	529	8,342	5,834	14,705
2015	71	6,102	3,596	9,769	31	9,999	6,032	16,062
2016	468	3,613	5,050	9,131	231	3,135	8,537	11,903
2017	348	3,352	4,848	8,548	368	7,459	7,092	14,919
2018	162	3,469	4,352	7,983	118	4,564	7,786	12,468
2019	207	5,113	3,888	9,208	280	30,059	5,625	35,963
2020								
2021								
2022								

Table 4. Biomass and abundance of White Hake from Canadian autumn research vessel surveys in Divs. 3NO, 1990-2020. Surveys were conducted with an Engel trawl (1990-autumn 1994), and a Campelen trawl (autumn 1995-2020). Note that Canadian research vessels' mechanical difficulties prevented the surveying of: deep strata in Divs. 3NO in 2003, 2004 \& 2006; strata deeper than 730 m in 2008; and Divs. 3NO in 2014.

	Biomass (tonnes)			Abundance (000s)		
Year	3N	30	3NO	3N	30	3NO
Engel series						
1990	0	1,784	1,784	0	863	863
1991	0	2,805	2,805	0	2,047	2,047
1992	22	471	493	63	448	511
1993	0	748	748	0	490	490
1994	0	1,445	1,445	0	1,341	1,341
Campelen series						
1995	94	4,099	4,193	306	5,409	5,715
1996	3	3,960	3,966	219	3,850	3,993
1997	151	4,192	4,264	46	5,361	5,425
1998	134	2,897	3,067	862	5108	7,115
1999	3,028	4,043	7,071	83,220	11,583	94,803
2000	1,165	9,551	10,716	2,875	22,750	25,625
2001	946	10,740	11,686	1,077	18,207	19,284
2002	2,753	11,384	14,137	2,126	13,434	15,561
2003	906	13,374	14,280	748	10,628	11,376
2004	1,847	2,237	4,083	2,084	1,492	3,576
2005	539	4,739	5,277	109	4,001	4,110
2006	212	2,088	2,299	98	2,288	2,386
2007	276	10,337	10,613	543	7,859	8,402
2008	620	2,557	3,177	415	2,426	2,841
2009	132	4,189	4,321	73	4,123	4,195
2010	630	3,695	4,325	2,508	3,465	5,973
2011	270	7,293	7,563	947	13,410	14,357
2012	8,842	2,902	11,745	12,307	5,768	18,075
2013	857	13,201	14,058	993	15,721	16,714
2014	ns	ns	ns	ns	ns	ns
2015	211	10,626	10,837	356	8,687	9,043
2016	259	2,629	2,888	350	1,345	1,695
2017	89	4,114	4,203	1,324	6,240	7,564
2018	54	3,003	3,057	242	7,446	7,688
2019	102	4,400	4,502	179	12,899	13,078
2020	219	10,067	10,286	480	35,973	36,453
2021						
2022						

Figure 1. Map of the Grand Banks showing various banks, basins, and NAFO Divisions. Thick dotted lines delineate NAFO Divisions. The thin dotted curved line shows Canada's Exclusive Economic Zone, delineating Canadian territory from the NAFO Regulatory Area (NRA).

Figure 2. Total reported landings of White Hake and TAC (for the NRA of Divs. 3NO) in Divs. 3NO (STACFIS) and Subdiv. 3Ps (STATLANT-21A), 1985-2023.

Figure 3. Canadian reported landings of White Hake bycatch from various fisheries in Divs. 3NOPs, 20002022.

Figure 4. Canadian reported landings of White Hake by gear in Divs. 3NOPs, 2000-2022.

Figure 5a. Length frequencies (in cm) for White Hake in Canadian commercial fisheries in Div. 3NO (left panels) and Subdiv. 3Ps (right panels), 2018-2022. Note that different gears are represented in separate graphs. Data are from Canadian At-Sea Fisheries Observers, and include discards. There was almost no Canadian Observers coverage in 2020, due to COVID-19.

Figure 5b. Length frequencies (in cm) for White Hake bycatch in EU-Portugal commercial trawl fisheries (130 mm codend mesh size) in the NAFO Regulatory Area of Div. 30, 2021-2022. EU-Portugal did not sample White Hake in the commercial fishery in 2018-2020.
www.nafo.int

Figure 5c. Length frequencies (in cm) for White Hake bycatch in Russian commercial trawl fisheries in the NAFO Regulatory Area of Divs. 3NO, 2019-2020. Russia did not sample commercial White Hakes in 2021 \& 2022. Note that Y-axis values for 2019 are $1 / 3$ of those for 2020.

Figure 5d. Length frequencies (in cm) for White Hake bycatch in Spanish commercial trawl fisheries (130 mm codend mesh) in the NAFO Regulatory Area of Divs. 3NO, 2018-2022.

Figure 6a. White Hake mean numbers (top panels) and mean weights (kg; bottom panels) per tow ($+95 \%$ CI) from Canadian spring research surveys in Divs. 3NO and Subdiv. 3Ps, 1972-2019. Yankee, Engel, and Campelen time series are not standardized, and thus are presented on separate panels. Note that the survey in 2006 was incomplete, due to Canadian research vessels' mechanical difficulties. There was no survey in 2020, due to COVID-19.

Figure 6b. White Hake mean numbers (top panels) and mean weights (kg; bottom panels) per tow (+95\% CI) from Canadian autumn research surveys in Divs. 3NO, 1990-2020. Engel ($\square, 1990-1994$) and Campelen $(\checkmark, 1995-2020)$ time series are not standardized. Note that Canadian research vessels' mechanical difficulties prevented the surveying of: deep strata in Divs. 3NO in autumn of 2003, 2004 \& 2006; strata deeper than 730 m in autumn 2008; and Divs. 3NO in autumn 2014.

Figure 7. White Hake biomass indices (in 000s tonnes) in Divs. 3NO: EU-Spain spring surveys in the NRA of Divs. 3NO compared to Canadian spring surveys in all of Divs. 3NO, 2001-2019. Note that the Canadian survey in 2006 was incomplete, due to research vessels' mechanical difficulties. There were no spring surveys in 2020, due to COVID-19, and only EU surveys in 2021 and 2022.

Length Frequencies

Figure 8a. Length frequencies (in cm) of White Hakes from Canadian Campelen autumn research surveys in Divs. 3NO, 1995-2020.

Length Frequencies

Figure 8b. Length frequencies (in cm) of White Hakes from Canadian Campelen spring research surveys in Divs. 3NO, and Subdivision 3Ps, 1996-2019. Note that the survey in 2006 was incomplete, due to Canadian research vessels' mechanical difficulties. There was no spring survey in 2020, due to COVID-19.

Figure 9. Abundance at length from Canadian Campelen and EU-Spain Campelen spring research surveys in Divs. 3NO (EU-Spain surveys limited to NRA), 2009-2019. Note that Y -axis values for 2019 are triple those for 2012-2018. There were no spring surveys in 2020, due to COVID-19.

Figure 10. Relative F index (= STACFIS commercial landings/Canadian Campelen spring survey biomass) for White Hake in Divs. 3NO and Divs. 3NOPs, 1996-2019. Note that the survey in 2006 was incomplete, due to Canadian research vessels' mechanical difficulties. There was no survey in 2020, due to COVID-19, nor in 2021-2022.

Figure 11. White Hake recruitment index for Age 1 males and females (combined) from Canadian Campelen spring surveys in Divs. 3NO and Subdiv. 3Ps, 1997-2019. Inset plot depicts 2001-2019 on a smaller scale. Note that the survey in 2006 was incomplete, due to Canadian research vessels' mechanical difficulties. There was no survey in 2020, due to COVID-19, nor in 2021-2022.

Figure 12. Standardized fall index of young-of-the-year White Hakes $\leq 26 \mathrm{~cm}$ (total length) from Canadian Campelen autumn surveys in Divs. 3NO, 1997-2020. Red horizontal line depicts the index average over the time-series.

Figure 13. White Hake in Divs. 3NO and Subdiv. 3Ps: proportion of relative abundance of YOY (1-year-olds), immatures (juveniles Age 2+ years), and adults by sex (upper panel: female; lower panel: male) from Canadian Campelen spring surveys in 1996-2019. Note that the survey in 2006 was incomplete, due to Canadian research vessels' mechanical difficulties. There was no survey in 2020, due to COVID-19.

Figure 14. White Hake in Div. 3 NO and Subdiv. 3Ps: Maturity ogives calculated for each sex from Canadian Campelen spring surveys, and averaged over 1996-2019 (excluding 2006). Note that the survey in 2006 was incomplete, due to Canadian research vessels' mechanical difficulties. There was no survey in 2020, due to COVID-19.

Figure 17. Distribution of White Hake mean numbers per tow in Divs. 3NO and Subdiv. 3Ps, based on Canadian spring research surveys in 2015-2019. There was no spring survey in 2020, due to COVID-19.

Figure 18. Distribution of White Hake mean numbers per tow in Divs. 3NO based on Canadian autumn research surveys in 2016-2020.

Figure 19. Distribution of White Hake stratified biomass (in tonnes) in Divs. 3NO and Subdiv. 3Ps, based on Canadian spring research surveys in 2014-2019. There was no survey in spring 2020, due to COVID-19.

