

The 2021 Overview of hydrographic conditions at NAFO Subareas 5 and 6

NAFO Subareas 5 & 6 – Main features and general circulation

- Hydrography connected to both the Subpolar and Subtropical Atlantic.
- The tail end of boundary current carrying arctic-origin waters.
- At the confluence of two major western boundary currents.
- Hydrography influenced by basin-scale variability.

Hydrographic variability: Changes in proportion/property of source waters

- Periods of increased shelf water inflow coincide with periods of decreased slope water
- The composition of slope water in the NE Channel is correlated with Gulf Stream position and the NAO

Temperature – Annual anomaly

Decadal time scale variability

-0.4 0.0 44°N 0.4 0.8 1.3 1.3 42°N 1.5 40°N 38°N Bottom Temp (2021) 36°N 72°W 76°W 68°W

Bottom temp. anomalies roughly matching those at the surface.

Long term (1977-2021) gradual warming.

Increasing trends are consistent from top to bottom in all region.

Salinity – Annual anomaly

Saltier surface conditions were observed except in the eastern Gulf of Maine

Salinities were anomalously high near bottom in the Mid Atlantic Bight and on Georges Bank

Synoptic Fields

- Large positive temp. and salinity anomalies extend onshore in the northern Mid Atlantic Bight (MAB).
- Cold (bottom) and fresh (surface) anomalies dominate the southern MAB

The extremely warm anomalies in the northern MAB are correlated with the inshore movement of the shelf break front.

Deep Inflow to Gulf of Maine

Deep inflow to Gulf of Maine continues warmer and saltier

Warmer Cold Intermediate Layer is capped by very warm surface waters

Highlights

- The Northeast US Shelf was warmer than normal across the entire shelf in 2021.
- Extreme warm and salty anomalies were observed in the northern Mid Atlantic Bight linked to shoreward incursions of the shelf-slope front.
- In the western Gulf of Maine, the Cold Intermediate Layer was warmer than normal, and the underlying water mass in Wilkinson Basin was warmer and saltier than normal
- Deep waters entering the Gulf of Maine continue to be warm and salty, marking a full decade that southern source waters have dominated the slope water composition in the region

Paula Fratantoni

Northeast Fisheries Science Center Ecosystems and Aquaculture Oceans & Climate Branch Woods Hole, MA, USA

Source:

Fratantoni, P. (2022). Hydrographic Conditions on the Northeast United States Continental Shelf in 2021 – NAFO Subareas 5 and 6, NAFO SCR Doc. 22/018.

