INTERNATIONAL COMMISSION FOR THE NORTHWEST ATLANTIC FISHERIES First Meeting
Washington, D. C. April 2, 1951

100/9
April 3, 1951

REVIEW OF UNITED STATES FISHERIES IN THE CONVENTION AREA

Contents

Page

1. The Status of the Principal Species.................................... 1
2. Statistical Tables

Table 1 - Total United States landings of certain species from the Convention Area........... 11
Table 2 - Landings at principal New England ports...... 12
Table 3 - Fishing effort by the New England fleet...... 13
Table 4 - Haddock landed at principal New England
ports... 14
Table 5 - Total landings and catch per dayb fishing for haddock from Georges Bank of Subarea 5.. 15
Table 6 - Cod landed at principal New England ports... 16
Table 7 - Catch per days fishing for cod in Subarea 5.17
Table 8 - Rosefish landed at principal New England ports... 18
Table 9 - Catch per day's fishing for rosefish......... 19
Table 10- Halibut landed at principal New England ports.. 20
3. Recommendations for Preventing Waste of Small Haddock in Subarea 5.. $2 I$

Appendix I. Explanation of tables... 29
Appendix II. Common and scientific names of species................ 31

1. THE STATUS OF THE PRTNCIPAL SFECTES

The major United States fisheries in the Convention Area depand upon groundfish. This is the term applied to the many apecies of fish which live on or near the bottom. In this area the important groundfish are rosefish and members of the cod, flounder, and closely related families. Haddock, cod, and rosefish have been the principal species during the past twenty years (Table 1). The emphasis, however, has shifted from year to year and in 1949 the rank in terms of total landings was rosefish, haddock, whiting, flounders, hake, cod, and pollock. Taken together, these groundfisheries far outrank the pelagic species, of which mackerel is the most important in the Convention Area. The other major fishery for a pelagic species in Ner England, that for sea herring, occurs almost entirely within territorial waters.

These fish are landed in the States of Maine, Massachusetts, Rhode Island, Connecticut, and New York. The major ports are Boston, Gloucester, New Bedford and Rockland. Substantial landings also are made in the Cape Cod ares and at Portland, Point Judith, Stonington, and New York City.

A majority of the catch is taken in Subarea 5, (Table 2) and most of the balance in Subarea 4. Occasional catches have been made by United States vessele in Subarea 3 in recent years. The United States has only an historical interest in Subareas 2 and 1.

The United States catch of fish from the Convention area has been increasing rapidly during the past thirty years. The landings at the principal New England ports during the first twenty years of this century averaged about 180 million pounds, dropped to a low point of 146 million in 1921 and have since risen to a high of 649 million pounds in 1949. This increase has been associated with the development of filleting and freezing techniques and with greatly expanded markets.

A fleet of about 600 otter trawlers catches most of the groundfish. In the average year since 1931 otter trawlers were absent from port 35,092 days, line trarlers, 6,595 days, and hand liners only 363 days. In the years since World War II fishing by line trawlers and hand liners has nearly disappeared.

Few species of groundfish have been proved to be overfished to the point of "depletion". True, many of them have become scarcer in certain localities, but this fact is not necessarily alarming, for in a new fishery some reduction in the catch wuelly occurs after the accumulated stocks are caught off.

Unfortunately, not enough facts are known about the biology of most of these fishes or about the changes in their populations, to provide the basis for good management. Yet it is growing increasingly clear that only by determining and using sound fishing practices mill the fishing industry get the most that this resource can yield.

HADDOCK

Haddock is the mainstay of the United States otter trawl fishery and is the most valuable of all the Northeastern United States fisheries. At peak production in 1929 the haddock resource yielded nearly 260 million pounds. Owing to reduced abundance brought on by intensive fishing, the average catch since has been about 150 million pounds a year, worth about 12 million dollars at recent prices.

The haddock of the northwest Atlantic make up a complex of populations, of which at least three main groups are recognized, inhabiting, respectively, the New England banks (Subarea 5), the Nova Scotian banks (Subarea 4), and the Newfoundland banks (Subarea 3). The fish vary between groups as to growth rate, spawning time, migratory habits, and fluctuations in size of stock.

The haddock populations in Subareas 4 and 5 only have been important to United States fishermen. In the average year since 1931,

> 100/9
> Apri.1 3, $19!12$
66.i parcent of the haddook landed at the prinoipal porte have been caupht, in Subarea 5, 33.1 percent in Subarea 4, and only . 1 percent In Suitarea 3 (Table 4).

The Fiah and Wildilife Sorvioe has carried on atudies of the haddock rescurce for several years, ohienly on deorgea liark (Subarea 5). Here the catch increased to a high of 223 million pounds in 1929, and then declined to a low of 50 million pounds in 1934 (Table 5). Since then the landinge have averaged 94 million pounds and never have exceeded 122 million pounds.

Two causes of reduced catches are know. First, the number of young haddock surviving to enter the fishery has fluctuated--with the landings of two year old heddock in the best year being about 38 times those of the poorest year. The causes of this varying production are not yet know. Second, the young rapidly growing haddock have been wasted in great numbers, either by being thrown overboard at sea, or by being landed at too small sizes. The effects of this waste and recommendations for preventing it are dealt with at greater length in Section 3 of this report.

OOD
In the last century when salting was the only economical way of preserving fish for widespread distribution, the cod supported the largest fishery of the United States because it salts particularly well. The development of refrigeration and of the filleting industry, however, brought the haddock into prominence in the 1920's since haddock were more plentiful on the nearby grounds and more suitable for filleting than cod; and because the demand for salt fish was declining in this country, cod became less sought after by the United States fishermen. Today the annual catch is around 86 million pounds (Table 1).

Cod live in much the same depths and on the same type of bottom as haddock, but whereas the latter is the dominant species (in bulk at least) on Georges Bank, cod becomes increasingly dominant off Novia Scotia and exceeds any other bottom fish on the Newfoundiand Banks and beyond. The United States landings since 1931 have been on the average, almost half from Subarea 4 and half from Subarea 5 (Table 6).

It is not know to what extent the cod populations found in the Gulf of Kaine, on Georges Bank, and on the Fastern Banks are independent, but these fish are known to move about more than haddock. The catch per day's fishing has varied widely over the past 10 years (Table 7). It is not known whether these variations reflect changes in the population, migrations, or a shifting of the primary objective of the fishery between haddock and cod. An understanding of measures needed to obtain maxjmum utilization of this resource must await a study of the cod populations and the conditions which govern their yield.

POLLOCK

The pollock, often called Boston Bluefish, has been moderato1y important in recent years. Just before the war about 38 million pounds were caught annually and since 1945 the average has been 35 milIion pounds. Little is known about the biology of this species or the extent of the resource in American waters. The production, however, probably could be increased considerably if markets were available because frequently in recent years the price has been too low to encourage production.

ROSEFTSH

The rosefish, redfish, or ocean perch supports a fishery which has grown spectacularly in recent years. Prior to 1934 only a few hundred thousand pounds were caught annually. In 1949, 237 million
pounds were landed which ranked it first in volume among New England fishes. This remarkable growth came as a result of the development of new markets and the utilization of the rosefish by the filleting industry.

Virtually the entire catch is taken by otter trawls in depths of 50 to 125 fathoms. Fishing is carried on throughout the year, but only during daylight hours, for the fish scatter or rise off the bottom at night.

Hosefish is one of the few conmercial apecies giving birth to live young. The young are spawned from June to September and are abundant at or near the surface throughout the summer. The fiah grow slowiy at a rate of about an inch a year until around their eleventh year when they mature. Little is known about their migrations but there is some evidence that there are several independent stocks in Subareas 4 and 5.

The rapid expansion of the rosefish fleet and catch has resulted in a considerable decline in the field from the nearby grounds as the accumulated stocks of older fish were caught. This is reflected in the total landings from Subarea 5 where the catch reached a peak of 118 million pounds in 1941 (Table 8) and has leveled off around an average of 90 million pounds for the last five years despite the discovery of some new fishing grounds in Subarea 5 which raised the catch in 1948 to 112 million pounds. A similar trend exists in the total catch from the southern part of Subarea 4 although here the fishery was interrupted by the war from 1942 to 1944 and the accumplated stock was caught off in 1945 and 1946. This has been followed by reduced landings. Still increasing is the catch from the central and northern parts of Subarea 4 which in 1941 produced less than 2 percent of the total United States catch but which in 1949 produced 52 percent of the total.

This vigorous and still expanding fishery is now exploiting almost all of the possible rosefish grounds within the range of the vessels. It seens certain that the production from these grounds must decline as the accumulated stock is caught. Indeed, the catch per day (Table 9) is generally declining in all areas, with some fluctuation in Subarea 5 due to the discovery of new grounds.

The Fish and Wildlife Service has recently begun a study of the effect of these developments on the productivity of the rosefish resource. It is working to determine practical measures which will protect the smaller fish and the maximum level of continuous yield for this fishery.

WHITING

Thiting or silver hake are taken commercially in Subareas 4 and 5. In the Gulf of 如ine they are a summer fish, appearing first in the Cape Ann-Massachusetts Bay region in Karch and becoming increasingly abundant as the waters warm. South of Cape Cod they are common throughout most of the year, being taken offshore by otter trawlers from November through Karch, and inshore by pound netters from April through July. Otter tramlers, particulariy of the Gloucester, Boston and Provincetown fleets have taken increasing amounts of whiting, and the catch has consequently risen from 8 million pounds in 1931 to 86 million pounds in 1949 (Table 1).

Nothing is known regarding the extent of the population, the rate of growth, or the size at maturity of whiting, nor are more than fragmentary data available regarding nursery grounds. Thiting spam from June through September. The eggs and aubsequently the larvae drift in the currents. The young fish descend to bottom probably when 1 to $1-1 / 2$ inches long. Whiting are found on sandy and pebbly bottoms from the shoreline to a depth of about 300 fathoms.

April 3, 1951
Fishermen report that this fish is becoming scarcer, with former highly productive grounds now barely furnishing a day's fishing.

Hake is a name applied to several species of closely related fishes found from Newfoundland to Cape Hatteras. Two of these are taken commercially: the white hake, which, until very recently made up almost the entire catch, and the red hake, which had remajned unutilized until martime shortages created an unusual demand for fish in 1943 and 1944. Over 25 million pounds of hake were caught in 1945, principally with otter trawls. In that year fishermen took about 15 million pounds of red hake. In the following year the catch of this species declined to about one million pounds, but jumped again in 1949 as it was sought for reduction to fish meal.

White hake grows to 20 to 30 pounds, but the average sized fish landed is 5 pounds or less. Red hake average a pound to two, and though of good flavor, are so soft bodied they do not keep well. Very little is known of the biology of hakes or about the extent to which the supply is being utilized. The fishery for both of these species could probably be expanded if the market warranted.

FIOUNDERS

The flounder resource of the North Atlantic yields about 72 miliion pounds a year and ranks about fourth in volume in the New Fingland catch. Until recent years it was hardly touched, for the small mouths of many of the species aaved them from the hooks of line trawls and no considerable market existed for some of the most abundant species. In 1900, for example, only 4.5 million pounds were landed. The introduction of the otter trawl and development of the filleting industry stimulated growth of the Nounder fishery. Today about 97 percent of the catch is taken with otter trawls, the balance chiefly with line trawls. Most of the flounder catch is utilized by the fillet industry.

Yellowtail is the most important of the North Atlantic flounders. Prior to about 1935 it was considered a trashfish and was landed in small quantities at very low prices. With the decline of the blackback fishery, the small otter trawlers turned to yellowtail fishing and the public learned of the excellent table qualities of this species. This led to the development of a flounder fillet industry at New Bedford and the expansion of the yellowtail fishery. In 1942 the landings of yellowtail were about 65 million pounds, surpassing those of all other flatfishes. Since 1942 this fishery has yielded progressively smaller catches. Fish and Wildlife Service studies indicate that the decline has been caused by heavy fishing and changing migratory habits. No remedies have been developed, but the landing of the young of this species for fish meal should be prohibited.

The blackback or $\begin{aligned} & \\ & \text { inter } f l o u n d e r \\ & \text { is the second most important }\end{aligned}$ of the North Atlantic flounders. The catch of this species had been 40 to 50 million pounds in the early $1930^{\prime \prime} \mathrm{s}$, but has since declined steadily to less than 20 million pounds. This change can be attributed to a decline in the size of the blackback population and to a shift of portions of the fleet to the newly developed yellowtail fishery.

Blackback spawn in the winter and spring in depths of 1 to 3 fathoms. The eggs sink to the bottom and stick together in small clusters. The fish grow rapidly and become sexually mature at 8 to 10 inches and 3 to 4 years of age. The fish are relatively nomigratory, moving only to cooler waters outside the bays in summer and back to inside waters in winter.

The rapid growth rate helps the blackback to persist under the intensive fishery. The nonmigratory habit, however, means that conservation measures must be more or less localized to fit local units of the blackback populations. To obtain better utilization of the existing supply of this resource, a minimum size limit of 10 inches has

> DOC/9
> Apri1 3, 1951
been recommended for certain waters of Iong Island, New York. Allowing the fish to grow before catching them will in itself increase fishermen's tonnages and also increase the number of spawning adults.

Lemon sole or Ceorges Bank flounder is a fish closely related to the winter flounder; indeed, it may be only a race of blackback flounder rather than a distinct species, though this is a matter of dispate. In any event, the trade uses the name lemon sole for individuals of both kinds which weigh over $2 \frac{7}{2}$ or 3 pounds. This size limit varies among dealers and among cities. dbout three million pounds sold under this name are caught annually. True lemon sole seen to be limited in their distribution to Qeorges Bank.

Gray sole is one of the deeper water flounders found principally on soft, middy, and clay bottoms in 25 to 120 fathoms of water. About 3 million pounds are caught annually, most of it by the large otter tramlers incidentally with their catches of hadiock, cod, and rosefish.

It is marketed almost entirely as fillet of sole. Practically nothing is known about this resource on which to base an opinion as to the possibility of increasing production.

Sea dab is a deep water flounder taken mostly on sandy bottoms in 15 to 60 fathoms by large otter trawlers as an incidental catch while fishing for cod and haddock. About 5 million pounds are landed annually. It is mostly filleted and marketed as fillet of sole. Virtually nothing is known of the biology of this fish, or of the production possibilities. Noteworthy, however, is the discovery by United States vessels of concentrations of this species on the Newfoundland banks in December 1950 from which more than 1 million pounds were taken during the month.

The North Atlantic halibut resource was fairly important 50 to 60 years ago, when it yielded around 13 million pounds annually.

At present less than a half million pounds are landed in a year (Table 10).

Some halibut are picked up incidentally by otter tramlers fishing for groundfish, but a greater part of the catch has been taken by a few line trawlers which specialize in halibut fishing on the edge of the continental shelf of the Nova Scotian Banks in 100 to 200 fathoms of water.

The halibut is the largest of our flat fishes. Present day specimens run from 20 to 200 pounds, but in former years individuals of over 700 pounds were taken. These huge fish are exceedingly voracious and their diet consists of various kinds of market and other fishes. If halibut are ever to be restored to the New England waters in anything like the numbers present in colonial days, it seems inevitable that a sizable share of the cod, haddock, whiting, and hake which now support important fisheries, will be required to feed them.

Table 1. -Fotal Onited States landings or certain species from the donvention Area.
(in mililions of pounds)

Year	Haddock	Cod	Fhiting	Pollock	$\text { Hake }^{\frac{2}{2}}$	Roserisn	Mackerel	rlounders	Halibut
1931	171	100	8	11	17	*	47	42	3
1932	146	94	7	11	17	*	60	38	2
1933	146	107	9	15	15	*	41	38	2
1934 4/	145	122	13	28	18	2	51	39	3
1935	177	122	17	33	27	17	62	39	3
1936 4/	163	114	35	42	26	66	47	43	3
1937	156	141	22	38	25	58	23	48	2
1938	154	129	25	40	24	65	39	47	2
1939	157	113	25	37	20	78	28	46	1
1940	137	86	41	37	15	85	36	58	1
1941 4/	165	102	44	39	13	152	41	68	1
1942	146	70	47	32	12	128	47	75	1
3.943	126	70	54	22	17	115	53	66	*
1944	141	97	52	23	20	120	73	73	*
194.5	155	145	78	38	32	132	57	74	*
1946	155	94	51	46	23	178	50	79	*
1947	166	67	62	21	26	147	47	68	1
1948	156	. 70	80	38	23	238	47	72	*
1949 4/	135	53	86	32	55	237	16	69	*

1/ Total New Englend and Middle Atlantic landings are used for haddock, cod, pollock, hake, rosefish, and halibut; total New England landings are used for flounder, mackerel, and whiting.

2/ Included are: red and white hake.
3 Included are: gray sole, lemon sole, yellowtail, blackback, dab, and fluke.
4/ Partly estimated.

* Less then $500,000 \mathrm{lbs}$.

Table 2.-Landings at principal New Pagland ports. D (/ $\mathrm{CO} / 9$ (In thoussands of pounds) April 3, 1951

Year	Conveation Subarea					Total
	5	4	3	2	1	
1905	114,346	55,368	10,680	-	-	180,394
1906	111,494	40,917	15,865	173	-	168,449
1907	109,351	59,569	22,602	40	-	191,562
1908	108,489	56,756	16,214	-	-	181,459
1709	90,634	70,390	10,664	-	-	171,688
1910	105,699	64,987	9,858	-	974	181,518
1911	96,716	74,073	13,014	100	185	184,088
1912	112,607	63,346	5,042	888	14	181,897
1913	94,823	56,789	9,262	1,039	-	161,918
1914	94,239	54,131	12,309	741	-	161,420
1915	102,483	63,710	4,554	120	-	170,867
1916	113,640	62,215	8,181	56	-	184,092
1917	93,011	73,651	7,480	-	-	174,142
1918	128,876	64,992	5,427	-	-	199,295
1919	130,098	55,405	7,340	-	-	192,843
1920	129,780	38,677	6,841	-	-	175,298
1921	111,810	28,668	6,116	-	-	146,594
1922	105,779	47,024	6,863	-	-	159,666
1923	116,186	51,753	7,002	-	-	174,941
1924	128,299	43,336	11,259	5	-	182,899
1925	161,332	45,698	9,827	-	-	216,857
1926	173,393	51,984	12,896	21	-	238,294
1927	209,457	33,973	10,324	20	-	253,774
1928	228,839	29,810	21,098	46	-	279,793
1929	289,674	30,169	9,095	64	-	329,002
1930	290,501	53,286	9,402	60	-	353,249
1931	185,839	71,972	5,972	-	-	263,783
1932	187,629	60,313	3,620	-	-	251,562
1933	173,001	92,786	1,703	-	-	267,490
1934	143,633	167,767	1,315	-	-	312,715
1935	192,413	168,628	1,110	-	-	
1936	264,213	150,657	, 369	-	-	415,239
1937	237,284	149,621	1,163	-	-	388,068
1938	270,756	149,471	800	-	-	421,027
1939	285,205	129,609	772	-	-	425,586
1940	307,473	101,335	223	-	-	409,031
1947	412,996	105,772	9	-	-	518,777
1942	394,079	36,210	28	-	-	430,317
1943	363,666	29,353	-	-	-	393,019
1944	354,853	75,153	-	-	-	430,006
1945	328,286	195,561	-	-	-	523,847
1946	394,530	145,337	79	-	-	539,946
1947	433,625	96,167	22	-	-	529,814
1948	462,620	176,933	1,886	-	-	641,439
1949	476,412	172,452	-	-	-	648,864

1/ Included are landings of all finfish and small quantities of other fishery products, such as scallops, lobsters, eels, etc.
1/ Otter trawlers, line trawlers, and hand liners landing at principal New England ports.

Table 5-- Total landings and catch per days fishing for haddock from Georges Bank of Subarea 5

Year	Total catch Millions of pounds	Catch per days fishing Thousands of pounds
1917	27	25.8
1918	48	33.0
1919	76	35.0
1920	79	36.6
1921	58	32.5
1922	60	24.5
1923	64	18.4
1924	71	23.2
1925	80	32.2
1926	99	41.3
1927	143	43.8
1928	191	34.5
1929	223	22.4
1930	184	11.5
1931	115	8.9
1932	105	11.6
1933	82	9.7
1934	50	10.3
1935	79	12.3
1936	84	13.5
1937	95	11.5
1938	92	11.7
1939	105	13.0
1940	93	12.8
1947	122	16.6
1942	107	18.7
1943	90	18.4
1944	96	17.0
1945	78	16.0
1946	104	14.3
1947	105	12.8
1948	94	12.1
1949	82	11.4
1950	1/81	1/14.1

Source: Data (partly unpublished) from special haddock studies of the North Atlantic Fishery Investigations.

1/ Partially estimated.
TABLE 6. Cod landed at principal New England ports (in thousands of pounds).

Convention Subarea								
		Nova Scotia			Gulf of St Lawr.	Sum	Nf1d	Total
Year	New England	South	Central	North				
1931	40,619	14,028	6,166	119	864	21,177	13	61,809
1932	38,917	11,978	7,994	243	1,512	21,727	93	60,737
1933	42,056	15,649	13,507	190	4,858	34,204	159	76,419
1934	28,602	12,380	40,677	7,260	3,402	63,719	325	92,646
1935	35,584	10,472	30,837	9,227	4,090	54,626	102	90,312
1936	37,778	12,355	19,906	10,063	2,500	44,824	106	82,708
1937	49,790	11,544	22,059	16,638	2,036	52,277	295	102,362
1938	38,939	10,383	29,023	12,959	4,054	56,419	419	95,777
1939	28,557	12,024	20,045	19,732	-	51,801	221	80,579
1940	28,886	6,852	11,810	13,843	-	32,505	86	61,477
1941	32,899	7,332	17,364	17,473.	-	42,169	5	75,073
1942	29,326	3,832	6,641	3,469	11	13,953	5	43,284
1943	32,043	2,705	6,383	1,293	-	10,381	-	42,424
1944	29,747	4,337	25,573	4,128	-	34,038	-	63,785
1945	21,530	7,565	33,369	38,624	-	79,558	-	101,088
1946	40,694	4,102	17,103	5,667	-	26,872	-	67,566
1947	31,911	3,680	8,655	2,343	-	14,678	9	46,598
1948	32,971	3,283	7,605	4,771	-	15,659	97	48,727
1949	31,947	3,088	2,401	2,263	-	7,752	-	39,699
Total	652,796	157,589	327,118	170,305	23,327	678,339	1,935	1,333,070
Average	34,358	8,294	17,217	8,963	1,228	35,702	102	70,162
Percent	49.0	11.8	24.5	12.8	1.8	50.9	. 1	100.0

Table 7.--Catch per day's fishing for cod in Subarea 5.

Year ${ }^{\text {I }}$	Thousands of Pounds per day
1932	5.4
1933	5.4
1934	4.6
1935	5.2
1936	6.6
1937	6.6
1938	5.0
1939	3.7
1940	5.3
1941	5.0
1942	4.6
1943	6.0
1944	5.9
1945	6.4
1946	4.9
1947	3.1
1948	2.4
1949	4.1

Source: Unpublished data on abundance of cod landed at Boston by a selected group of large otter trawlers from the Georges Bank area in 31 to 60 fathoms, compiled by North Atlantic Fishery Investigations.

1/ No data available for 1931.
1/ Landings by area not available.

DOC/9
April 3, 1951
Table 9 --Catch per day's fishing for rosefish (in thousands of poumds)

Year	Subarea 5 New Fngland	Subarea 4 Nova Scotia		
		South	Central	North
1935	14.6			
1936	9.3	12.5	-	-
1937	9.6	9.9	-	-
1938	8.9	9.6	-	-
1939	10.0	12.5	12.9	-
				-
1940	9.9	13.7	-	-
1941	13.0	16.7	-	-
1942	11.2	8.6	-	-
1943	11.8	18.8	21.8	-
1944	6.4	20.2	15.3	-
1945	9.9	16.9	12.0	-
1946	10.5	14.1	18.7	32.8
1947	9.9	7.6	10.0	20.3
1948	10.1	10.2	10.2	24.3
1949	7.2	8.5	10.6	19.5

Source: Unpublished preliminary data on rosefish landed by medium otter trawlers at principal New England ports compiled by North Atlantic Fishery Investigations.

3. RRCCMMANDATIONS FOR PREVENTTNG WASTE OF SMALL HADDOCK IN SUBAREA 5

Fish and Wildife Service research on the haddock of the Convention Area have been concentrated in Subarea 5. It has becone evident that this species is not being utilized to full advantage, primarily because too large a proportion of undersized individuals is being taken. There is much evidence to prove, and no evidence to refute, that the poundage of haddock landed mould be sharply increased if the immature individuals were permitted to escape as juveniles, and so be available to the fishery as adults.

REASONS FOR PROTEGTING SMALL HADDOCK
The evidence at hand includes the following considerations:
(1) There are very large numbers of baby scrod caught each year, some of which are landed and marketed, while many more are discarded at sea (2) There is an intensive fishery, wich results in a high percentage removal of the available stocks (3) There is a rapid rate of growth, especially during the early years (4) There is no substantial enigration of this species from Subarea 5 into other areas and (5) There is a low natural mortality rate, eapecially in the older age groups. If each of these considerations can be established, then the re is adequate proof that the saving of the immature individuals will result in a substantial gain in the total poundage of haddock which may be removed from these grounds. The following evidence is presented in support of these assertions:

1. That very large numbers of imature haddock are landed is substantiated by the catch measurements of the Fish and Wildlife Service since 1931 at the important ports of landing. In addition large mumbers of haddock, too small for economic use, are caught and discarded at sea. Because of the method of handling, all, or nearly all, of those discarded at sea are killed. Estimates of these losses are approximations, based

April 3, 1951
on the reports of the masters of the vessels at the ports of landing since 1947. Totals of immature haddock so removed from Subarea 5, as compared with the mmbers of scrod and large haddock in the same years, are shown below:

CATCH IN NNBBERS OF INDIVIDUALS
(IN THOUSANDS)

YEAR	UNDER $1 \frac{1}{2}$ POUNDS		TOTAL	$\frac{\text { OVER } 1 \frac{1}{2} \text { Pounds }}{\text { LANDED }}$
	Lanted	$\begin{aligned} & 122 \\ & \text { DISCARDED } \\ & \text { AT SEA } \end{aligned}$		
1931	3,836	63,000	66,836*	35,291
1932	2,579	Unkow		36,902
1933	4,043	"		26,851
1934	2,601	"		16,734
1935	4,416	"		27,887
1936	5,402	"		29,985
1937	4,260	"		32,274
1938	6,352	"		31,545
1939	5,419	"		38,426
1940	3,342	"		31,531
1941	10,341	"		45,262
1942	6,091	"		39,171
1943	4,727	!		32,702
1944	1,500	"		31,649
1945	2,700	!		23,852
1946	3,683	" ${ }^{1000}$		33,690
1947	8,942	33,000	42,892	32,853
1948	9,189	15,000	24,189	31,979
1949	5,479	12,000	17,479	27,956
1950	20,349	15,000	35,349	23,139

2. Estimates of the mortality rate indicate the anmual expectation of death for 3-year old haddock to be 0.44 (44\%), and that a similar rate for 4-year olds existed during the period 1931-1948. These data are derived from indices of abundance which were computed for each age throughout this period by the Fish and Fildlife: Service. Indirect evidence (Schuck 1949) indicates that the proportion of this total rate due to fishing probably is very high. In this study a

DOC/9
April 3, 1951
direct and statistically significant correlation between landings of 4 - to 9 - year-old haddock and the decline in size of the stock was demonstrated. The line fltting this relationship, extrapolated to the point of no removals by the fishery, demonstrated no decline in the stock. The validity of strict interpretation of such extrapolation is subject to question, but it does certainly indicate that fishing is causing all but a small part of the annual mortality at the levels of fishing which prevail.
3. Growth studies, demonstrate that the haddock have a rapid growth rate, especially in early years. The following averages represent weights of each age group as landed:

AGE GROUP	AVERAGE WI POUNDS GRAMS		PERCENTAGE INCREASE BETWEEN YEARS
1	.40*	181	
2	1.55	703	288\%
3	2.23	1012	44\%
4	2.94	1334	32\%
5	3.55	1610	21\%
6	4.22	1914	19\%

* selected sample, since only largest yearlings are landed.

From these data it is evident that the growth increment, especially between the first and second years, is of such magnitude as to insure a considerable increase in yield from the fishery if juveniles are permitted to survive for one or more additional years.
4. Studies of the stocks of haddock by American and Canadian biologists (Needler, 1930; Herrington 1944; Schuck and Arnold in press(through the use of growth rates, vertebral counts, and tagging indiaate the enigration of haddock out of Subarea 5 is probably in-

DOC/9
April 3, 1951
significant. Thus haddock spared in one year will not migrate to another bank, but will be available to the fishery in succeeding years.
5. The fishery (see 2 above) is credited with causing very nearly all of the total mortality of the fully available ages, thus natural mortality must, under conditions of the heavy fishing, be very low. Natural mortality of the younger ages, while greater probably is low also.

If it be concluded that protection of small haddock is desirable, it remains to determine how best this might be accomplished. The methods may be closed seasons, closed areas, modifications of gear, minimum size limits or combinations of these. Each is considered in turn.

METHODS OF PROTECTICN

Glosed Seasons

The destruction of small haddock at sea, and the landing of undersized haddock (smaller than the lower limit of the recognized market category of scrod) are shown in each season in the folloming table. Values for destruction at sea are averages for the 1947-1950 period, values for landings are averages for the 1931-1948 period.
(In Thousands)

Season	Months	Number Destroyed at sea	Number Undersized landed
Spring	Feb., Har., April	$\mathbf{1 , 7 2 6}$	575
Summer	May, June, July	5,545	1,505
Fall	Aug., Sept., Oct.	9,443	1,893
Winter	Nov., Dec., Jan.	2,736	999
Total			18,750

Thus nearly half of the annual destruction occurs during August, September, and October. But the heaviest landings of large

DOC/9
April 3, 1951
haddock occur also during the fall season. The loss of the large fish probably would outweigh the gain in survival of small.

Closed Areas

Closure of the areas frequented by the small fish appears impractical because the areas are large and variable. A detailed analysis of fishermen's reports of the localities where small fish were discarded, and of Albatross III catches of small haddock, shows that small haddock have been found over much of Ceorges Bank in both shoal and deep water.

Modification of Gear
A method of preventing the capture of small haddock is the only effective way of preventing their waste. The use of larger mesh in the trawl is an effective way to acconplish this according to numerous experiments made by British and American biologists. Recommendations for larger mesh in the United States haddock fishery have been made by Herrington (1932, 1935, 1936, 1941); Schuck, 1947, 1948); Royce and Schuck (1950).

These recommendations have been made with the objective of preventing the capture of most of the haddock below 1.5 pounds, which size is the equivalent of 42 centimeters or 16.5 inches fork length. This size is attained by the average Georges Bank haddock at its third birthday after it has gone through its most rapidly growing period. Furthermore, according to the rules of the New Fngland Fish Exchange at Boston, this is the minimum size for scrod haddock.

Unfortunately the mesh of a trawl net is not sharply selective. Thus it is necessary to compromise on a mesh which will permit the escape of most of the haddock below 1.5 pounds while retaining most of the larger haddock. From experiments conducted by British and Americans (surimarized by Herrington, 1935) it is concluded that this could be accomplished with

DOC/9
April 3, 1951
a mesh opening of $45 / 8^{\prime \prime}$. This size opening will release about 75% of the 42 cm fish, 50% of the 46 cm fish and 25% of the 50 cm fish.

In order to state the mesh size in terms used by the fishing industry it is necessary to add the diameter of the knot to the size of the mesh opening. For a size of twine (4 thread manila, no. 1100 double) in common use the average knot diameter is about . 57 inches. Thus the mesh size corresponding to a mesh opening of $45 / 8$ inches would be about 5.19 inches. Also, because a regulation must specify a minimum mesh size which in practice must be exceeded, a minimum mesh size of 5 inches between knot centers as the net is stretched after use is recommended.

This larger mesh is necessary only in the top of the rear of the otter trawl net where the catch accumulates. This section of the net includes the cod end or bag and any extension piece which may be used between the belly and the cod end. It is recommended that the minimum mesh size shall apply to the top half of the net behind the belly.

Minimum size limits

A minimum size limit alone is of no great value for although landings of small fish would be curtailed these fish would still be caught, killed, and discarded at sea.

A mininum size limit as a supplement to a mesh regulation however, may be useful. If small fish are not salable there is less temptation to modify the net secretily or to concentrate on schools of small haddock which, when sufficiently abundant, are catchable even with a large mesh net.

RECOMMENDATION FOR STUIEING EFFECTS OF REGULATIONS
It is recommended that the effectiveness of any regulation which is adopted be the subject of further study and that provision be made to modify the regulation as may be proved necessary.

HERRRINGTON, WIHLIAMS.
1933. Conservation of immature fish in otter trawling. Trans. Amer. Fish. Soc., Vol. 62 (1932): 57-63. 1935. Modifications in gear to curtail the destruction of undersized fish in otter trawling. Bureau of Fisheries, U. S. Dept. Commerce, Investigational Report No. $24: 48$. 1936. Decline in haddock abundance on Georges Bank and a practical remedy. Bureau of Fisheries, U. S. Dept. Commerce, Fishery Circular No. 23: 22.
1941. A crisis in the haddock fishery. Fish and Wildife Service, U. S. Dept. Interior, Fishery Circular No. $4: 14$. 1944. Factors controlling population size. Trans. Ninth N. Amer. Wildlife Conf., 19448 250-263.

NEEDIER, A. T. II.
1930. The migrations of haddock and the interrelationshipe of haddock populations in North American waters. Contr. Canad. Biol. Fish., N. S., Vol. VI, No. 10, 1930: 241-314.

ROYCE, WIILIAM F. AND H. A. SCHUCK
1950. Recommendations for minimum size limits on certain fishes.选ine Coast Fisherman. Vol. 4, No. 1l. SCHUCK, HDHARD A.
1947. Recommendations as to minimum market size for Georges Bank haddock and minimum mesh size for otter trawls catching such fish. Keport to Atlantic States Marine Fisheries Commission, July 18, 1947.
1948. Current haddock situation on Georges Bank. Commercial Fisheries Review, Vol. 10, No. 10, pp. 1-6.
1949. Relationship of catch to changes in population size of New England haddock. Amer. Stat. Assoc. 2 Biometrics, Vol. 5, No. 3, Sept. 1949: 213-231.

ARNOID, EDGAR L., JR.
(In press). A comparison of haddock from Georges and Broms Banks. Fish and Wildlife Service, U. S. Dept. Interior, Research Report.

DOC/9
April 3, 1951

Appendix I.--Explanation of Tables

Principal New England ports were Boston, Gloucester and Portland through 1944. New Bedford was added to the principal ports in 1945, Cape Cod in 1946, and Portland was omitted in 1947. The only exceptions are: In table 1 New Bedford landings were added from 1938, and Rockland from 1946 (otter trawl landings from Knox County); and in table 14 (rosefish) all Maine landings were included after 1947 (prorated into subareas on the basis of Gloucester landings). These changes have little effect on the comparative value of the data because the ports were added as they became important or omitted as they became less important.

Unless otherwise specified on individual tables, the sources of landing statistics used are those published by the Statistical Section of the Branch of Commercial Fisheries, United States Fish and Wildife Service (formerly United States Bureau of Fisheries), and include: Fishery Statistics of the United States (formerly Fishery Industries of the United States), New England Fisheries, Massachusetts Landings, Maine Iandings, and Middle Atlantic Fisheries. All tables were assembled by the North Atlantic Fishery Investigations of the United States Fish and Wildife Service at Foods Hole, Massachusetts.

Landings of cod, haddock, pollock, hake and halibut are expressed in terms of drawn weight. Landings of whiting, rosefish, mackerel and flounders are in terms of round weight.

Medium otter trawlers are those of 51 to 150 gross tons, large otter trawlers are those of 151 gross tons or over.

Haddock as used herein refers to both market categories, large and scrod, combined.

The fishing grounds are the statistical areas defined by the North merican Council on Fishery Investigations and revised in

DOC/9

April 3, 1951

Development of Fishery Statistics in the North Atlantic, George A. Rounsefell, United States Fish and Wildife Service, Special Scientific Report No. 47, 1948. They are as follows: New England, Area XXII; Nova Scotia South, Subareas N to S of Area XXI; Nova Scotia Central, Subareas D to M of Area XXI; Nova Scotia North, Subareas A to C of Area XXI; Gulf of St. Lawrence, Area XIX; Newfoundland, Areas XX and XVIII.

```
Conversion factors: l pound - 0.4536 kilos
    1,000 pounds - 0.4536 metric tons
```

to in the Tables. $1 /$
Haddock Melanogrammus aeglefinus
Cod Gadus morhua
Whiting Merluccius bilinearis
Pollock Pollachius virens
Red Hake Urophycis chuss
White Hake Urophycis tenuis
Rosefish Sebastes marinus
Mackerel Scomber scombrus
Blackback Flounder $\frac{\text { Pseudopleuronectes }}{\text { americanus }}$
Dab Hippoglossoides platessoides
Fluke Paralichthys dentatus
Gray Sole Glyptocephalus cynoglossus
Lemon Sole $\frac{\text { Pseudopleuronectes }}{\text { dignabilis }} \frac{\text { americanus }}{}$
Yellowtail Flounder Limanda ferruginea
Halibut Hippoglossus hippoglossus

1/ Common names are those used in statistical reports of the Fish and Wildlife Service; scientific names follow the list in Special Publication No. 1, American Fisheries Society, 1948.

DOC/9
April 3, 1951

REVIEW OF THE U.S. FISHERIES TN THE CONVENTION AREA
LIST OF TABLES

All Species

Table 2 - Landings at principal Nev England ports
Table 1 - United States landings of certain species from the Convention Area

Table 3 - Fishing effort by the New England fleet

Haddock

Table 4 - Haddock landed at principal New Fingland ports
Table 5 - Total landings and catch per days fishing for haddock from Subarea 5

Cod
Table 6 - Cod landed at principal New England ports
Table 7 - Catch per days fishing for cod in Subarea 5

Rosefish

Table 8 - Rosefish landed at principal New Fingland ports
Table 9 - Catch per days fishing for rosefish

Halibut

Table 10 - Halibut landed at principal New England ports

Appendix I: Explanation of tables
Appendix II: Scientific names of species

Interior-Daplicating Section, Washington 25, D.C. 93503

