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Abstract 

This paper demonstrates an approach to evaluating potential climate change impacts in stock assessment and 
management advice for Northwest Atlantic Fisheries Organization (NAFO) stocks. We reviewed and identified 
environmental indices that show correlation with stock productivity, represented by annual recruitment or 
biomass process error terms from fishery stock assessment models. Selected indices were then included as 
covariates to partially account for process error variability estimated in stock assessment models and in model 
projections. The approach was applied to NAFO 3M Atlantic Cod (Gadus morhua) and 3NO Witch Flounder 
(Glyptocephalus cynoglossus). Covariates used for cod included copepod abundance and a 1-year lagged spring 
bloom timing, where increased copepod abundance and earlier spring bloom timing were associated with 
higher recruitment. For Witch Flounder, selected covariates were spring bloom timing (3-year lag) and sea ice 
cover (8-year lag), where later spring bloom timing and increased sea ice cover were positively associated with 
biomass process errors. Environmental indices incorporated into stock assessment models accounted for 21% 
to 40% and 86% to 96% of the total variance in process errors for Atlantic Cod and Witch Flounder, 
respectively, although covariates inflated the total process variance for Witch Flounder. Stock assessment 
models with and without environmental covariates were projected 30 years to estimate stock responses to no 
fishing, recent ‘status-quo’ fishing pressure levels, and estimated limit reference fishing pressure. Indices were 
projected under three scenarios where they either stayed around the historical average or 
increased/decreased by 20% from the historical average. Model projections accounting for environmental 
effects show that under the estimated environmental effects, changes in covariates translate linearly to changes 
in recruitment or production; however, a lack of projection models means that projection scenarios are 
somewhat artificial and should be improved for providing real management advice. We recommend five future 
steps for considering climate change impacts in management advice, providing a roadmap to guide future 
research planning. 
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1. Introduction 

The effects of anthropogenic climate change present new uncertainties for stock assessment and 
management of the world’s fisheries. Catch limits are often based on estimates of stock biomass and 
productivity, which are derived from fishery stock assessment models fit to historical data. The majority of 
stock assessment models assume that model parameters are stationary (i.e., constant, or varying around a 
constant average), but climate change is likely causing that assumption to break down (Karp et al. 2019; 
André E. Punt et al. 2021). For many stocks, productivity - a combination of several factors including growth, 
survival, recruitment, and habitat suitability - is likely affected by changing climate, ocean, and ecosystem 
conditions. For example, the recruitment success of cold-water species such as Atlantic Cod (Gadus morhua) 
has been linked to changes in water temperature, with higher temperatures linked to reduced reproductive 
success (Hare et al. 2016). Shifts such as these in fish stock productivity can increase the risk of overfishing, 
particularly under typical stock assessment methods that assume future productivity regimes are the same as 
the past. 

The extent of climate change impacts on the productivity of fisheries is difficult to isolate, and a model 
selection approach is required. There are many environmental conditions affected by climate change, and 
many possible pathways for environmental conditions to affect fish productivity. Additionally, there are a 
variety of approaches for incorporating environmental effects into fishery stock assessment models. Changing 
environmental conditions can affect stock assessment model estimates of productivity and biomass in many 
ways, including growth rates (André E. Punt et al. 2021; Holsman et al. 2016), survival (André E. Punt, Dalton, 
and Foy 2020; Spencer et al. 2016), spatial distribution (Malick, Siedlecki, et al. 2020; Spencer et al. 2016), 
maturity (Khalsa et al. 2023), and recruitment (M. Haltuch et al. 2019; André E. Punt et al. 2021; M. A. Haltuch 
et al. 2020; Tolimieri et al. 2018). As such, determining the link between climate change and stock 
productivity often involves testing multiple competing hypotheses and/or scenario analyses. 

This paper demonstrates one approach for linking selected environmental indices to productivity in fishery 
stock assessments for Northwest Atlantic Fisheries Organization (NAFO) stocks. We use two case studies, an 
age-structured model for 3M Atlantic Cod (Garrido, González-Troncoso, and González-Costas 2024), and a 
logistic surplus production model for 3NO Witch Flounder (Glyptocephalus cynoglossus) (Maddock Parsons, 
Skanes, and Rideout 2024). The cases represent a range of model complexities, biomass and productivity 
trends, and recent stock status. Moreover, both stocks likely have moderate to high overall climate 
vulnerability, based on a vulnerability assessment of the same species in US waters (Hare et al. 2016). 
Environmental indices were chosen based on their suitability as covariates for process error terms, which 
drive recruitment variation in 3M Cod and changes in biomass production in 3NO Witch Flounder. 

In this paper, we complete the following key tasks: 

1. Identify environmental variables that best account for yearly variability in recruitment for 3M 
Atlantic Cod and production in 3NO Witch Flounder models. 

2. Demonstrate methods for incorporating selected environmental variables into current stock 
assessments for both species, to consider how estimates of life history parameters, stock status, and 
management related parameters (e.g., reference points) change when environmental covariates are 
included. 

3. Project original and modified stock assessment models incorporating environmental covariates to 
compare stock responses to fishing. 

4. Identify additional approaches or tools to support NAFO considering climate change impacts within 
Scientific Council and Commission’s decision-making process. 

Tasks 1 - 3 are described in the methods, results, and discussion sections of this paper, while Task 4 is 
covered in the discussion only. Results from tasks 1-3 provide insights on how future fish stock productivity 
and responses to fishing may be affected by future environmental trends and climate change impacts. 
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2. Methods 

This section describes the approach used to incorporate environmental index data into stock assessments 
and projections for 3M Cod and 3NO Witch Flounder. First, we describe the annual process errors that model 
recruitment variability for Cod, or variability in annual biomass production for Witch Flounder. We then 
describe the sources of environmental data that are included in the analysis and how indices were produced 
from those data for each stock area. Next, we use linear modeling and a correlation analysis to select two 
environmental indices for each stock to use as covariates of process error terms in stock assessments. Finally, 
we describe how environmental indices are incorporated into the Cod and Witch Flounder stock assessment 
models and projections. 

2.1. Indicators of Stock Productivity 

2.1.1. Characterizing Atlantic Cod Population Dynamics 

The NAFO division 3M stock of Atlantic Cod was assessed via a Bayesian statistical catch-at-age stock 
assessment model (Garrido, González-Troncoso, and González-Costas 2024). Assessments were fit to multiple 
data series including yearly total commercial catch, survey biomass indices, and commercial catch-at-age data 
(derived via an age-length key from commercial catch-at-length frequencies). 

Statistical catch-at-age models are driven by recruitment. Each year, recruits are added to the population and 
subsequently grow, mature, and die via natural or fishing mortality. For 3M cod, annual age-1 recruitment 
was modeled via an average recruitment assumption, where recruitment 𝑅𝑡 is independent of spawning 
biomass and follows a log-Normal distribution around an assumed mean value 𝑅‾ = 45 million fish. Yearly 
recruitments are estimated as 

𝑅𝑡 = 𝑅‾ ⋅ 𝑒𝜂𝑡 , 

where 𝜂𝑡 sare recruitment process errors, representing variation in cod survival from eggs released by 
spawners through the larval stage to become age-1 recruits. 

2.1.2. Characterizing Witch Flounder Population Dynamics 

The 3NO Witch Flounder stock was assessed via a state-space surplus production stock model in which 
population dynamics are represented by changes in an aggregate biomass in response to fishing, with 
changes tracked by one or more indices from surveys and fisheries (Maddock Parsons, Skanes, and Rideout 
2024; Andre E. Punt 2003). The 3NO Witch Flounder model is fit to four trawl research vessel survey indices 
that track biomass of recruited fish 30+ cm in length, and a total commercial catch aggregated over multiple 
nations (Maddock Parsons, Skanes, and Rideout 2024). 

Biomass dynamics in a surplus production model follow a logistic production relationship that combines 
recruitment, growth, and natural mortality into a single term (Schaefer 1957; Andre E. Punt 2003). 
Production is a function of the biomass relative to carrying capacity or unfished biomass 𝐾 of the stock and 
the intrinsic rate of growth 𝑟, which is the stock’s productivity at low stock sizes. A Schaefer production 
relationship is symmetric, with zero production at 100% or 0% of unfished, and maximum sustainable yield 
(𝑀𝑆𝑌) at 50% of unfished. Yearly changes in biomass are modeled as 

𝐵𝑡+1 = (𝐵𝑡 + 𝑟 ⋅ 𝐵𝑡 (1 −
𝐵𝑡
𝐾
) − 𝐶𝑡) 𝑒

𝜂𝑡 , 

where 𝐵𝑡 is the biomass at time 𝑡, and 𝜂𝑡 is the log-Normal process error. Each year, the biomass is updated 

by adding production 𝑃𝑡 = 𝑟 ⋅ 𝐵𝑡 (1 −
𝐵𝑡

𝐾
) to the previous year’s biomass, subtracting catch, and then 

modifying the result by a log-normally distributed process deviation 𝜂𝑡. Process errors represent anomalies 
in the expected production relationship and are the accumulation of several years of variation in recruitment, 
growth, and survival (André E. Punt et al. 2021). 
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An initial evaluation of the process errors from the current assessment model revealed that they were 
unsuitable for the analysis in this paper because they had almost no variation in all years except for 2014 - 
2016 (Maddock Parsons, Skanes, and Rideout 2024), so any estimated correlation would have been biased . 
The specification of the model in winBUGS also led to long run times, which was too long for the runs needed 
in this study. 

We sped up the analysis by developing a faster, more efficient state-space surplus production model (SSPM) 
for Witch Flounder (Appendix A) implemented in Template Model Builder (Kristensen et al. 2016). In the 
TMB model, we specified the same prior structure as the original model, including log-Normal priors on 
intrinsic growth rate 𝑟 and carrying capacity 𝐾, and 𝛤 priors on biomass survey index residual variance and 
catchability. 

The 𝐾 and 𝑟 priors are specified in terms of mean and precision 𝜏, as used by WinBUGS, where precision is 
the inverse of the variance 𝑉, i.e., 

𝜏 =
1

𝑉
. 

The log-Normal 𝑟 prior uses mean 𝜇𝑟 = 0.17 and precision 𝜏𝑟 = 3.252 based on the 4RST Witch Flounder 
assessment (D. Swain et al. 2012), while the carrying capacity uses mean 𝜇𝐾 = 95.8 kt and precision 𝜏𝐾 =
11.6 (Maddock Parsons, Skanes, and Rideout 2024). 

The main difference between assumptions for the TMB and WinBugs Witch Flounder assessment model was 
initialising the stock as unfished (i.e., at carrying capacity 𝐾) in 1960. When initialised at a fished level, the 
TMB version did not converge given that there was no index data before 1984. It may be that the prior on 
inital biomass in the WinBugs model has a very strong influence on the estimate. 

The results in this paper use maximum posterior density estimates from the TMB model. Preliminary models 
attempted to produce Bayes posteriors via Hamiltonian Monte Carlo via tmbstan (Monnahan and Kristensen 
2018), but posterior distributions were not acceptable due to a small number of divergent transitions 
(Monnahan 2024). 

2.2. Environmental Indices 

Three environmental data sets were considered: 

1. Spatial (∼ 100 km resolution for North Atlantic) monthly Sea Surface Temperature (SST) from the 
sixth phase of the Coupled Model Intercomparison Project (CMIP6) (Wang et al. 2023) 

2. Temperature and plankton indices for the Flemish Cap (NAFO division 3M) and Grand Banks (NAFO 
divisions 3LNO) developed for the NAFO Standing Committee on Fisheries Environment (STACFIS) 
(Fréderic Cyr and Bélanger 2024) 

3. Annual Newfoundland and Labrador (NL) climate indices (Frédéric Cyr and Galbraith 2020a, 2020b) 

We generated CMIP6 SST indices using the CNRM-CM6-1 system model, which had the best overall 
performance for SST in Gulf of Maine and Scotian Shelf for 1950-2014 (Wang et al. 2023). For each stock we 
defined a habitat area over which to calculate SST indices with depths of 100 m - 500 m for 3M Atlantic Cod 
and 50 m - 1500 m for 3NO Witch Flounder [Figure 7.1; Garrido, González-Troncoso, and González-Costas 
(2024); Maddock Parsons, Skanes, and Rideout (2024)]. Monthly SST was then averaged across CMIP6 grid 
cells within the depth ranges for each stock. Bathymetry data was obtained from the General Bathymetric 
Chart of the Oceans (GEBCO, GEBCO Compilation Group 2024). Since the historical CMIP6 data only extended 
to 2014, we used model projections to extend the time series from 2015-2023, using an average of two 
shared socio-economic pathway scenarios (ssp245, ssp370) (Wang et al. 2023). The resulting SST indices 
were: 
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• sst3M_high: maximum monthly SST in each year in the Atlantic Cod habitat area in 3M. 

• sst3M_low: minimum monthly SST in each year in the Atlantic Cod habitat area in 3M. 

• sst3M_mean: mean monthly SST in each year in the Atlantic Cod habitat area in 3M. 

• sst3NO_high: maximum monthly SST in each year in the Witch Flounder habitat area in 3NO. 

• sst3NO_low: minimum monthly SST in each year in the Witch Flounder habitat area in 3NO. 

• sst3NO_mean: mean monthly SST in each year in the Witch Flounder habitat area in 3NO. 

 

We used the following indices from STACFIS (Fréderic Cyr and Bélanger 2024) for spring phytoplankton 
blooms, zooplankton, and temperature indices: 

• spring_bloom_timing3M: spring phytoplankton bloom timing index in Flemish Pass and Flemish Cap 

• spring_bloom_intensity3M: spring phytoplankton bloom intensity index in Flemish Pass and Flemish 
Cap 

• spring_bloom_timing3LNO: spring phytoplankton bloom timing index for Northern Grand Banks and 
Southeast Shoal 

• spring_bloom_intensity3LNO: spring phytoplankton bloom intensity index for Northern Grand Banks 
and Southeast Shoal 

• copepod_abundance3M: copepod abundance index for Flemish Cap 

• zooplankton_biomass3M: zooplankton biomass index for Flemish Cap 

• copepod_abundance3LNO: copepod abundance index for 3L portion of the Flemish Cap and 
Southeastern Grand Bank 

• zooplankton_biomass3LNO: zooplankton biomass index for 3L portion of the Flemish Cap and 
Southeastern Grand Bank 

• composite_climate3M: An average of 3 temperature anomaly time series, including SST in 3M, mean 
temperature for offshore Flemish Cap, and summer mean bottom temperature for Flemish Cap. 

• composite_climate3LNO: An average of 12 temperature anomaly time series, including SST (3L, 3N, 
3O) , vertically average ocean temperature (0-176 m), cold intermediate layer volumes (Seal Island, 
Bonavista, inshore Flemish Cap), and mean bottom temperature in 3LNO (spring, fall) 

The NL climate index described the environmental conditions on the NL shelf and in the Northwest Atlantic 
as a whole, as well as individual subindices of the NL climate index. Each subindex was normalized using the 
1991-2020 climatological period. 

The annual NL climate indices (Frédéric Cyr and Galbraith 2020a, 2020b) included 10 normalized anomalies 
and a composite index, which are described in Frédéric Cyr and Galbraith (2020b) as: 

• Wint.NAO: “Average North Atlantic Oscillation over the months of December to March” 

• Air.Temp: “Mean normalized anomalies for air temperature at Nuuk (Greenland), Iqaluit (Baffin 
Island), Cartwright (Labrador), Bonavista (Newfoundland) and St. John’s (Newfoundland)” 

• Sea.Ice: “Mean normalized anomalies of sea ice maximum area and season duration for Northern 
Labrador, Southern Labrador and Newfoundland shelves” 

• Icebergs: “Normalized anomalies of the number of icebergs crossing 48degN on the Grand Banks” 

• SST: “Mean normalized anomalies of Sea Surface Temperature over NAFO divisions 2HJ3KLNOP” 

• S27.T: “Normalized anomalies of the vertically-averaged temperature at Station 27” 

• S27.S: “Normalized anomalies of the vertically-averaged salinity at Station 27” 

• S27.CIL: “Normalized anomalies of the summer (June-August) cold intermediate layer core 
temperature at Station 27” 

• CIL.area: “Mean normalized anomalies of the summer cold intermediate layer area over 
hydrographic sections Seal Island, Bonavista and Flemish Cap on the Newfoundland and Labrador 
shelf” 
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• Bottom.T: “Mean normalized anomalies of the bottom temperature during spring (NAFO divisions 
3LNOPs) and fall (NAFO divisions 2HJ3KLNO)” 

• Climate.index: arithmetic average of all 10 NL indices above 

Annual time series for all environmental indices are shown in Figures 7.2 - 7.3. 

2.3. Correlation Analyses 

We calculated Pearson correlation coefficients between the relevant environmental indices for each stock 
with recruitment process errors for Atlantic Cod and biomass process errors for Witch Flounder. Correlations 
among process errors and indices were evaluated, including indices with 1-2 year lags for Atlantic Cod and 1-
10 year lags for Witch Flounder. The indices that resulted in the strongest correlations were then selected as 
covariates for linear models to determine which indices accounted for the most variability in stock 
productivity. 

2.4. Environmental Covariates In Stock Assessments 

We identified two environmental indices for each stock to incorporate into stock assessment estimation of 
biomass process errors 𝜂𝑡 via 

𝜂𝑡 = 𝛼 ⋅ 𝐸𝑡 +𝜔𝑡 , 

where 𝛼 is the estimated coefficient for the environmental index 𝐸𝑡 and 𝜔𝑡 ∼ 𝑁(0, 𝜎𝑋) is the residual ‘random 
component’ of the yearly process error not accounted for by the environmental indices. The standard error 𝜎𝑋 
of the random component differed by species, as indexed by 𝑋. For Cod, 𝜎𝐶𝑜𝑑 was estimated using the same 
approach as the current assessment model, while for Witch Flounder 𝜎𝑊𝑖𝑡𝑐ℎ was fixed at 0.05 for estimation, 
and the effective standard error was estimated from the process errors for interpretation and projections 
(see below). The coefficients of the environmental covariates followed a normal prior, i.e., 𝛼 ∼ 𝑁(0, 𝑠𝑋). 
Standard deviation 𝑠𝑋 differed by species, with 𝑠𝐶𝑜𝑑 = 1 and 𝑠𝑊𝑖𝑡𝑐ℎ = 0.03; Normal standard deviations for 
both species were chosen to promote model convergence partially by trial and error, with search ranges 
focused on a similar scale to the standard error 𝜎𝑋 of the random component 𝜔𝑡, given that the indices used 
for covariates were standarised. 

For each model including covariates, we estimated the proportion of process error variance accounted for 
explained (𝑅2) by the environmental index, defined as 

𝑅2 = 1 −
�̂�2

𝑉𝑎𝑟(𝜂𝑡|𝐸𝑡≠0)
, 

where �̂� is the effective standard error of the random component 𝜔𝑡 and 𝑉𝑎𝑟(𝜂𝑡|𝐸𝑡≠0) is the variance of the 

total process error term, both calculated over years the environmental index 𝐸𝑡 exists. 

2.5. Future Projections 

Population models for both stocks were projected 30 years from the end of their model history in 2023. In 
total, there were 42 projection models, comprising three fishing levels for each of the base model and the two 
environmental covariate models, with three future trends in each covariate. 

2.5.1. Harvest levels 

All projections assumed one of three constant future fishing pressure levels, ranging from no fishing to the 
limit of the Removal Reference point. For Atlantic Cod, fishing pressure was simulated via the instantaneous 
fishing mortality rate 𝐹, with levels (i) 𝐹0 = 0 for no fishing, (ii) 𝐹𝑠𝑞𝑢𝑜 = 𝐹‾2021:2023 ≈ 0.042 for ‘status quo’, 

which is the mean 𝐹 from 2021-2023 and differs slightly for EV index models, and (iii) 𝐹𝑙𝑖𝑚 = 0.15 (Garrido, 
González-Troncoso, and González-Costas 2024). All 𝐹 values given above were posterior means. Parameter 
uncertainty in 𝐹 values was incorporated into projections. 
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For Witch Flounder, similar levels are used but are applied as harvest rates given that the model estimates 
biomass and not abundance-at-age. The three harvest levels used for projections are (i) 𝑈0 = 0 (no fishing), 
𝑈𝑠𝑞𝑢𝑜 = 𝑈2023 ≈ 0.009 (final year harvest rate, differs by EV model), and (iii) 𝑈𝑙𝑖𝑚 = 𝑈𝑀𝑆𝑌 = 0.063 (Maddock 

Parsons, Skanes, and Rideout 2024). 

2.5.2. Environmental index projection scenarios 

The CMIP6 SST indices use the mean of ssp245 and ssp370 projection scenarios for 2015-2059 (Figure 7.4). 
The other environmental indices considered (Frédéric Cyr and Galbraith 2020a; Fréderic Cyr and Bélanger 
2024) are based on observed data and do not have model projections for future years. We therefore consider 
low (20% down from historical average), medium (no trend), and high (20% higher than historical average) 
scenarios for the observed environmental covariates incorporated into assessment models. 

Environmental indices without a model are projected using an auto-correlated random walk, 

𝐸𝑡+1 = 𝛾𝐸𝑡 + (1 − 𝛾)𝛿𝑡 + 𝜈, 

where 𝛾 is the estimated lag-1 autocorrelation in the index during the model’s historical period, 𝛿𝑡 ∼ 𝑁(0, 𝜐) 
is a random jump with standard error 𝜐 estimated from jumps in the index history, and 𝜈 produces a trend. 
For the high scenario, 𝜈 = 0.2/30 so that indices end 20% higher than the historical average, for the medium 
scenario 𝜈 = 0 so indices vary around the historical average, and for the low scenario 𝜈 = −0.2/30 so indices 
end 20% below the historical average. 

3. Results 

3.1. Atlantic Cod 

3.1.1. Environmental Covariates 

Atlantic Cod recruitment deviations had the strongest correlations for copepod abundance (𝜌 = 0.48) and 
zooplankton biomass (𝜌 = 0.33) (Figures 7.5 and 7.6). Sea surface temperature (CMIP6), spring bloom 
anomalies, composite climate, and NL climate indices were not strongly correlated with recruitment 
deviations. 

We also calculated lagged correlation among recruitment deviations and environmental variables (Table 6.1). 
Recruitment deviations tended to be higher when the previous year’s spring bloom timing index was lower 
(𝜌 = −0.65) and when the maximum monthly SST was higher in two-years (𝜌 = −0.4). 

We further narrowed the set of environmental indices by fitting linear models between them and recruitment 
process errors (Figure 7.7). Indices included copepod abundance (no lag), spring bloom timing index (1-year 
lag), and maximum monthly SST (2-year lag). We excluded the zooplankton biomass index from this step as it 
was moderately collinear with the copepod abundance index (𝜌 = 0.55, 7.5). Copepod abundance (𝑅2 = 0.23) 
and spring bloom timing at lag-1 (𝑅2 = 0.44) accounted for the most variation in recruitment deviation and 
were selected as covariates to include in the assessment model (Figure 7.7). 

3.1.2. Model fits with and without environmental covariates 

There were neglgible differences between model fits with and without environmental covariates (Table 6.3, 
Figure 7.11). Both models produce qualitatively identical results with little differences between biomass and 
recruitment time series. The main difference is that the recruitment process errors are split into an 
environmental effect component that is accounted for by the covariate and a random component for the 
recruitment deviation. Overall, the variance of the random process error component 𝜔𝑡 is reduced when an 
environmental covariate is included. The proportion of variance accounted for by 𝜔𝑡 is 21% for the copepod 
abundance model and 39% for the spring bloom timing model (Table 6.3, �̂�). The estimated environmental 
covariate effects have similar magnitude, but opposite sign (Table 6.3, 𝛼). 
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3.1.3. Projections with and without environmental indices 

In 3M Cod projections, the effect of environmental indices on stock productivity depended on a combination 
of the trend in the assumed environmental index and the estimated effect (i.e., 𝛼).  

Copepod abundance models  

Assuming that copepod abundance in the future matches the historical average leads to outcomes that are 
similar to the base model (Figure 7.14). In general, biomass, recruitment, and catch under the copepod 
abundance model are 2.5% - 10% higher than same values under the base model (Table 6.4. Increases in 
biomass and recruitment over the base model were related to the lower �̂� value for recruitment process 
errors (Table 6.3). Smaller process variation meant that log-Normal bias correction factors were smaller. 
While this shouldn’t affect the average a great deal, bias correction factors were estimated by replicate so 
differences in parameter uncertainty among models is a factor.  

Increasing copepod trend  

If copepod abundance increased by 20% over the next 30 years, mean recruitment increases by about 10% 
over the zero-trend model (Table 6.4, 20% higher, 𝑅‾2024:2053). In the final year recruitment was about 20% 
higher, which is consistent with the increase in copepod abundance, and spawning biomass was about 14% - 
18% higher than the base and zero-trend models (Table 6.4, 20% higher). Higher productivity is apparent 
about 4 years into the projections, as the larger year classes mature into the spawning biomass, which 
diverges more quickly from the base model around 2028 (Figure 8.5). Finally, as copepod abundance 
increased, mean catch increased by 5% over the entire projection under both the status quo and limit fishing 
mortality rates.  

Decreasing copepod trend  

When copepod abundance decreased by about 20% over the next 30 years, biomass, recruitment and catch 
also went down, as expected (Figure 8.6). Given the model structure, a declining copepod abundance index 
drives mean recruitment down by about 10% compared to the zero-trend model (Table 6.4, 𝑅‾2024−2053) 
reducing the stock’s long-term average under any fishing level. At the end of the proection, 2053 recruitment 
was down by about 18.5% ((Table 6.4, 𝑅2053). As a result, the 2053 spawning biomass was about 14% lower 
than the zero-trend model (Table 6.4, 𝑆𝑆𝐵2053). Mean trends in biomass under the 20% lower model diverge 
slightly from the base model around 2038 but match the base model closely before that time (Figure 8.6).  

Spring bloom timing models  

Projections of the spring bloom timing model differ more from the base model than the copepod abundance 
model. Under constant spring bloom timing in the future, 3M cod spawning biomass, recruitment, and catch 
are a little higher than the base model, by similar amounts to the zero-trend copepod abundance model 
(Table 6.5, Figure 7.15). As above, the reduced process error variation and parameter uncertainty is the 
reason for slightly higher spawning biomass, recruitment, and catch under all fishing mortality rates.  

Later spring bloom timing  

Productivity is lower when spring bloom timing moves 20% later than the historical average over the next 30 
years (i.e., a positive trend over the projection). The average recruitment in the projection period drops by 
about 10% (Table 6.5, 𝑅‾2024−2053), reaching 20% lower by the end of the projection (Table 6.5, 𝑅‾2024−2053). As 
a result, spawning biomass in 2053 is about 13% - 15% lower (Table 6.5, 𝑆𝑆𝐵2053). When compared to the 
base model, the later spring bloom timing model has higher average recruitment for the earlier part of the 
time series. The early boost in recruitment increases spawning biomass for the 2028 - 2044 period, after 
which the mean spawning biomass series from the base model and spring bloom timing come closer together, 
differing by about 5% - 10% (Figure 8.7).  
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Earlier spring bloom timing  

Productivity is higher when spring bloom timing is 20% earlier than the historical average after 30 years (i.e., 
a negative trend over the projection). As above, average recruitment increases by about 10% over the entire 
projection period and 18% in the final year (Table 6.5, 𝑅‾2024:2053, 𝑅2053). Increasing recruitment drives 
spawning biomass from the spring bloom models to diverge from the base model after about 4 years, similar 
to above, and reach an equilibrium of about 15% higher under any fishing level (Table 6.5, 𝑆𝑆𝐵2053, Figure 
8.8). 

3.2. Witch Flounder 

3.2.1. Comparison of surplus production models 

There were some notable differences to the original Witch Flounder stock assessment model when we fit the 
alternative TMB SSPM for Witch Flounder. While biomass estimates in the early and middle part of the time 
series are similar (Figure 7.12, upper panel), the carrying capacity 𝐾 parameter is about 11% higher and 
intrinsic rate of growth 𝑟 parameter about 34% lower (Table 6.6). The SSPM estimates are lower for the 1994 
- 2014 period and do not show the large ‘notch’-like decrease in biomass around 2013-2015 that occured in 
the original model (Figure 7.12). Instead, the SSPM estimates are more of a smooth wave during that period, 
with a slight dip before the stock resumes growing. Lower inter-annual variability in biomass is caused by 
process error estimates from the SSPM that have relatively low variance (the effective standard error is �̂� =
0.019). SSPM estimates of process errors still have a similar pattern to the original model, except they are 
more informative and appear highly autocorrelated. Process errors take a ‘walk’ to about negative 3 standard 
deviations, with the largest deviation 2014 before gradually declining in magnitude until 2020 (Figure 7.12, 
lower panel). 

3.2.2. Environmental covariates 

Results of the correlation analysis indicated that zooplankton biomass had the highest correlation with 
annual Witch Flounder process errors (Figures 7.8 - 7.9, 𝜌 = +0.50). Several of the NL climate indices (SST, 
S27.T, S27.CIL, Bottom.T, and Air.Temp) had moderate negative correlations with process errors with 𝜌 
ranging from -0.44 to -0.33. 

Correlations among Witch Flounder process errors and 1 to 10 year lagged environmental indices are shown 
in Table 6.2, which we used to identify lagged indices with the strongest correlations to further consider as 
covariates in the SSPM. These included: 

• 9-year lagged mean monthly SST (𝜌 = −0.44) 

• 3-year lagged spring bloom timing (𝜌 = 0.51) 

• 4-year lagged spring bloom intensity (𝜌 = −0.45) 

• 1-year lagged zooplankton (𝜌 = 0.43) 

• 8-year lagged composite climate index (𝜌 = −0.45) 

• 8-year lagged sea ice (𝜌 = 0.57) 

• 3-year lagged S27.T (𝜌 = −0.50) 

• 8-year lagged CIL.area (𝜌 = 0.45), 

• 8-year lagged NL climate index (𝜌 = −0.50). 

Bottom temperature was also correlated with process errors at lags 1 to 8 but was not selected because it is 
strongly collinear with S27.T index. Although the zero lag zooplankton index was more correlated (𝜌 = 0.43), 
we considered a 1-year lag because there is a stronger biological rationale for an influence on Witch Flounder 
biomass, given that the production term in the Witch Flounder model integrates several years of recruitment, 
growth, and mortality. 

We narrowed the set of indices further by fitting linear models with process errors as the response and 
indices as the explanatory variable, similar to the planned implementation in the stock assessment models 
(Figure 7.10). The most informative indices were the 8-year lagged sea ice index (𝑅2 = 0.36) and 4-year 
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lagged spring bloom intensity (𝑅2 = 0.31), which accounted for the most variation in the Witch Flounder 
process errors. 

3.2.3. Model fits with and without environmental indices 

Modeling the 3NO Witch Flounder population with environmental indices had a larger effect on recent 
biomass dynamics than on model parameters. For all three models, the carrying capacity 𝐾 and intrinsic rate 
of growth 𝑟 parameters are within 3% of the base model estimate (Table 6.7). As such, 𝑀𝑆𝑌-based model 
equilibria and the biomass time-series estimates in the early years of all three models are almost identical. 

Differences in estimates of biomass among models started to appear once process error series began in 1984 
(Figure 7.16). After covariates were included in process errors (1990 for the lagged Sea Ice model and 2006 
for the lagged spring bloom timing model) there was visibly higher inter-annual variation in biomass 
estimates, with the largest differences after 2010 (Figure 7.16). In recent years, the spring bloom timing and 
base model agree on average trends in biomass, both recording a drop in biomass in 2015 from the large 
negative process error but then increasing towards the end of the historical period. In contrast, the sea ice 
model biomass has declined on average since 2011 and ends at 16.7 kt in 2023, versus around 30 kt in the 
base and spring bloom timing models. As a result of the lower biomass under the sea ice model, the 2023 
harvest rate is about 77% higher than under the base and spring bloom timing models (Table 6.7). 

Like the cod model above, environmental indices account for a large portion of the total variance in estimated 
process errors 𝜂𝑡. The portion of total variance in 𝜂𝑡 accounted for by the covariate is 96% for the sea ice 
model and 86% for the spring bloom timing model (Table 6.7, 𝑆𝐷(𝜂) vs �̂�). The higher proportion of process 
error variance attributed to the covariates than initially observed in correlation analyses arises because the 
covariates inflate the estimated total process error variance in the SSPM (Table 6.7, 𝑆𝐷(𝜂)). Process error 
variance inflation arises because variation in the survey indices are high relative to the small increase in 
process error variance (Table 6.6, 𝜏) (i.e., there is plenty of wiggle room within the total observation + process 
noise); in other words, there is substantial room for confounding between observation and process errors 
because of the simplified structure of state-space production models. In contrast, confounding is less 
prevalent in the age-structured model for cod because recruitment variability has a more direct connection to 
the observed age-composition data. 

3.2.4. Projections with and without environmental indices 

Sea ice model, lag 8  

The sea ice index covariate for biomass process errors drives significant differences between the sea ice 
model and base model in projections. As outlined above, biomass estimates from the sea ice model are about 
40% lower than the base model at the end of the historical period given low (lagged) sea ice index values at 
that time. 

When projections assume that sea ice extent will vary around the historical average (zero-trend), production 
remains about the same as the base model given the similar 𝑟 and 𝐾 parameters. However, the sea ice model 
biomass remains lower than the base model biomass for most of the projection period, given its lower 
starting value and the 8-year lag bringing recent below average sea ice index values into the projection. The 
lag between the sea ice model and base model is consistent for the whole projection (Figure 7.17, top row). 
Final mean biomass 𝐵2053 under the sea ice model is 56% - 68% of the base model, with the smallest 
difference under the limit harvest rate 𝑈𝑙𝑖𝑚 (Table 6.8, Zero-Trend, Limit harvest rate).  

Increasing sea ice extent  

Witch Flounder production increases if sea ice extent increases by about 20% on average over the next 30 
years. As a result, 2053 biomass ranges from around 34.5 kt at the limit harvest rate to around 76 kt with no 
fishing, which is around 10% - 11% above the zero-trend assumption. Despite the higher production, biomass 
under any fishing level is still unable to overcome the lower starting point in 2023, as well as the lower 
average production for the first 8 years of the projections, driven by the true sea ice index data (Table 6.8).  
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Decreasing sea ice extent  

Witch Flounder production decreases and biomass grows more slowly when sea ice extent declines by 20% 
on average (Figure 8.12; Table 6.8, 20% lower). The mean biomass in 2052 is around 9% - 11% lower than 
the zero-trend model, and catch is about 3% - 4% lower, similar to the difference between the zero-trend and 
increase sea-ice model. Over time, biomass lags further behind the base model, and mean 2052 biomass is 
39% - 50% lower than the base model (Table 6.8).  

Spring bloom timing, lag 3  

The 2023 biomass estimates from the lagged spring bloom timing model and the base model are almost 
identical so they have the same 𝑈𝑠𝑞𝑢𝑜 of 0.9% in projections. As above, the trends in spring bloom timing 

projections have the largest influence on final outcomes, and later spring bloom timing is associated with 
positive process errors, resulting in higher biomass. 

If spring bloom timing varies around the historical average over the projection (i.e., zero-trend), production is 
similar to the base model. Indeed, the main difference between the base model and spring bloom timing 
model with zero projected trend is the uncertainty in future biomass, with the spring bloom timing model 
showing increased variation given the noisier index (Figure 7.18). Mean biomass values are very close. For 
example, the final year mean biomass 𝐵2053 for the spring bloom timing model is 3% - 5% higher than the 
base model across all harvest rates (Table 6.9). Yield is around 10% higher for the spring bloom timing model 
under the status quo harvest rate 𝑈2023, and 11% higher for the limit harvest rate 𝑈𝑙𝑖𝑚 (Table 6.9).  

Later bloom timing  

Witch Flounder production increases when spring bloom timing moves later in the year during the projection 
(positive trend) and biomass grows faster than the base and zero-trend models (Figure 8.9; Table 6.9). Final 
year mean biomass 𝐵2053 is 8% - 11% higher than under the zero-trend case and yield is about 3% - 5% 
higher.  

Earlier bloom timing  

Finally, biomass grows more slowly than the base and zero-trend models if spring bloom timing moves 
earlier (Figure 8.10; Table 6.9). Results largely mirror the later bloom timing case. Terminal biomass 𝐵2053 is 
lower than the zero-trend model by the same 8% - 1% range. Yield is also lower by about 3% - 5%, but 
remains higher than under the base model. 

4. Discussion 

This study demonstrates an approach for assessing potential climate change impacts on future stock 
dynamics by including key environmental drivers of stock productivity in stock assessments and projections. 
Outcomes for model projections that include environmental indices as covariates for productivity depend on 
the model structure. Environmental indices had a larger effect on projections of future stock responses for an 
age structured model with compositional data informing productivity estimates compared to the simpler 
state-space surplus production model, where covariates had an effect on both the model history and 
projections. 

4.1. Task 1: Identify environmental variables that best account for yearly variability in 
recruitment  for 3M Atlantic Cod and production in 3NO Witch Flounder models. 

The correlation analyses indicated copepod abundance and a 1-year lagged spring bloom timing accounted 
for the most variability in Atlantic Cod recruitment deviations. For the former, we found that higher copepod 
abundance on the Flemish Cap from 1999-2020 was associated with positive recruitment deviations. This 
may reflect improved foraging conditions and survival rates for larval and juvenile Atlantic Cod, for which 
copepods are key prey (Lough, Broughton, and Kristiansen 2017; Vikebø et al. 2021; Ruiz-Dı́az, Dominguez-
Petit, and Saborido-Rey 2022). An earlier spring bloom (a negative index in Figure 7.7) in the previous year 
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linked to higher recruitment is consistent with previous studies for Atlantic Cod indicating that an earlier 
spring bloom provides more overlap time for Cod larvae with abundant prey and increased growth and larval 
survival (Kristiansen et al. 2011; Jacobsen et al. 2022). 

For Witch Flounder, we found that lagged indices for spring bloom timing (3-year lag) and NL sea ice cover 
(8-year lag) accounted for the most variation in biomass process errors. In contrast to Atlantic Cod, later 
spring bloom timing (a positive index in Figure 7.7) was associated with positive biomass deviations from the 
surplus production model. Given that Witch Flounder likely first appear in the survey around ages 3-5 (D. 
Swain et al. 2012), correlations with the lag-3 bloom timing index may be related to larval or juvenile 
survival. Witch Flounder has a longer pelagic stage and metamorphoses at larger sizes than most other 
flatfish in the Northwest Atlantic (Scott and Scott 1988; Rabe and Brown 2001), which may explain 
differences observed in spring bloom timing effects between Cod and Witch Flounder correlation analyses. 
Laboratory studies have indicated that Witch Flounder larvae growth and survival are unaffected by lower 
prey densities (Rabe and Brown 2001), in which case delayed spring bloom timing may lead to other 
ecosystem conditions that benefit larval or juvenile survival such as temperature, prey species composition, 
or predator densities (Rabe and Brown 2001). 

With respect to sea ice, we found NL sea ice cover with an 8-year lag was positively correlated with Witch 
Flounder biomass process errors. Given the 8-year lag, this index is more likely to influence juvenile or sub 
adult survival, which may show up in survey indices 8 years later. Sea ice cover can influence shallow marine 
substrate environments via reduced sedimentation and light availability, which are key drivers for benthic 
communities (Kortsch et al. 2012; Clark et al. 2017). For example, sea ice might influence concentrations of 
bristle worms (polychaetes), crustaceans, or other benthic species (McConnell et al. 2012; Clark et al. 2017) 
that serve as key prey for Witch Flounder (Cargnelli 1999). The extent of sea ice cover rarely extends south of 
45 degrees latitude into the 3NO Witch Flounder stock area, but it commonly covers the adjacent 2J3KL stock 
area in the north (DFO 2022). Therefore, it could be that sea ice cover influences survival of Witch Flounder in 
more northern habitats that move into 3NO at some stage. Alternatively, reduction of sea ice cover in 2J3KL 
may affect survival conditions more directly in 3NO through some other mechanism or it may be linked to 
other environmental conditions influencing survival not yet considered. 

4.2. Tasks 2 and 3: Environmental Effects on Assessment Models and Projections 

Task 2: Demonstrate methods for incorporating selected environmental variables into current stock assessments 
for both species, to consider how estimates of life history parameters, stock status, and management related 
parameters (e.g., reference points) change when environmental covariates are included. 
 

Task 3: Project original and modified stock assessment models incorporating environmental covariates to 
compare stock responses to fishing. 
 

Overall, including environmental covariates in assessment models had the largest effect on future projections 
for both stocks whereas estimates of model parameters and reference points were not significantly different 
from the base model with no covariates. While historical biomass estimates for 3M Cod were basically 
identical for models with and without environmental effects, biomass estimates toward the end of the history 
for 3NO Witch Flounder differed when including environmental effects. The largest difference was in the sea 
ice extent model, where biomass trends diverged significantly for the 2012 - 2023 period, but were more 
similar before that time. The divergence leads to a much higher 2023 ‘status quo’ harvest rate of 1.6%, but it 
is still below the limit harvest rate of about 4%. In the spring bloom timing Witch Flounder model, biomass 
after 2012 has a similar average trend to the base model, but more inter-annual variability over the 2006 - 
2020 period. 

Projections for alternative environmental scenarios show that the impacts of environmental indices on 
productivity behave largely as expected. When environmental indices are positively correlated with process 
errors (e.g., sea ice for Witch Flounder, copepod abundance for Cod), then an increase in that variable will 
lead to higher stock productivity, and vice versa. If a climate variable has a negative relationship with process 
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errors (e.g., spring bloom timing for Cod), then productivity will increase when indices decrease, and vice 
versa. 

Assessment model parameter and reference point estimates may be more influenced by model priors and 
assumptions than environmental indices in both stock assessment models. For example, the mean age-1 
recruitment value for 3M Cod was fixed at 45 million age-1 fish (Garrido, González-Troncoso, and González-
Costas 2024), which essentially anchors the size of the stock to that assumed value. Environmental covariates 
in this case act as deviations around that value. The highly variable recruitment process errors (a standard 
error of 2.05 under the base model) are then able to soak up the remaining recruitment variability and 
effectively reproduce the base model, leading to the same reference point estimates. Similarly, while priors on 
the carrying capacity 𝐾 and intrinsic rate of growth 𝑟 do not exert an overly strong influence on model 
estimates, the lack of sensitivity of those parameters may indicate that some priors are more influential than 
they appear. 

For this analysis, we were limited in both cases to using environmental indices as covariates for process error 
by the structure of stock assessment models. For 3M Cod, the age-structured stock assessment model 
estimates age-1 recruitment and age-dependent mortality, but does not estimate time-varying natural 
mortality, precluding investigation of models considering climate impacts on survival. Moreover, growth, 
which may also be influenced by climate, is not modeled for 3M Cod but included via empirical weight-at-
length observations from commercial catch and survey records. For 3NO Witch Flounder, the surplus 
production model structure also limits options for investigating climate impacts on stock dynamics, since 
multiple years of stock productivity are integrated into the single production term (i.e., biomass). 

4.3. Task 4: Identify additional approaches or tools to support NAFO considering climate change 
impacts within Scientific Council and Commission’s decision-making process. 

The research recommendations below each include a qualitative estimate of the level of analyst time to 
implement the recommendation (e.g., low, medium, high) and perceived impact (e.g., medium, high) on 
management advice 

1. Simulation approach to evaluate management outcomes where assessment models 
incorporate environmental covariates (high effort, high impact) 
 

Several conditions must occur if fishery outcomes are to be improved by incorporating environmental effects 
into stock assessment and management advice (see Figure 19 below). First, there must be a consistent 
environmental effect on stock productivity that persists into the future (Ransom A. Myers 1998) and there 
must be reliable data for environmental covariates. For example, the Pacific Decadal Oscillation (PDO) has 
been consistently linked over multiple assessment with recruitment regimes of Pacific Halibut (Stewart and 
Hicks 2024). Second, given that an environmental effect and reliable environmental index data are available, 
there must be sufficient statistical power to detect the effect while controlling the risk of spurious 
relationships (see recommendation 3). Third, if an effect exists and can be reliably detected, it must have a 
reasonably strong influence on management outcomes. The potential for improved management 
performance will vary depending on uncertainty in assessment models and projections, environmental 
monitoring data and future trends, and the magnitude of environmental effects on stock productivity. The 
ultimate management outcome remains uncertain for cases involving both true and spurious environmental 
effects since including an environmental process into stock assessment is subject to standard statistical and 
management risks.  
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Figure 19. Potential paths involved when an index (i) is selected from a set of possible alternatives, whether 
 that index has a true or spurious effect on the stock dynamics, whether that effect is detected and 
 included in the assessment, and then whether the final management outcome is positive, neutral, 
 or negative. Although this seems complicated, simulation models can be used to run through 
 these pathways of effects over many candidate environmental indices since the above process is 
 present for every index considered. 
 

Closed loop simulation is increasingly used for rigorously testing fishery decision making frameworks in the 
presence of uncertainties, including those arising from uncertain environmental dynamics (André E. Punt et 
al. 2016; de la Mare 1998). There are two places where an MSE process could include environmental indices. 
First, stock assessment models fit to environmental covariates could be used to develop operating model 
scenarios, which would then be used to test the robustness of candidate decision making procedures to 
uncertainties about those indices. The results of such an exercise would provide insights about the expected 
management outcomes under a range of future climate scenarios (Wildermuth et al. 2023; André E. Punt et al. 
2021). Second, environmental variables can be included in management procedures (MPs) either in the stock 
assessment or in harvest control rules (Wildermuth et al. 2023). A set of candidate MPs, including those with 
and without links to environmental indices, could then be tested against operating models that reflect a range 
of scenarios for environmental effects on stock productivity and future climate conditions. 

The steps involved in closed-loop simulation are described in numerous papers (e.g., Cox, Kronlund, and 
Wyeth 2010). The main initial objective for NAFO stocks would be to provide valuable insights into potential 
benefits (and risks) of including environmental effects under different conditions, including a range of effect 
sizes, detectability, and proportion of variance accounted for by covariates. For example, an Environmental 
Effects Evaluation Checklist (EEEC) could be developed from the simulations that includes a 2x2 outcome 
matrix with probabilities for correctly detecting environmental effects (yes/no) and improved management 
outcomes (yes/no) under OM scenarios with varying correlations and effect sizes for environmental 
covariates. This could serve as a guide or initial step for informing future research efforts that have higher 
potential to improve management outcomes. 
 

 

 



17 

 

Northwest Atlantic Fisheries Organization  www.nafo.int  

2. Identify approaches for reliably forecasting environmental covariates (low-high effort, high 
impact) 

Without reliable forecasts for environmental covariates, management outcomes will be contingent on 
speculative environmental scenarios rather than empirically supported forecasts, reducing the likelihood for 
improved results. The methods to project the environmental indices in this study used arbitrary choices for 
future index trends (e.g., constant/increasing/decreasing). Such choices were needed to demonstrate the 
approach given that projections of environmental indices covering 2024-2053 were not available for the 
selected covariates. Additionally, the estimated auto-correlation factors were quite low for three out of four 
indices (0.01 - 0.67), so some projections behave more like independent variation around the historical 
average than random walks. Despite this, projections provided useful insights related to expected outcomes 
for stock biomass and catch under target harvest rates for future scenarios; however, they did not provide 
clear direction to management on which scenario to use for management advice. For example, if it is not well 
understood how spring bloom timing is expected to change in the future in response to climate change 
(Edwards and Richardson 2004; Neuheimer et al. 2010; Maillet et al. 2019; Friedland et al. 2024), then there 
will be challenges for how managers weight the three spring bloom timing scenarios in decision making (note 
that the above simulation approach and suggested EEEC could help with that). Similarly, while future sea ice 
extent is expected to decline, suggesting lower future Witch Flounder production, the magnitude and rate of 
decline remain uncertain. Our projections do not address this uncertainty given the arbitrary choice for 
future sea ice trends (i.e., 20% decline over 30 years). 

Information for decision making could be improved if all environmental indices considered for assessment 
modeling had validated forecasting approaches (e.g., climate models). This might involve limiting the suite of 
indices considered in the model selection stage to those with existing predictive models (low effort) or 
developing new forecasting methods (high effort). For example, some indices may be strongly correlated with 
other environmental indices that have existing forecasting models. One such index might be copepod 
abundance, which can be modeled based on temperature and chlorophyll-a (Neuheimer et al. 2010), while 
existing climate models (CMIP6, Community Earth System Model) could be used for projecting sea ice cover 
(Fol et al. 2025; Chang et al. 2020). Projections based on modeled indices could also incorporate model 
uncertainty for those indices. Finally, linking stock productivity to lagged variables may improve short-term 
tactical decision making. The lagged variables used here provide 1 - 8 years of real data, which would provide 
an expectation of near-term productivity and reduce the uncertainty in short-term projections used for 
setting catch limits. 
 

3. Large-scale meta-analysis to reduce the risk of spurious relationships (medium effort, 
medium impact) 
 

As noted in the event tree above (Figure 19), detecting spurious environmental effects on productivity is a 
tangible risk in fisheries stock assessment. Future work should include a more robust evaluation of potential 
mechanisms by which environmental (e.g., spring bloom timing, copepod abundance, sea ice extent) and 
other covariates may affect stock dynamics prior to integrating these into assessment models and 
management advice. Identification of spurious relationships between fish stock dynamics and environmental 
indices is common, and perceived relationships from historical data often break down over time (Lapointe 
and Peterman 1991; Ransom A. Myers 1998). Above, we proposed some hypotheses to explain potential 
environmental effects on Cod recruitment and Witch Flounder biomass (4.1) but a more comprehensive 
analysis and literature review could be conducted. 

There are other potential drivers of changing stock productivity not considered in this study that could be 
evaluated, such as increased predator population impacts on mortality rates. For example, increasing marine 
mammal populations have been linked to rising natural mortality rates for a variety of fish species, including 
Pacific Herring, Chinook Salmon, Atlantic Cod, and White Hake (Benoı̂t et al. 2011; D. P. Swain and Benoit 
2015; Chasco et al. 2017; Neuenhoff et al. 2019; Doherty et al. 2024; Rossi, Cox, and Benoı̂t 2024). Many 
marine mammal populations have experienced rapid population growth since the 1960s following the end of 
commercial harvest and predator control programs (Magera 2013; Doherty et al. 2024), including Grey Seals 
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in NAFO stock areas (Neuenhoff et al. 2019; Rossi et al. 2021). Marine mammal population increases may be 
strongly correlated with temperature or other environmental indices with consistent increasing trends in 
recent years, complicating model selection. This highlights the importance of initial hypotheses development 
and careful selection of covariates considered, increasing the chances of identifying the key drivers of stock 
productivity while reducing opportunities for collinear variables (Doherty, Rossi, and Cox 2022; James et al. 
2023). 

A hierarchical approach to assessing environmental effects on stock productivity for multiple stocks (Malick 
et al. 2015, 2017; Doherty, Rossi, and Cox 2022) could also be explored, whereby increased statistical power 
associated with higher sample sizes can decrease uncertainty in estimated effects sizes and reduce spurious 
relationships (Ransom A. Myers and Mertz 1998; Mueter, Peterman, and Pyper 2002). For example, a 
hierarchical meta-analysis could potentially include multi-stock models for NAFO stocks for Atlantic Cod 
(2J3KL, 3Pn4RS, 3Ps, 3L, 3M, 3NO, 4T-Vn, 4X5Y) and Witch Flounder (2J3KL, 3Ps, 3NO, 4RST) depending on 
the availability of process errors from stock assessments. By sharing information across multiple stocks, 
hierarchical models may also extend time series of environmental indices and process errors available for 
analyses and consider spatial correlations (Su, Peterman, and Haeseker 2004; Mueter, Peterman, and Pyper 
2002; Malick, Hunsicker, et al. 2020). This approach might also provide insights into shifts in species 
distribution that may be occurring due to climate change, whereby some stocks may appear to experience 
different trends in stock productivity that are influenced by migration from adjacent stock areas. 
 

4. Investigate climate-driven shifts in species distribution for NAFO stocks (medium effort, 
medium impact) 
 

Shifts in species distribution and suitable thermal habitats are probably the most predictable climate change 
impacts on NAFO stocks, whereby marine species may move north and into deeper waters relative to their 
historical ranges (Nye et al. 2009; Kleisner et al. 2017; Cote et al. 2021). For example, northward shifts in 
species distribution have been observed in the Northeastern US for Black Seabass (Centropristis striata), Scup 
(tenotomus chrysops), and Summer Flounder (Paralichthys dentatus) (Bell et al. 2015). Changing species 
distributions related to climate change are expected to be more prevalent in fishes than mammals and birds 
given the more direct thermal effects of warming water on fish physiology (Campana et al. 2020), creating 
challenges for stock assessment, fisheries management, commercial fisheries, seafood markets, and local 
economies (Oremus 2019; Baudron et al. 2020; Gullestad, Sundby, and Kjesbu 2020). 

Climate-driven shifts in species distribution can be more directly observed than other climate effects on fish 
stocks (Campana et al. 2020), some of which may have varying effects according to life-history (Malick, 
Hunsicker, et al. 2020; Cote et al. 2021). Changes in fish density over space and time can be observed in 
fisheries and survey data, as long as commercial fishing or survey sampling occur in the new habitat areas 
(Nye et al. 2009; Bell et al. 2015). While NAFO stocks may be shifting their distribution in response to climate 
change, there remains considerable uncertainty about how these changes may impact fish population 
dynamics and stock-level productivity. A study of the Northeast US shelf found that over 50% of studied 
species show high to very high potential for a change in distribution with anticipated negative effects on the 
stock (including Witch Flounder and Atlantic Cod), although there was high uncertainty in potential 
distribution shifts for at least half the species assessed (Hare et al. 2016). 

Changes in species distribution to adjust to rising temperatures can alter migration rates across adjacent 
stock boundaries, which may affect estimates of life history and productivity parameters in stock assessment. 
For example, if there is significant increase in the portion of fish emigrating north of stock area boundaries, 
then models may estimate higher natural mortality. Conversely, a large immigration of fish into a stock area 
that is more thermally suitable may be interpreted as increased recruitment or reduced natural mortality, 
particularly if the latter is age-dependent. Given that climate-driven migrations may occur over short time 
periods relative to a stock’s historical assessment period, migration effects would first appear in annual 
process error terms for recruitment and mortality and would also eventually affect long-term average life 
history traits, such as carrying capacity. Interestingly, the potential for shifts in productivity also vary 
inversely with the potential for shifts in distribution across species (Hare et al. 2016). In other words, marine 
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species migration in response to rising temperatures may allow species to reduce overall productivity 
changes across their full habitat range; however, this may not be the case for individual management units 
using spatial boundaries that subdivide species habitats. For a stock management unit, higher potential for 
migration from one stock area to another likely corresponds to higher potential for changing stock 
productivity within the affected stock areas. Changes in spatial and temporal overlap of predators and prey 
can also lead to changes in mortality or improved recruitment via impacts to survival for different life-history 
stages. For example, a reduced overlap between marine mammals with key forage fish prey species could lead 
to reduced forage fish mortality rates (Sadykova et al. 2020). Growth rates and size-at-age could also be 
impacted by changing energetic availability from climate-related shifts in diets or density dependent effects 
from changing densities related to new habitat areas (Malick et al. 2017; Gauzens et al. 2024). By accounting 
for changes in species distribution and potential time-varying effects on stock productivity, analysts can 
improve information for stock assessment and projections used for management advice. 
 

5. Changes to stock assessment models (medium effort, medium impact) 
 

3M Cod - Future work should consider modifying assessment models to include stock-recruitment 
relationships. For instance, the 3M Atlantic Cod stock assessment model assumes that recruitment is 
independent of spawning biomass, which means there is probably some confounding of environmental effects 
with changes in spawning biomass. Estimated recruitment process errors currently have very large negative 
values during the recruitment failure that led to the collapse in the 1990s, when recruitments fell to record 
lows around 2-3 standard errors below the mean. A stock recruitment model produces lower recruitment, on 
average, at such low spawning biomass and recruitment process errors would have a smaller magnitude in 
post-collapse years. The resulting process error estimates may show correlations to a different set of climate 
indices that those included here. 

3NO With Flounder - The current 3NO Witch flounder surplus production model needs a prior predictive 
check to understand the influence of priors on its parameters and results. A prior-predictive check runs the 
assessment using parameters sampled from the priors only. This would indicate the extent to which the 
assessment results depend on priors vs the data. 

In addition to the insensitivity of life history parameters mentioned above, we could not estimate the initial 
biomass relative to carrying capacity (or depletion) parameter in the substitute TMB surplus production 
model. As discussed elsewhere, there were no survey biomass indices before 1984 to provide a basis, so no 
data was available for the estimation of initial depletion. Our The TMB model first estimates maximum 
posterior density estimates via optimisation of the objective function, and the estimates of parameter 
standard errors using the δ-method are part of our check for convergence. For initial depletion, indicated that 
standard errors were not finite for the initial biomass, which is a classic symptom of an uninformed 
parameter. 

The TMB state-space surplus production model may require reparameterisation if it is to be used as the new 
3NO Witch Flounder stock assessment model in the future. Under the current parameterisation, we could not 
sample an acceptable Bayes posterior because there were a small number of divergent transitions during 
Hamiltonian Monte Carlo sampling. Divergent transitions are usually associated with parts of the objective 
function that have very high gradients indicating that a portion of the posterior was unable to be sampled, 
and therefore model estimates and their uncertainty are probably biased. Divergent transitions are relatively 
common for state-space production models in the absence of penalty functions (Best and Punt 2020). 

There is potential for bias in estimates of 3NO Witch Flounder stock productivity and carrying capacity 
caused by uncertain catch data. Prior to 1973, Witch Flounder catches are reconstructed from early 
aggregated flatfish catches and are suggested to be viewed with caution, while survey biomass indices only 
start in 1984 (Maddock Parsons, Skanes, and Rideout 2024). As such, early biomass levels are based solely on 
several years of reconstructed catch, likely inducing bias in the carrying capacity 𝐾. This could in turn bias the 
intrinsic rate of growth 𝑟, given that 𝑟 and 𝐾 are negatively correlated. We recommend sensitivity analyses 
for 𝑟 and 𝐾 under alternative catch reconstruction scenarios to better understand potential bias. 
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Provided that estimated environmental relationships to productivity are not spurious, environmental indices 
could inform process errors in years with missing data. For 3NO Witch Flounder, lack of survey indices prior 
to 1984 means that there is no information to estimate Witch Flounder process errors for the earlier period. 
As a result, models are treated as deterministic from 1960 to 1983, potentially biasing estimates of other 
parameters. An environmental index that includes years before 1984 could be used to partially fill that gap by 
back-casting the process error component, potentially reducing bias in parameters by modeling the variation 
in production before 1984. 

4.4. Conclusion 

Environmental covariates in 3M Cod and 3NO Witch Flounder stock assessments accounted for 20% to 96% 
of the estimated variation in stock productivity, although the latter variance was inflated because of possible 
confounding with observation uncertainty. Incorporating these environmental indices into stock assessments 
and 30-year projections suggests potential long-term climate impacts on stock productivity, biomass, and 
catch. We provide five recommendations that should be considered next before incorporating environmental 
covariates into management advice. First, use closed-loop simulations to evaluate the extent to which 
incorporating environmental factors in stock assessment could improve management outcomes under 
climate change. Second, develop reliable projection models for environmental variables that are linked to 
productivity and would have a reasonable chance of improving management outcomes. Third, use meta-
analysis informed by plausible biological mechanisms to reduce the risk of spurious relationships between 
environmental covariates and productivity. Fourth, investigate climate-driven shifts in species distribution 
that may influence migration rates between stock boundaries and estimates of stock-level productivity. 
Finally, update stock assessment models to provide more information for evaluating links between 
environmental indices and indicators of stock productivity. These recommendations offer a practical 
roadmap to guide future research planning and to establish well-documented methods to assess climate 
change impacts in NAFO stock assessment and management advice. 
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6. Tables 
Table 1. Correlations between Atlantic Cod recruitment deviations and environmental indices from 
 CMIP6 SST (Wang et al. 2024), STACFIS (Cyr & Bélanger, 2024), and Newfoundland and 
 Labrador (Cyr & Galbraith, 2020a, 2020b) at 0-, 1-, and 2-year lags. The strongest correlations 
 are shown in red. 

Index Lag 0 Lag 1 Lag 2 

CMIP6 SST indices 

sst3M_high 

 

0.16 

 

0.27 

 

0.4 

sst3M_low 0.01 0.17 0.29 

sst3M_mean 0.12 0.23 0.37 

STACFIS environmental indices    

spring_bloom_timing3M -0.24 -0.65 0 

spring_bloom_intensity3M 0.11 0.21 0.22 

copepod_abundance3M 0.48 0.42 0.46 

zooplankton_biomass3M 0.33 0.31 0.11 

composite_climate3M -0.07 0.01 0.03 

NL climate indices    

Wint.NAO 0.06 -0.02 -0.06 

Air.Temp -0.05 0.03 0.15 

Sea.Ice 0.06 -0.08 -0.14 

Icebergs 0.01 -0.19 -0.31 

SST -0.05 -0.06 0.04 

S27.T -0.05 0.13 0.19 

S27.S 0.01 0.08 0.18 

S27.CIL -0.04 0.16 0.17 

CIL.area 0.12 0 -0.05 

Bottom.T -0.01 0.12 0.12 

Climate.index -0.04 0.08 0.14 
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Table 2. Correlations between Witch Flounder process errors and environmental indices from CMIP6 SST (Wang et al. 2024), STACFIS (Cyr & 
 Bélanger, 2024), and Newfoundland and Labrador (Cyr & Galbraith, 2020a, 2020b) 0- to 10-year lags. The strongest correlations are shown 
 in red. 

Index 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 

CMIP6 SST indices 

sst3NO_high 

 

-0.19 

 

-0.24 

 

-0.31 

 

-0.27 

 

-0.25 

 

-0.32 

 

-0.28 

 

-0.33 

 

-0.23 

 

-0.19 

 

-0.1 

sst3NO_low -0.1 -0.18 -0.16 -0.11 -0.06 -0.02 -0.1 -0.22 -0.32 -0.36 -0.31 

sst3NO_mean -0.17 -0.23 -0.23 -0.14 -0.1 -0.09 -0.16 -0.33 -0.39 -0.4 -0.34 

STACFIS environmental indices            

spring_bloom_timing3LNO 0.24 0.34 0.38 0.52 0.48 0.36 0.01 -0.11 -0.1 -0.15 -0.28 

spring_bloom_intensity3LNO -0.04 -0.2 -0.26 -0.44 -0.43 -0.3 -0.15 0 0.2 0.38 0.31 

copepod_abundance3LNO -0.57 -0.5 -0.43 -0.32 -0.2 -0.05 0.06 0.14 0.24 0.34 0.4 

zooplankton_biomass3LNO 0.43 0.37 0.22 0.11 0.01 0.03 -0.08 -0.2 -0.23 -0.2 -0.25 

composite_climate3LNO -0.3 -0.4 -0.44 -0.42 -0.39 -0.4 -0.46 -0.51 -0.52 -0.46 -0.41 

NL climate indices            

Wint.NAO -0.03 0.03 0.12 0.33 0.33 0.26 0.17 0.22 0.27 0.23 0.15 

Air.Temp -0.36 -0.4 -0.42 -0.49 -0.51 -0.56 -0.54 -0.57 -0.58 -0.57 -0.47 

Sea.Ice 0.34 0.4 0.5 0.52 0.48 0.47 0.49 0.58 0.62 0.55 0.47 

Icebergs 0.15 0.17 0.26 0.3 0.28 0.29 0.3 0.43 0.44 0.38 0.24 

SST -0.39 -0.45 -0.4 -0.32 -0.28 -0.36 -0.46 -0.48 -0.48 -0.46 -0.42 

S27.T -0.46 -0.49 -0.54 -0.56 -0.51 -0.46 -0.44 -0.49 -0.52 -0.5 -0.42 

S27.S 0.26 0.23 0.23 0.28 0.26 0.17 0.01 -0.04 0.04 0.1 0.18 

S27.CIL -0.39 -0.37 -0.4 -0.45 -0.43 -0.36 -0.34 -0.38 -0.4 -0.37 -0.29 

CIL.area 0.16 0.23 0.34 0.34 0.29 0.3 0.34 0.46 0.49 0.45 0.38 

Bottom.T -0.47 -0.52 -0.55 -0.54 -0.53 -0.52 -0.53 -0.53 -0.51 -0.45 -0.38 

Climate.index -0.38 -0.43 -0.49 -0.53 -0.5 -0.48 -0.48 -0.54 -0.57 -0.53 -0.44 
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Table 3. Estimated posterior mean values with standard errors for the 3M Atlantic Cod age- 
 structured models under the base model without environmental covariates (Base) and the 
 models fit the Copepod Abundance and Spring Bloom Timing (SB Timing) covariates. Estimated 
 parameters shown include average recruitment 𝑅‾ , limit fishing mortality 𝐹𝑙𝑖𝑚, environmental 
 index coefficients 𝛼, recent average fishing mortality 𝐹𝑠𝑞, residual recruitment process standard 

 error �̂�, 2023 spawning stock biomass 𝑆𝑆𝐵2023, and 2023 recruitment 𝑅2023. 

 Base Copepod Abundance SB Timing 

𝑅‾  45 45 45 

𝐹𝑙𝑖𝑚 0.15 (0.011) 0.15 (0.012) 0.15 (0.011) 

𝛼𝐶𝑜𝑝𝑒  0.94 (0.418)  

𝛼𝑆𝑝𝐵𝑙   -0.91 (0.481) 

𝐹𝑠𝑞𝑢𝑜 0.042 (0.004) 0.042 (0.004) 0.041 (0.004) 

�̂� 2.05 (0.018) 1.78 (0.068) 1.14 (0.127) 

𝑆𝑆𝐵2023 27.46 (2.085) 27.42 (2.068) 27.55 (2.136) 

𝑅2023 6.96 (2.086) 6.73 (2.028) 6.67 (2.071) 

 

Table 4. Projected mean values with standard deviations for 3M Cod model with copepod covariate 
 (Copepod AM) and without covariate (Base) over simulations under no fishing (𝐹0), recent 
 average fishing mortality (𝐹𝑠𝑞𝑢𝑜 = 𝐹‾2021−2023), and at the limit fishing mortality rate (𝐹𝑙𝑖𝑚). 

 Copepod abdunance indices are projected under three scenarios assuming no future trend in 
 the copepod abundance (zero trend), a positive trend (20% increase), and a negative trend 
 (20% increase). Quantities shown are spawning biomass (𝑆𝑆𝐵2053) and recruitment (𝑅2053) at 
 the end of the 30-year projection period, as well as mean recruitment (𝑅‾2024−2053) and catch 
 (𝐶‾2024−2053) over projections. Biomass and catch units are in thousands of tonnes (kt), while 
 recruitment is in millions (M) of fish. 

Assessment Model + Index Scenario 𝑆𝑆𝐵2053 (kt) 𝑅2053 (M) 𝑅‾2024−2053 (M) 𝐶‾2024−2053 (kt) 

F = 0, no fishing mortality 

Base 

 

33.2 (51) 

 

41.1 (185) 

 

40.4 (32) 

 

0.0 (0) 

Copepod AM + zero trend 36.0 (62) 38.4 (128) 41.1 (28) 0.0 (0) 

Copepod AM + 20% increase 41.1 (73) 46.3 (159) 45.3 (32) 0.0 (0) 

Copepod AM + 20% decline 31.5 (54) 31.9 (104) 37.3 (25) 0.0 (0) 

Recent average (status quo) fishing 
mortality rate 

    

Base 21.3 (36) 41.1 (185) 40.4 (32) 3.6 (2) 

Copepod AM + zero trend 23.0 (43) 38.4 (128) 41.1 (28) 3.6 (2) 

Copepod AM + 20% increase 26.3 (50) 46.3 (159) 45.3 (32) 3.8 (2) 

Copepod AM + 20% decline 20.0 (37) 31.9 (104) 37.3 (25) 3.4 (2) 

Limit fishing mortality rate     

Base 10.0 (19) 41.1 (185) 40.4 (32) 6.1 (3) 

Copepod AM + zero trend 10.7 (21) 38.4 (128) 41.1 (28) 6.2 (3) 

Copepod AM + 20% increase 12.3 (25) 46.3 (159) 45.3 (32) 6.5 (4) 

Copepod AM + 20% decline 9.3 (18) 31.9 (104) 37.3 (25) 5.9 (3) 
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Table 5. Projected mean values with standard deviations for 3M Cod model with spring bloom timing 
 covariate (SB Timing AM) and without covariate (Base) over simulations under no fishing (𝐹0), 
 recent average fishing mortality (𝐹𝑠𝑞𝑢𝑜 = 𝐹‾2021−2023), and at the limit fishing mortality rate 

 (𝐹𝑙𝑖𝑚). Spring bloom timing indices are projected under three scenarios assuming no future trend 
 in the spring bloom timing abundance (zero trend), a trend for later timing (20% later), and a 
 trend for earlier timing (20% earlier). Quantities shown are spawning biomass (𝑆𝑆𝐵2053) and 
 recruitment (𝑅2053) at the end of the 30-year projection period, as well as mean recruitment 
 (𝑅‾2024−2053) and catch (𝐶‾2024−2053) over projections. Biomass and catch units are in thousands of 
 tonnes (kt), while recruitment is in millions (M) of fish. 

Assessment Model + Index Scenario 𝑆𝑆𝐵2053 (kt) 𝑅2053 (M) 𝑅‾2024−2053 (M) 𝐶‾2024−2053 (kt) 

F = 0, no fishing mortality 

Base 

 

33.2 (51) 

 

41.1 (185) 

 

40.4 (32) 

 

0.0 (0) 

SB Timing AM + Zero trend 36.3 (30) 43.3 (86) 43.8 (15) 0.0 (0) 

SB Timing AM + 20% later 31.9 (26) 36.7 (74) 40.1 (14) 0.0 (0) 

SB Timing AM + 20% earlier 41.5 (37) 51.4 (100) 48.0 (17) 0.0 (0) 

Recent average (status quo) fishing 
mortality rate 

    

Base 21.3 (36) 41.1 (185) 40.4 (32) 3.6 (2) 

SB Timing AM + Zero trend 23.2 (22) 43.3 (86) 43.8 (15) 3.8 (1) 

SB Timing AM + 20% later 20.2 (19) 36.7 (74) 40.1 (14) 3.7 (1) 

SB Timing AM + 20% earlier 26.7 (27) 51.4 (100) 48.0 (17) 4.0 (1) 

Limit fishing mortality rate     

Base 10.0 (19) 41.1 (185) 40.4 (32) 6.1 (3) 

SB Timing AM + Zero trend 10.9 (13) 43.3 (86) 43.8 (15) 6.6 (2) 

SB Timing AM + 20% later 9.5 (11) 36.7 (74) 40.1 (14) 6.3 (2) 

SB Timing AM + 20% earlier 12.6 (15) 51.4 (100) 48.0 (17) 6.9 (2) 

 

Table 6.  Comparison of estimates of carrying capacity 𝐾 (kt), intrinsic rate of growth 𝑟, biomass at 
 maximum sustainable yield 𝐵𝑀𝑆𝑌, harvest rate producing 𝑀𝑆𝑌 on average 𝑈𝑀𝑆𝑌, and survey 
 catchability 𝑞𝑔 and residual standard error 𝜏𝑔 for the late springe (splate), fall (fallcam), and 

 early spring (spearly) campelen surveys, and the new modified campelen survey (cabs). 
 Estimates are compared between the Witch Flounder state-space production model without 
 environmental covariates (Base) and the original assessment (Maddock Parsons et al. 2024). 

Model 𝐾 𝑟 𝐵𝑀𝑆𝑌 𝑈𝑀𝑆𝑌 𝐵2021 𝑞𝑠𝑝𝑙𝑎𝑡𝑒 𝜏𝑠𝑝𝑙𝑎𝑡𝑒 𝑞𝑓𝑎𝑙𝑙𝑐𝑎𝑚 𝜏𝑓𝑎𝑙𝑙𝑐𝑎𝑚 𝑞𝑠𝑝𝑒𝑎𝑟𝑙𝑦 𝜏𝑠𝑝𝑒𝑎𝑟𝑙𝑦 𝑞𝑐𝑎𝑏𝑠 𝜏𝑐𝑎𝑏𝑠 

Base 136.879 0.081 68.44 0.040 27.462 0.421 0.443 0.611 0.445 0.390 0.385 0.348 0.180 

Original 
Fit 

121.500 0.122 60.75 0.061 28.430 0.358 0.411 0.545 0.359 0.438 0.413 0.453 0.418 
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Table 7. Maximum posterior density estimates of model parameters and derived quantities for the 3NO 
 Witch Flounder state-space production model under the base model with no environmental 
 covariates (Base) for process errors, and the models fit with covariates for lagged Sea Ice 
 coverage (Sea Ice - Lag 8) and Spring Bloom Timing (SBT - Lag 3). Quantities include carrying 
 capacity 𝐾, intrinsic rate of growth 𝑟, optimal biomass 𝐵𝑀𝑆𝑌 (kt), limit harvest rate 𝑈𝑀𝑆𝑌, 2023 
 biomass 𝐵2023, status quo harvest rate 𝑈𝑠𝑞𝑢𝑜 = 𝑈2023, environmental covariate coefficients 𝛼, and 

 residual process standard error �̂�. 

Parameter Base Sea Ice - Lag 8 SBT - Lag 3 

𝐾 (kt) 136.879 134.794 136.021 

𝑟 0.081 0.080 0.082 

𝐵𝑀𝑆𝑌 (kt) 68.440 67.397 68.010 

𝑈𝑙𝑖𝑚 = 𝑈𝑀𝑆𝑌 0.040 0.040 0.041 

𝐵2023 (kt) 29.803 16.629 29.697 

𝑈𝑠𝑞𝑢𝑜 0.009 0.016 0.009 

𝛼 0.000 0.058 0.047 

�̂� 0.019 0.012 0.017 

𝑆𝐷(𝜂) 0.019 0.065 0.045 

 

Table 8. Projected mean values with standard errors for 3NO Witch flounder with sea ice covariate (Sea 
 Ice AM) and without covariate (Base) under scenarios for no fishing (𝑈0), recent harvest rates 
 (𝑈𝑠𝑞𝑢𝑜 = 𝑈2023), and at the limit harvest rate (𝑈𝑙𝑖𝑚 = 𝑈𝑀𝑆𝑌). Sea ice indices are projected under 

 three scenarios assuming no future trend in sea ice extent (zero trend), increasing sea ice (20% 
 increase), and declining sea ice (20% decline). Quantities shown are the harvest rate used in the 
 projection 𝑈𝑝𝑟𝑜𝑗, biomass at the end of the historical period 𝐵2023 and end of the projection 𝐵2053, 

 and average catch over the projection period from 2024-2053 (𝐶‾2024−2053). Biomass and catch 
 units are in thousands of tonnes. 

Assessment Model + Index 𝑈𝑝𝑟𝑜𝑗 𝐵2023 𝐵2053 𝐶‾2024−2053 

U = 0, no fishing mortality     

Base 0.000 29.8 103.2 (6) 0.00 (0.00) 

Sea Ice AM + Zero Trend 0.000 16.5 69.8 (28) 0.00 (0.00) 

Sea Ice AM + 20% increase (more ice) 0.000 16.5 76.3 (30) 0.00 (0.00) 

Sea Ice AM + 20% decline (less ice) 0.000 16.5 63.7 (26) 0.00 (0.00) 

2023 (status quo) harvest rate     

Base 0.009 29.8 89.3 (6) 0.54 (0.03) 

Sea Ice AM + Zero Trend 0.016 16.5 50.3 (22) 0.49 (0.12) 

Sea Ice AM + 20% increase (more ice) 0.016 16.5 55.3 (24) 0.51 (0.13) 

Sea Ice AM + 20% decline (less ice) 0.016 16.5 45.7 (20) 0.48 (0.12) 

Limit harvest rate     

Base 0.040 29.8 50.1 (4) 1.65 (0.09) 

Sea Ice AM + Zero Trend 0.038 16.5 31.2 (15) 0.85 (0.20) 

Sea Ice AM + 20% increase (more ice) 0.038 16.5 34.5 (16) 0.88 (0.21) 

Sea Ice AM + 20% decline (less ice) 0.038 16.5 28.2 (13) 0.82 (0.19) 
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Table 9. Projected mean values with standard errors for 3NO Witch flounder with spring bloom timing 
 covariate (SB Timing AM) and without covariate (Base) under scenarios for no fishing (𝑈0), 
 recent harvest rates (𝑈𝑠𝑞𝑢𝑜 = 𝑈2023), and at the limit harvest rate (𝑈𝑙𝑖𝑚 = 𝑈𝑀𝑆𝑌). Spring bloom 

 timing indices are projected under three scenarios assuming no future trend in the spring bloom 
 timing abundance (zero trend), a trend for later timing (20% later), and a trend for earlier timing 
 (20% earlier). Quantities shown are the harvest rate used in the projection 𝑈𝑝𝑟𝑜𝑗, biomass at the 

 end of the historical period 𝐵2023 and end of the projection 𝐵2053, and average catch over the 
 projection period from 2024-2053 (𝐶‾2024−2053). Biomass and catch units are in thousands of 
 tonnes. 

Assessment Model + Index 𝑈𝑝𝑟𝑜𝑗 𝐵2023 𝐵2053 𝐶‾2024−2053 

U = 0, no fishing mortality     

Base 0.000 29.8 103.2 (6) 0.00 (0.00) 

SB Timing AM + Zero Trend 0.000 29.3 107.2 (19) 0.00 (0.00) 

SB Timing AM + 20% later 0.000 29.3 116.7 (20) 0.00 (0.00) 

SB Timing AM + 20% earlier 0.000 29.3 98.2 (18) 0.00 (0.00) 

2023 (status quo) harvest rate     

Base 0.009 29.8 89.3 (6) 0.54 (0.03) 

SB Timing AM + Zero Trend 0.009 29.3 93.5 (18) 0.59 (0.08) 

SB Timing AM + 20% later 0.009 29.3 102.2 (19) 0.61 (0.08) 

SB Timing AM + 20% earlier 0.009 29.3 85.3 (16) 0.57 (0.07) 

Limit harvest rate     

Base 0.040 29.8 50.1 (4) 1.65 (0.09) 

SB Timing AM + Zero Trend 0.042 29.3 52.8 (12) 1.84 (0.25) 

SB Timing AM + 20% later 0.042 29.3 58.5 (13) 1.92 (0.26) 

SB Timing AM + 20% earlier 0.042 29.3 47.5 (11) 1.78 (0.24) 
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7. Figures 

 

Figure 1. A map showing the habitat areas used to calculate monthly CMIP6 SST. Habitat area for Atlantic 
 Cod includes the 100 - 500 m depth range within 3M. Habitat area for Witch Flounder includes 
 the 50 - 1500 m depth range within 3NO. Black dashed lines show NAFO Divisions 3M, 3N, and 
 3O. Contour lines shown in red for 500 m in 3M, and 50 m and 1500 m in 3NO. 
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Figure 2. Time series of environmental indices in 3M used for correlation analyses, including Atlantic Cod 
 recruitment residuals (codRecDevs in topleft). 

 

Figure 3. Time series of environmental indices in 3NO used for correlation analyses, including Witch 
 Flounder process errors (witchProcErr in topleft). 
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Figure 4. Time series of mean monthly SST in 3NO and 3M derived from CMIP6 historical and projection 
 data. Projections data is shown 2015-2060, calculated as the mean from two shared socio-
 economic pathway scenarios (ssp245, ssp370). Dotted vertical line shows first projection year: 
 2015. 

 

Figure 5. Pairwise correlation coefficients among Atlantic Cod recruitment deviations (codRecDevs 
  CMIP6 SST indices, and STACFIS environmental indices. 
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Figure 6. Pairwise correlation coefficients among Atlantic Cod recruitment deviations (codRecDevs) and 
 NL climate indices (Cyr and Galbraith 2020; 2023). 
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Figure 7.  Linear regression analysis results between Atlantic Cod recruitment deviations (recDevs) and 
 selected environmental indices. 
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Figure 8. Pairwise correlation coefficients among Witch Flounder process errors, CMIP6 SST indices, and 
 STACFIS environmental indices. 

 

Figure 9. Pairwise correlation coefficients among Witch Flounder process errors (witchProcErr) and NL 
 climate indices (Cyr and Galbraith 2020; 2023). 
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Figure 10. Linear regression analysis results between Witch Flounder process errors (procErrs) and 
 selected environmental indices. 
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Figure 11. Comparison of Atlantic Cod model fits with and without environmental covariates for spawning 
 biomass (SSB, top panel), recruitments (2nd panel), total recruitment process errors (3rd panel), 
 and the random component of recruitment process errors (4th panel). The total recruitment 
 process errors are split into environmental and random components for models with 
 environmental covariates. 
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Figure 12. Top panel: 3NO Witch Flounder assessment models of exploitable biomass for SSPM model 
 (thick line) and original model (dashed grey line) from Maddock Parsons et al. 2024 when fit to 
 legal sized landings (bars) and biomass indices (points). Bottom panel: 3NO Witch Flounder 
 SSPM and original model standardised process error deviations. Mean process error for SSPM is 
 indicated by the red horizontal line. 
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Figure 13. Comparison of simulation envelopes for the projected environmental variables used in the Cod 
 models. Shaded regions show the central 95% of the simulated model states in the projection, 
 black lines show the mean, and grey lines show three random traces for each model. 𝛾 is the 
 autocorrelation coefficient of the environmental index and SD is the standard deviation of the 
 difference between successive environmental index values. 
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Figure 14. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to the copepod abundance index with zero projected trend in the index (blue 
 shaded 95% and black mean lines). Time series of biomass (top), catch (middle row), and 
 recruitment (bottom) over the model history and projection period are shown under scenarios 
 for no fishing (F0, left hand column), recent average fishing mortality (Fsquo, middle column), 
 and fishing at the fishing mortality limit reference point (Flim, right hand column). Shaded 
 regions show the central 95% of parameter uncertainty under the bayes posterior in the history, 
 and the central 95% of the simulated model states in the projection. 
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Figure 15. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to the spring bloom timing index with zero projected trend in the index (blue 
 shaded 95% and black mean lines). Time series of biomass (top), catch (middle row), and 
 recruitment (bottom) over the model history and projection period are shown under scenarios 
 for no fishing (F0, left hand column), recent average fishing mortality (Fsquo, middle column), 
 and fishing at the fishing mortality limit reference point (Flim, right hand column). Shaded 
 regions show the central 95% of parameter uncertainty under the bayes posterior in the history, 
 and the central 95% of the simulated model states in the projection. 
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Figure 16. 3NO Witch Flounder maximum posterior density estimates of biomass (top) and process errors 
 (bottom) under the base model without environmental covariates and models with sea ice and 
 spring bloom timing process error covariates. 
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Figure 17. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to lagged sea ice with zero projected trend in the index (blue shaded 95% and black 
 mean lines). Time series are shown for biomass (top), catch (middle row), and standardized   
 Ice index (bottom) over the model history and projection period under scenarios for no fishing 
 (U0, left hand column), recent average fishing mortality (Usquo, middle column), and fishing at 
 the fishing mortality limit reference point (Ulim, right hand column). Shaded regions show the 
 central 95% of parameter uncertainty under the bayes posterior in the history, and the central 
 95% of the simulated model states in the projection. 𝛾 is the autocorrelation coefficient of the 
 environmental index and SD is the standard deviation of the difference between successive 
 environmental index values. 



45 

 

Northwest Atlantic Fisheries Organization  www.nafo.int  

 

Figure 18. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to lagged spring bloom timing with zero projected trend in the index (blue shaded 
 95% and black mean lines). Time series are shown for biomass (top), catch (middle row), and 
 standardized spring bloom timing index (bottom) over the model history and projection period 
 under scenarios for no fishing (U0, left hand column), recent average fishing mortality (Usquo, 
 middle column), and fishing at the fishing mortality limit reference point (Ulim, right hand 
 column). Shaded regions show the central 95% of parameter uncertainty under the bayes 
 posterior in the history, and the central 95% of the simulated model states in the projection. 𝛾 is 
 the autocorrelation coefficient of the environmental index and SD is the standard deviation of the 
 difference between successive environmental index values. 
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A. Appendices 

A.1. State Space Production Model for 3NO Witch Flounder 

A.1.1. Model specification 

3NO Witch Flounder (Glyptocephalus cynoglossus) biomass was modeled using a state-space surplus 
production model (SSPM) of the form 

𝐵𝑡+1 = (𝐵𝑡 + 𝑟 ⋅ 𝐵𝑡 (1 −
𝐵𝑡
𝐾
) − 𝐶𝑡) 𝑒

𝜂𝑡  

where 𝐵𝑡 is the recruited Witch Flounder biomass the start of year 𝑡, 𝑟 is the intrinsic growth rate of the 
population, 𝐾 is the carrying capacity, 𝐶𝑡 is total catch in thousands of tonnes in year 𝑡, and 𝜂𝑡 are annual 
process errors. Witch flounder was assumed to be initialised in an unfished state, i.e., 𝐵1960 = 𝐾. The SSPM 
was specified in Template Model Builder (Kristensen et al. 2016). 

Recruited biomass indices for survey 𝑔 ∈ {1,… ,4} are assumed to be log-Normally distributed as 

𝐼𝑡,𝑔 ∼ log𝑁(𝑞𝑔𝐵𝑡 , 𝜏𝑔) 

where 𝑞𝑔 is survey catchability, and 𝜏𝑔 is the precision for survey index 𝑔. The inverse of catchability and 

precision both follow a Gamma(1,1) prior (Table 8.1). 

Maximum posterior density estimates of model quantities were found by optimising the model’s objective 
function with respect to the parameters 𝑟, 𝐾, 𝑞𝑔, 𝜏𝑔, and annual process error terms 𝜂𝑡. The objective function 

was the posterior negative log-density, which was the sum of log-likelihood functions for survey biomass 
indices, and log-prior density functions (Table 8.1). 

Likelihood functions and prior density functions were weighted for all surveys. The weighting 𝑤𝑔 was 1 for 

the late Spring (splate), fall (fallcam), and early spring (spearly) campelen surveys, but 0.3 for the new 
modified campelen survey (cabs). Higher weightings on the cabs survey produced non convergent model 
parameters (non-finite standard errors). 
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Table A.1. Notation for the generalized logistic population dynamics model for marine mammals. 
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Table A.1. Notation for the generalized logistic population dynamics model for marine mammals. 
 (continued) 

 

A.1.2 Goodness of fit 

Standard goodness of fit metrics for the SSPM on 3NO Witch Flounder data was acceptable. Estimated 
parameters all had gradients less than 10−4 in magnitude, and the coefficients of variation (CVs) were low for 
leading model parameters. Catchability, survey precision, and process error terms had higher CVs, but all 
were within acceptable levels (Table 8.2). 

Survey biomass residuals were close to unbiased. Mean survey index residuals ranged from 0.15 to 0.28 
standard errors (Figure 8.1), with larger biases observed in indices with fewer data points. 

Process error terms had an effective standard error of 0.019, and a mean deviation of about -0.2 standard 
errors (Figure 8.2). The negative mean deviation is driven by the string of negative process errors from 2004 
- 2020, which by eye look highly auto-correlated. Such behaviour in process errors usually aliases some 
unmodeled process that is affecting stock productivity, indicating that a re-specification of the model to 
capture that process may be warranted. 

A comparison of prior distributions and maximum posterior density estimates (MPDEs) indicates that the 
data appear to be more influential than the priors for 𝐾, 𝑟, and 𝑞𝑔, but are perhaps influential on 𝜏𝑔 values 

(Figures 8.3 and 8.4). MPDEs for 𝐾, 𝑟, and 𝑞𝑔 are often far from the prior mean, and sometimes in areas of 

relatively low prior density. While 𝜏𝑔 estimates are similarly far from the prior mean, they are often towards 

the higher prior density regions. 

Table A.2. SSPM leading parameters estimates, standard errors, gradients, and CVs. 

Parameter Estimate SE CV Gradient 

lnB0 4.9191 0.0647 0.004 5.0e-06 

lnr -2.5192 0.1791 0.032 7.2e-05 

lnq_g -0.8644 0.2590 0.067 -2.9e-05 

lnq_g -0.4922 0.2564 0.066 4.5e-06 

lnq_g -0.9414 0.1701 0.029 -6.2e-06 

lnq_g -1.0542 0.3188 0.102 1.6e-05 

lntauObs_g -0.8140 0.1426 0.020 -3.5e-06 

lntauObs_g -0.8097 0.1412 0.020 -9.5e-06 

lntauObs_g -0.9543 0.2641 0.070 -1.3e-06 

lntauObs_g -1.7158 0.5880 0.356 -9.0e-07 

lnOmega_t 0.1267 0.9892 1.267 -1.3e-06 

lnOmega_t 0.0350 0.9867 1.257 -1.2e-06 

lnOmega_t 0.1920 0.9900 1.270 -1.0e-06 

lnOmega_t 0.2247 0.9927 1.281 -8.0e-07 



49 

 

Northwest Atlantic Fisheries Organization  www.nafo.int  

Parameter Estimate SE CV Gradient 

lnOmega_t -0.0095 0.9914 1.276 -8.0e-07 

lnOmega_t 0.0351 0.9924 1.280 -7.0e-07 

lnOmega_t -0.0011 0.9906 1.273 -6.0e-07 

lnOmega_t 0.2433 0.9879 1.262 -4.0e-07 

lnOmega_t 0.2323 0.9880 1.262 -3.0e-07 

lnOmega_t 0.2644 0.9892 1.267 -1.0e-07 

lnOmega_t -0.0057 0.9866 1.257 0.0e+00 

lnOmega_t -0.0279 0.9826 1.241 2.0e-07 

lnOmega_t -0.0390 0.9813 1.236 4.0e-07 

lnOmega_t 0.0699 0.9800 1.231 4.0e-07 

lnOmega_t 0.3481 0.9814 1.236 5.0e-07 

lnOmega_t 0.1741 0.9801 1.231 6.0e-07 

lnOmega_t 0.2812 0.9805 1.233 6.0e-07 

lnOmega_t 0.2952 0.9806 1.233 5.0e-07 

lnOmega_t 0.2766 0.9799 1.230 4.0e-07 

lnOmega_t 0.1109 0.9818 1.238 2.0e-07 

lnOmega_t -0.1202 0.9809 1.234 1.0e-07 

lnOmega_t -0.1924 0.9790 1.227 0.0e+00 

lnOmega_t -0.2363 0.9790 1.227 -1.0e-07 

lnOmega_t -0.0660 0.9784 1.225 -4.0e-07 

lnOmega_t -0.1941 0.9763 1.217 -4.0e-07 

lnOmega_t -0.4361 0.9763 1.217 -5.0e-07 

lnOmega_t -0.4971 0.9784 1.225 -5.0e-07 

lnOmega_t -0.5422 0.9791 1.228 -6.0e-07 

lnOmega_t -0.7506 0.9836 1.245 -6.0e-07 

lnOmega_t -1.0079 0.9889 1.266 -5.0e-07 

lnOmega_t -1.1090 0.9891 1.267 -8.0e-07 

lnOmega_t -0.8182 0.9851 1.251 -6.0e-07 

lnOmega_t -0.5478 0.9755 1.214 -9.0e-07 

lnOmega_t -0.3897 0.9766 1.218 -5.0e-07 

lnOmega_t -0.2738 0.9780 1.223 -6.0e-07 

lnOmega_t -0.1789 0.9838 1.246 -2.0e-07 

lnOmega_t -0.0622 0.9877 1.261 0.0e+00 
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Figure A.1. 3NO Witch SSPM standardised stock index log-residuals. Red lines show mean residual error. 

 

Figure A.2. 3NO Witch SSPM standardised process error deviations. Mean process error is indicated by the 
 red horizontal line. 
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Figure A.3. Comparison of unfished biomass (top) and intrinsic rate of growth (bottom) estimates (red 
 vertical lines) to their prior densities (black curve) and prior mean values (black vertical dashed 
 line). 

 

Figure A.4. Comparison of catchability (left) and stock index residual variance (right) estimates (red  
  vertical lines) to their prior densities (black curve) and prior mean values (black vertical  
  dashed line) for each index series. 
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A.1.3 Future work 

The substitute SSPM model may require reparameterisation if it is to be adopted as the new 3NO Witch 
Flounder stock assessment model. Under the current parameterisation, we could not sample an acceptable 
Bayes posterior because there were a small number of so-called divergent transitions during sampling. 
Divergent transitions are an error that occurs during Hamiltonian Monte Carlo sampling when the discrete 
path taken by the sampler (a series steps) differs substantially from the continuous path predicted by the 
proposal distribution of the model (Monnahan 2024), and are often associated with parts of the objective 
function that have very high gradients. Divergent transitions indicate that a portion of the posterior was 
unable to be sampled, and therefore model estimates and their uncertainty are probably biased. Divergent 
transitions are common in state-space surplus production models, as large negative process errors may drive 
biomass to be lower than catch. The usual solution is to set biomass to a minimum value and add a penalty 
function that increases the gradient that that point, thereby causing the divergent transitions (Best and Punt 
2020). 
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A.2 Additional model projection results 

A.2.1 3M Cod 

 

Figure A.5. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to the copepod abundance index with positive projected trend in the index (blue 
 shaded 95% and black mean lines), showing biomass (top), catch (middle row), and recruitment 
 (bottom) over the model history and projection period under no fishing (F0, left hand column), 
 recent average fishing mortality (Fsquo, middle column), and fishing at the fishing mortality limit 
 reference point (Flim, right hand column). Shaded regions show the central 95% of parameter 
 uncertainty under the bayes posterior in the history, and the central 95% of the simulated model 
 states in the projection. 



54 

 

Northwest Atlantic Fisheries Organization  www.nafo.int  

 

Figure A.6. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to the copepod abundance index with a negative projected trend in the index (blue 
 shaded 95% and black mean lines), showing biomass (top), catch (middle row), and recruitment 
 (bottom) over the model history and projection period under no fishing (F0, left hand column), 
 recent average fishing mortality (Fsquo, middle column), and fishing at the fishing mortality limit 
 reference point (Flim, right hand column). Shaded regions show the central 95% of parameter 
 uncertainty under the bayes posterior in the history, and the central 95% of the simulated model 
 states in the projection. 
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Figure A.7. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to the spring bloom timing index with a positive projected trend in the index (blue 
 shaded 95% and black mean lines), showing biomass (top), catch (middle row), and recruitment 
 (bottom) over the model history and projection period under no fishing (F0, left hand column), 
 recent average fishing mortality (Fsquo, middle column), and fishing at the fishing mortality limit 
 reference point (Flim, right hand column). Shaded regions show the central 95% of parameter 
 uncertainty under the bayes posterior in the history, and the central 95% of the simulated model 
 states in the projection. 
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Figure A.8. Comparison of simulation envelopes for the base model (grey shaded region, grey mean line) and 
 the model fit to the spring bloom timing index with a negative projected trend in the index (blue 
 shaded 95% and black mean lines), showing biomass (top), catch (middle row), and recruitment 
 (bottom) over the model history and projection period under no fishing (F0, left hand column), 
 recent average fishing mortality (Fsquo, middle column), and fishing at the fishing mortality limit 
 reference point (Flim, right hand column). Shaded regions show the central 95% of parameter 
 uncertainty under the bayes posterior in the history, and the central 95% of the simulated model 
 states in the projection. 
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A.2.2 3NO Witch Flounder 

 

Figure A.9. Spring Bloom timing at lag 3, positive projected trend model simulation envelopes (blue) 
 showing biomass (top), catch (middle row), and standardized Spring Bloom timing (bottom) 
 over the model history and projection period under no fishing (F0, left hand column), recent 
 average fishing mortality (Fsquo, middle column), and fishing at the fishing mortality limit 
 reference point (Flim, right hand column). Shaded regions show the central 95% of parameter 
 uncertainty under the bayes posterior in the history, and the central 95% of the simulated model 
 states in the projection. Light gray lines and regions show the base model. 𝛾 is the 
 autocorrelation coefficient of the environmental index. SD is the standard deviation of the 
 difference between successive environmental index values. 
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Figure A.10. Spring Bloom timing at lag 3, negative projected trend model simulation envelopes (blue)  
  showing biomass (top), catch (middle row), and standardized Spring Bloom timing (bottom)  
  over the model history and projection period under no fishing (F0, left hand column), recent  
  average fishing mortality (Fsquo, middle column), and fishing at the fishing mortality limit  
  reference point (Flim, right hand column). Shaded regions show the central 95% of   
  parameter uncertainty under the bayes posterior in the history, and the central 95% of the  
  simulated model states in the projection. Light gray lines and regions show the base model. 𝛾 
  is the autocorrelation coefficient of the environmental index. SD is the standard deviation of  
  the difference between successive environmental index values. 
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Figure A.11. Sea Ice at lag 8, positive projected trend model simulation envelopes (blue) showing biomass 
  (top), catch (middle row), and standardized Sea Ice (bottom) over the model history and  
  projection period under no fishing (F0, left hand column), recent average fishing mortality  
  (Fsquo, middle column), and fishing at the fishing mortality limit reference point (Flim, right  
  hand column). Shaded regions show the central 95% of parameter uncertainty under the  
  bayes posterior in the history, and the central 95% of the simulated model states in the  
  projection. Light gray lines and regions show the base model. 𝛾 is the autocorrelation  
  coefficient of the environmental index. SD is the standard deviation of the difference  
  between successive environmental index values. 
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Figure A.12. Sea Ice at lag 8, negative projected trend model simulation envelopes (blue) showing  
  biomass (top), catch (middle row), and standardized Sea Ice (bottom) over the model history 
  and projection period under no fishing (F0, left hand column), recent average fishing  
  mortality (Fsquo, middle column), and fishing at the fishing mortality limit reference point  
  (Flim, right hand column). Shaded regions show the central 95% of parameter uncertainty  
  under the bayes posterior in the history, and the central 95% of the simulated model states  
  in the projection. Light gray lines and regions show the base model. 𝛾 is the autocorrelation  
  coefficient of the environmental index. SD is the standard deviation of the difference  
  between successive environmental index values. 

 


