ANNDAL MRETTMC - MAY 1957
 Portugnese Investigations in the ICNAF Area during the Campaign of 1956
 Observations on the Cod (Graus callarias L.) in Subarea 2 (Labrador) by Mario Ruivo
 The present paper is a preliminary summary of observations carried out on the cod.in the campaign of 1956 in the Labrador waters (Subarea 2).

1. Material and Methods

21 samples, to a total of about 2,300 individuals, were studied. The samples were collected on board a trawler operating in Subdivision 2 J (Fig.1) in various periods between August and November 1956.

The mean size of the meshes in the codend used was around 117 mm . The samples contained hardly any fish destined for landing, after the discarding into the sea of those individuals which were of no comercial interest (below around $35-40 \mathrm{~cm}$.).

In Table l (Figol) the position where the samples were taken is shown. To make the study easier some samples were grouped in accordance With place and date of capture, covering as far as possible periods or 15 days (Table 2).

The methods followed for the study of this material are the same as those indicated in the paper on observations carried out in Subarea 1 (vide Document No. 14).

2. Age Composition

From the samples (Tables 3-7, Fig.1), with the exception of sample B (= L3), it is seen that the age groups IX (1947), X (1946) and XI (1945) are predominating in the proportions of 6-19\%, 13-18\% and 12-20\% respectively. The age group VIII is a little higher than 10%, reaching around 17% in the sample group E. The age group XII represents 7-10\%. The groups below VI and over XII are far more scarce or almost non-existent.

The sample L3, although including only a small number of individuals, merits a special reference on account of its geographical position as well as its characteristic features. The sample is the most northern of all those collected within the limit of Subdivisions 2H-2J. The age group most cammon in this sample is the age group V (24%), group VI (20%) follows and then group X (15\%). The age groups VII, VIII and IX are just below 10\%.

3. Size Composition

The peak (30-36\%) of the sizes (Tables 3-8, Fig.1) is in the majority of the samples in the size group 57 cm , thereupon follows the 62 cm. group (28%) in the sample groups A and C. In the remaining samples, the size group most common is that of $52 \mathrm{cm}$. , with $22-26 \%$. These values correspond to the predominance of age groups IX, X and XI and in some cases age group VIII.

In sample L3 (Fig.1B), which was already singled out as of special interest by its composition of age groups, the peak is found in the size group 42 cm . (39%) corresponding to the age groups ∇ and $V I$.

4. Groyth

In the Tables 3-7 the mean sizes are sumarized by age groups. These figures are based on the calculation of the mean growth of males and females (Table 9) and the mean annual growth of the various age groups (Fig.2). The growth of the males is just a little less than that of the females, the divergence of the growth curves being particulariy clear from the sixth year. This difference in growth is surely in relation with the displacing of the ages of first maturity, this being reached more early in the males than in the females as will be shown in item 7.

It should, however, be noted that the individuals of sample L3 show a smaller growth compared to those of the other samples, which could be in relation with the fact that this sample comes from one of the most northern regions (limit between Subdivision $2 J$ and $2 H$).

5. Bex Ratio

From a consideration of the samples investigated (Tables 3-8), a more or less pronounced predominance of females (53-55\%) appears, especially in sample groups $F(66 \%)$ and H (59%).

Sample L3, contrary to all the remaining, shows a clear predominance of males (68%).

6. Stage of Matnrity

It appears from the samples (Table 10, Figo3, Age-groups VIII, I and XI) that in August the majority of the males (89\%) are in the developing stage or in the resting stage (10\%). of the females, 62% are in the after-spawning stage, the remaining females being in the resting stage (38\%).

In October-November, the percentage of males in the afterspawning stage is insignificant. Nearly all specimens were in the developing stage and a small number only in the resting stage. In the females, a decrease in the number in the after-spawning stage, which falls fron 37\% to 3\%, is found. The numbers in the resting stage also decreases, fron 42 to 23\%. The developing stages are dominating also towards the end of November.

7. ARe at Pirgt Maturity

The age at first maturity was determined from the first spawning ring in the otoliths. The number and percentage of first spawners within the various age groups appear from Table 11 and Figo4.

All the cases in which it was not possible to determine with accuracy the first spawning ring or to verify clearly its existence are inciuded in the "doubtful" category.

Generally, first maturity is achieved between the 6 th and the loth year of age, rarely at the age group XI.

The majority of the males reach first maturity in the 7th year, the majority of the females in the 8 th year.

The observations on age groups VII and VIII deserve to be discussed separately owing to the difficulty in the interpretation of the first spawning ring among the rings under formation. In effect, these rings which are formed in the proximity of the edge of the otolith never show the structure typical for the spawning rings. Further, the absence of other more external rings, which could serve for comparison, makes it difficult to interpret these rings clearly.

$$
0000000.130
$$

Thus in the age group VII the majority of individuals were considered as immature on the basis of the reading and interpretation of the rings in the otoliths. In a number of cases, however, this does not agree with the microscopical observations on the gonads nor in a more general way with the scheme of the maturity observed in age groups more advanced (first maturity in the majority of cases found in the 7 th and the 8th year).

However, as these marginal rings did not suggest doubts as to the observation (the doubts are as to interpretation), they were not included in the category of the doubtful.

The same considerations are valid for the interpretation of the results concerning age group VIII in which the determination of the first maturity in the 7 th yoar must be correct, the more so as the small number of individuals with a spawning ring in the 8 th year (marginal ring) could be the resuit, first of all, of difficulties in interpretation.

8. Study of Weights

Observations on weights were carried out on a number of specimens; the results obtained are summarized in Table 12.

As in the observations of the previous year, no significant difference in the weights of males and females by sizes was observed.

The weights by sizes are just a little superior to those found
The figures found for the weights of the testes and ovaries are rather low, which confirms the observations on the stages of maturitya after-spawning stages rare, predominance of resting stages or developing
stages.

The weights of the livers and the intestines for various sizes of f1sh are also shown.

Fig. 1. Map showing localities sampled. Above age-distribution, to the right

TABIE 1 －LIST OF FISI SAMPLIS TAKCN BY POFTUGAL， 1956 IN SUBAEEA？

	STIECIES	MOSTH	$\begin{array}{\|l\|l} \text { SUBDIV_ } \\ \text { ISION } \end{array}$	$\begin{gathered} \text { IN POET } \\ \text { OR } \\ \text { AT SEA } \end{gathered}$	GEAR	$\begin{gathered} \text { NO, OF } \\ \text { SPECIMEXS } \end{gathered}$	Indicare beiow omsphiations mane							
							锶							
1	Cod	23.8	$2{ }^{2}\left(55^{\circ} 00^{\prime} \mathrm{M}\right.$	At Seat	Trewl	95	x	\times	OT	x	x	－		
			（54 $4^{\circ} 50^{\circ} \mathrm{W}$											
2	＂	23.8	2才（ $53^{\circ} 55^{\prime}$＇	＂	＂	24	x	${ }_{1}$	＂	x	x	\times		
			（55 ${ }^{\circ} 30^{\prime} \mathrm{W}$											
3	\cdots	24.8	$2 \mathrm{~L} 5^{\circ} 5^{\circ} 17^{\prime}{ }^{\prime}$	＂	＂	41	x	x	＂	x	\times	x		
			（57 ${ }^{\circ} 48^{\prime}{ }^{\prime} \mathrm{W}$											
4	n	22.10	$2{ }^{21} 53^{\circ} 45^{\prime 11}$	＂	＂	100	\times	${ }^{1}$	＂	x	x	x		
			$54^{\circ} 30^{\prime} \mathrm{W}$											
5	＂	23．10	$2 \mathrm{~T}\left(53^{\circ} 30^{\prime} \mathrm{H}\right.$	1	＂	100	x	x 1	＂	\times	x	x		
			（ $54^{\circ} 30^{\prime} \mathrm{W}$											
6	＂	26.10	$2{ }^{2} 153^{\circ} 28^{\circ} \mathrm{M}$	＂	n	100	X	x	＂	x	x	x		
			（54 ${ }^{\circ} 39^{\prime} \mathrm{W}$											
7	－	27.10	25 5 （53021］	＂	n	100	x	x^{1}	＂	x	x	x		
			（ $53^{\circ} 39^{\prime} \mathrm{W}$					1						
8	＂	28.10	$25.53^{\circ} 42^{\prime} \mathrm{I}$	＂	＂	200	x	\cdots						
			（55 $5^{\circ} 00^{\prime} \mathrm{W}$					1						
2	＂	8.11	25 $55^{\circ} 051 \mathrm{~N}$	＂	＂	50	x	x ${ }^{\text {x }}$	＂	\times	x	x		
			（ $54^{\circ} 29^{\prime 6}$											
10	＂	9.11	$2 \mathrm{~T}\left(53^{\circ} 45^{\prime} \mathrm{N}\right.$	＂	＂	75	x	${ }^{x} \times$	＂	x	x	\times		
			（54 $4^{\circ} 55^{\prime} \mathrm{W}$											
11	＂	10.11	$23^{5} 53^{\circ} 50^{\prime} \mathrm{N}$	＂	＂	300	\times	$\underline{1}$						
			$\left(55^{\circ} 03^{\circ} \mathrm{W}\right.$											
12	，	12.11	$2 \mathrm{IJ}^{\left(53^{\circ}\right.} 46^{\prime} \mathrm{N}$	＂	＂	75	x	$x \times$	n	\times	x	\times		
			（ $54^{\circ} 15^{\prime} \mathrm{W}$											
13	＂	14.11	2J $533^{\circ} 45 \cdot \mathrm{H}$	＂	＂	25	x	$x \times$	＂	\times	x	x		
			（ $54^{\circ} 29 . \mathrm{W}$											
14	＂	15.11	$2 \mathrm{JJ}^{\left(53^{\circ} 36\right.}$	＂	＂	100	x	$x \times$	＂	＊	x	－		
			（ $54^{\circ} 40^{\prime} \mathrm{W}$											
15	＂	17.11	$2 \mathrm{~J}\left(53^{\circ} 3^{\circ} \mathrm{B}\right.$ I	＂	＂	300	x	$x \mid x$						
			（ $54^{\circ} 40^{\prime} \mathrm{W}$											
16	\square	28.11	$2 \mathrm{~J}^{(515}{ }^{\circ} 43^{\circ} \mathrm{M}$	＂	n	100	－	x	＂	x	x	\times		
			（54 ${ }^{\circ} 401 \mathrm{~W}$									－		
17	\cdots	20.11		＂	＂	74	x	$x \cdot x$	＂	x	x	x		
			（ $54^{\circ} 50 \mathrm{~W}$											
18	＂	21.11	$23^{(53} 53^{\circ} 53^{\prime \prime} \mathrm{N}$	＂	＂	100	x	$\mathrm{x} \times$	n	x	x	π		
			（ $54^{\circ} 20^{\prime} \mathrm{K}$											
12	＂	24.11	$25^{(53} 3^{\circ} 35^{\prime 1}$	＂	＂	100	x	$x^{1} \times$	＂	x	\times	x		
			（54．30＇${ }^{\circ}$											
20	＂	26.11	$2 \mathrm{~J}\left(53^{\circ} 44^{\prime} \mathrm{A}\right.$	＂	＂	100	x	x	＂	x	x	x		
			$\left(54{ }^{\circ} 55^{\prime} \mathrm{W}\right.$											
21	＂	27.11	$2 \mathrm{~L}\left(53^{\circ} 42^{\prime} \mathrm{N}\right.$	＂	＂	100	\times	$x \cdot x$	n	x	x	x		
			（ $544^{\circ} 45^{\prime} \mathrm{W}$											

TABIE 2 －PLav of TIE GROUPING of THE SAMPLBS，LABRADOR 1956

Group of Semples	Semplas	$\begin{aligned} & \text { Sub- } \\ & \text { Div. } \end{aligned}$	Date
A	L 1－2	2 J	23.8 .56
в	L 3	＂	24.8 .56
c	L 4－5－6－7	＂	22－27．10．56
D	L 9－10－13－14－16	＂	8－18．11．56
E	む 17－18－19－20－21	＂	20－27．11．56
F	L 8	＂	28.10 .56
G	L 11	＂	10.11 .56
H	L 15	＂	17.11 .56

Your-							06	97
Clams	Ago	\%	Cm.	\%	cm.	Total	\%	cm .
1952	-	-	-		-	-	-	-
51	v	100.0	44.0	-	-	2	1.7	44.0
1950	VI	62.5	47.6	37.5	50.3	8	6.7	49.0
49	VII	71.4	49.4	28.6	55.0	7	5.9	52.2
48	VIII	35.7	56.8	64.3	56.8	14	11.8	56.8
47	IX	40.0	54.3	60.0	58.4	20	17.0	56.4
46	X	31.3	56.6	68.7	59.2	16	13.4	57.9
1945	XI	54.2	58.4	45.8	52.1	24	20.2	60.3
44	XII	50.0	59.5	50.0	50.8	12	10.1	60.2
43	XIII	40.0	67.0	60.0	65.6	5	4.2	66.3
42	XIV	60.0	65.3	40.0	65.0	5	4.2	65.2
41	XV	66.6	64.5	33.4	59.0		2.5	61.8
1940	XVI	-	-	100.0	62.0	1	0.9	62.0
32	XVII	-	-	100.0	71.0	2	1.7	71.0
Moen in sample		47.1\%		- 52.9%		obs. 119		

 $\mathrm{C}=\mathrm{Z4}, 22.10 .1956,53^{\circ} 45^{\prime} \mathrm{N}, 54^{\circ} 30^{\prime} \mathrm{W}$; L5, 23.10.19,6, $53^{\circ} 30^{\circ} \mathrm{N}, 54^{\circ} 30^{\prime} \mathrm{W}$; 16, $26.10 .1956,53^{\circ} 28^{\prime} \mathrm{H}, 54^{\circ} 30^{\circ} \mathrm{W}$; $27,27.10 .19^{\circ} 6,53^{\circ} 21^{\prime} \mathrm{H}, 53^{\circ} 39^{\prime} \mathrm{W}$.

Year-							367	+	¢\%
Chaga	Ags	\%	Cram	\%	crn.	Total	$\%$		cm.
1952	IV	100.0	44.0	2	G	Iotal	0.3		44.0
51	V	33.3	43.0	66.7	44.8	6	1.5		43.9
1950	VI	64.3	51.4	35.7	50.4	14	3.5		50.9
49	VII	41.7	52.7	58.3	53.2	36	9.1		53.0
48	VIII	45.0	55.7	55.0	57.2	49	12.3		56.5
47	IX	39.2	55.6	60.8	59.3	74	18.6		57.5
46	X	47.1	58.3	52.9	61.1	68	17.1		59.7
1945	XI	52.2	59.4	47.8	61.9	67	16.8		60.7
44	XII	43.2	61.0	56.8	63.5	37	9.2		62.3
43	XIII	28.6	61.5	71.4	66.3	14	3.5		63.9
42	XIV	49.4	62.7	50.6	66.8	19	4.8		64.8
41	XV	20.0	66.0	80.0	68.8	5	1.3		67.4
1940	XVI	47.4	65.0	52.6	75.5	3	0.8		70.3
39	XVII	66.7	66.5	33.3	79.0	3	0.8		72.8
38	-	-	-	-	-	-	-		-
37	-	-	-	-	-	-	-		-
36	XX	-	-	100. 3	31.0	2	0.6		81.0
Mean in samola		44.7\%		- 55.35		- 0 в 398			

 $\mathrm{D}=\mathrm{L} 9,8.11 .1956 .55^{\circ} 05^{\prime} \mathrm{H}, 54^{\circ} 29^{\prime} \mathrm{W} ; 210,9.11 .1956,53^{\circ} 4^{\circ} \mathrm{N}, 54^{\circ} 55^{\prime} \mathrm{W} ; \mathrm{L} 12,12.11 .1956$, $53^{\circ} 46^{\prime} \mathrm{H}, 54^{\circ} 15^{\prime} \mathrm{W} ;$ L13, 14.11.1956, $53^{\circ} 45^{\prime} \mathrm{N}_{\mathrm{r}} 54^{\circ} 29^{\prime} \mathrm{W} ; \mathrm{L} 14,15.11 .1956,53^{\circ} 36^{\prime} \mathrm{E}$, 54° : $40^{\prime} \mathrm{w}$; L16, $18.11 .1956,53^{\circ} 43^{\prime} \mathrm{N}, 54^{\circ} 40^{\prime} \mathrm{W}$.

$\begin{aligned} & \text { Pens- } \\ & \text { Clatas } \end{aligned}$	Apo	813		9		Total	$\frac{\sigma^{7}}{\%}+\frac{q q}{\mathrm{~cm}}$	
		$\%$	cmo	\%	cm			
1952	IV	50.0	41.0	50.0	43.0	2	0.4	42.0
51	∇	52.2	44.2	47,8	44.0	23	4.9	44.2
1950	VI	61.2	47.0	38.8	49.8	49	10.4	48.4
49	VII	54.0	51.0	46.0	51.6	50	10.6	51.3
48	VIII	44.9	53.4	55.1	55.7	49	10.4	54.6
47	IX	46.7	55.5	53.3	55.6	92	19.5	55.6
46	x	40.5	56.9	59.5	59.2	84	17.8	58.1
1945	XI	52.6	60.6	47.4	60.5	57	12.1	60.5
44	III	36.1	60.0	63.9	63.9	36	7.6	62.2
43	XIII	25.0	60.5	75.0	69.8	16	3.4	65.2
42	XIV	37.5	62.3	62.5	70.2	8	1.7	66.3
41	XV	50.0	77.6	50.0	66.0	Obs. 472	1.3	72.1
Meen in zeample		47.0\%		53.0				

 I = L17, 20.11.1956, $53^{\circ} 40^{\prime} 1$, $54^{\circ} 50^{\prime} \mathrm{W} ; \mathrm{L18}, 21.11 .1956,53^{\circ} 53^{\prime} 1$ I, $54^{\circ} 20^{\circ} \mathrm{W} ;$ L19, 24.11 .1956 ,

$\begin{aligned} & \text { Trast } \\ & \text { Gines } \end{aligned}$	Age	OB^{7}		¢ 9		Total	$\frac{073}{9}$	$\pm \quad \begin{array}{r} \text { cmol } \\ \hline \end{array}$
		$\%$	cmid	\%	Cm,			
1952	IV	100.0	41.0	-	-	1	0.2	41.0
51	v	66.6	43.0	33.4	43.0	3	0.6	43.0
1950	vi	60.6	46.8	39.4	47.8	33	7.0	47.3
49	VII	$39.3{ }^{\circ}$	51.9	60.7	52.0	61	13.0	52.0
48	viris	22.4	53.4	77.6	55.4	83	17.6	54.4
47	IX	53.2	56.2	46.8	58.6	79	16.8	57.4
46	\pm	44.7	56.8	55.3	59.8	76	16.1	58.3
1245	II	44.1	57.9	55.9	59.9	68	14.4	58.9
44	XII	41.9	58.9	58.1	61.8	43	9.1	60.4
43	XIII	60.0	61.5	40,0	65.0	10	2.1	63.3
42	XIV	57.0	60.3	43.0	67.7	7	1.5	64.0
41	\underline{M}	33.4	71.0	66.6	67.0	3	0.6	69.0
1940	IVI	100.0	66.0	-	-	1	0.2	66.0
39	XVII	100.0	70.0	-	-	1	0.2	70.0
38	XVIII	$\underline{-}$	-	100.0	29.5	2	0.4	72.5
Mean in sample		46.9\%				471		

TABLE 8 - 0 D. LABRADOR (2J). SIZE DISTRIPUTIOA AND SEX DISTRIBUTION OF THREE SAMELIS FTOM THE HAMILTIN BABK
$\mathrm{F}=\mathrm{LB}, 28.10 .1956,53^{\circ} 42^{\prime} \mathrm{B}, 55^{\circ} 00^{\prime} \mathrm{W}$;
$G=\mathrm{Lll}, 10.11 .1956,53^{\circ} 50^{\prime} \mathrm{N}, 55^{\circ} 03^{\prime} \mathrm{W}$; $H=L 15,17.11 .1956,53^{\circ} 38^{\prime} \mathrm{N}, 54^{\circ} 40^{\prime} \mathrm{W}$ 。

cm.	18	$L 11$	$\mathrm{L15}$	
	Obs.(dey)	Obs. (dav)	Obs. (day)	Obs. (night)
42	-	4.0	2.5	1.0
47	4.5	12.0	8.5	12.0
52	18.0	30.5	26.0	28.5
57	29.5	37.0	34.0	31.0
62	30.0	9.5	16.0	14.5
67	13.5	4.5	9.5	9.0
72	3.0	2.0	3.5	3.5
77	-	05	-	0.5
82	0.5	-	-	,
87	0.5	-	-	-
92	0.5	-	-	
T\%	100,0	1000	100.0	100.0
Obes.	- -2000	$\frac{200}{42.0}$	$\frac{200}{48.0}$	$\frac{200}{41.0}$

- 10 -

$\begin{aligned} & \text { Foar- } \\ & \text { closa } \end{aligned}$	Age	$\begin{gathered} \delta^{\prime} \sigma^{\prime} \\ \text { cm. } \end{gathered}$	$\begin{aligned} & \hline \text { qi } \\ & \text { cn } \end{aligned}$	$\begin{gathered} 0^{76} \\ \text { cmo }(1955) \\ \hline \end{gathered}$	$\begin{gathered} 99 \\ \text { ans. }(1956) \\ \hline \end{gathered}$	Yearly Growth
2952	IV	42.0	43.0	32.5	42.5	9.8
51	V	43.6	43.9	38.9	43.8	4.9
1950	VI	48.2	49.6	44.0	48.9	4.9
49	VII	51.3	53.0	47.1	52.1	5.0
48	VIII	54.8	56.3	51.0	55.6	4.6
47	$\underline{\text { Ix }}$	55.4	58.0	52.8	56.7	3.9
46	x	57.2	59.8	54.7	58.5	3.8
2945	XI	59.1	61.1	55.3	60.1	4.8
44	XII	59.2	62.5	57.0	61.3	4.3

TABIE 10 - COD. LABRADOF ($\boldsymbol{\sim}$). AUG. AND NOV. 1956. STAGES OF MAXUSITY DETETMINED BY MICROSCOPIC aESERVATION OF THE COIADS ($\mathrm{C}_{\mathrm{AND}}$ P)

	$\begin{gathered} \text { A } \\ 23.8 .1956 \\ (119) \\ \hline \end{gathered}$		$\begin{gathered} B \\ 24.8 .1956 \\ (41) \end{gathered}$		$\begin{gathered} c \\ 22-27.10 .1956 \\ (400) \end{gathered}$		$\begin{gathered} D \\ 8-18.11 .1956 \\ (475) \\ \hline \end{gathered}$		$\frac{m}{\substack{20-27.11 .1956 \\(475)}}$	
Atege of Meturity	$\begin{aligned} & 8 \pi \\ & \% \end{aligned}$	$\begin{gathered} 9.9 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 80^{\pi} \\ \% \\ \hline \end{gathered}$	9\%	80 $\%$	+9\%	$\begin{gathered} 37 \\ 8 \\ 6 \end{gathered}$	97	$\begin{aligned} & \text { उछ } \\ & \% \end{aligned}$	¢
Feating.	10.7	38.1	17.9	100.0	2.3	42.7	8.8	32.2	3.6	23.2
Maturing	89.3	-	82.1	-	95.6	20.0	90.8	54.9	96.4	73.3
Spawning	-	-	-	-	-	-	-			
After Smorming	-	61.9								
\%	100.0	10.0	100.0	100.0	2.2	37.3	0.4	12.9		-3.5
Ho.	56	63	28	13	180	220	1027 227	248	${ }_{220}^{100}$	$\begin{aligned} & 100.0 \\ & 255 \\ & \hline \end{aligned}$

 GROUPS (VII-XV) IN SAMFTNS FTOM AUG。TO HOV. $1956 . \theta=$ IMAATURE; $?=$ DOUBTYUL

Year Cras	Ags at First Spaming ${ }^{\prime \prime} 0^{\prime \prime}$									Ago at First Spaming 우우								
	V	VI	VII	ylıI	IX	X	x] θ			VI	VII	VIII	IX	x	XI	θ	?	T
F_{5}	-	-	3				68	3	71							76	4	8
$\begin{aligned} & \text { Ho. } \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1.0 \end{gathered}$	8_{8}^{7}	$\begin{gathered} 38 \\ -43.2 \end{gathered}$		-		$\begin{aligned} & 28 \\ & 31,8 \end{aligned}$	$\begin{array}{r} 9 \\ 0.2 \end{array}$	88	- ${ }^{2}$	$\begin{gathered} 37 \\ 34.3 \end{gathered}$	7.4	-			$\begin{aligned} & 54 \\ & 49.9 \end{aligned}$	6	108
$\begin{array}{\|l\|l} 8180 \\ q \end{array}$	-	6	$\begin{array}{r} 57 \\ 44.5 \end{array}$	$\begin{gathered} 45 \\ 35,2 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 3.2 \\ \hline \end{gathered}$		7	2.0.	128	- 2.2	48 34.3	$\begin{array}{r} 59 \\ -42.7 \end{array}$	11.			5.0	$\begin{aligned} & 11 \\ & 7.9 \end{aligned}$	268
\%	$\begin{gathered} 1 \\ 0.9 \end{gathered}$	$\begin{array}{r} 6.4 \\ 5.4 \end{array}$	$\begin{array}{r} 32 \\ 28.8 \\ \hline \end{array}$	$\begin{gathered} 51 \\ 45.9 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 6.3 \end{gathered}$		$\begin{gathered} 9 \\ 9 \\ 8.1 \end{gathered}$	5 4.5	111	$\left[\begin{array}{c} 1 \\ -0.7 \\ -0.7 \end{array}\right.$	$\begin{gathered} 24 \\ 17.3 \end{gathered}$	$\begin{gathered} 77 \\ 55.4 \end{gathered}$	$\frac{16}{11.5}$	-		$\begin{gathered} 8 \\ 5.8 \end{gathered}$	$\begin{aligned} & \frac{1.7}{13} \\ & 9.4 \end{aligned}$	139
	$-$	$\begin{gathered} 8 \\ 7.3 \end{gathered}$	$\begin{array}{r} 4.4 \\ 40.0 \\ \hline \end{array}$	$\begin{gathered} 28 \\ 25.5 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 18.2 \end{gathered}$	4.5	$\begin{gathered} 2 \\ 1.8 \end{gathered}$	3 2.7 2.	110	$\begin{gathered} -2 \\ -1.8 \\ \hline \end{gathered}$	31 29.0	43 40.2	14 13.1	3.7	1.	. 9	11.	107
	-	$\begin{gathered} 2 \\ 3.1 \end{gathered}$	$\begin{gathered} 18 \\ 27.7 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ 33.8 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 10.8 \end{gathered}$	$\begin{gathered} 11 \\ 16.9 \end{gathered}$	1.5	$\begin{gathered} -\frac{1}{4} \\ 6.2 \end{gathered}$	65	$\begin{array}{\|c\|} \hline \\ \hline-6.7 \\ -6.7 \\ \hline \end{array}$	12.	34 45.3	17 22.7	3	-	1	3	75
$\mathrm{G}=\frac{N}{10}$	-	-	$\begin{aligned} & -6 \\ & 37.5 \end{aligned}$	$\begin{gathered} 6 \\ 37.5 \end{gathered}$	$\begin{gathered} -18 \\ 18.8 \end{gathered}$	1 6.3	-	--	16	- -	60.7	12 41.4	20.7	3.4	1		3	29
或 ${ }^{\text {Io. }}$	-	38.8	$\begin{array}{r} 7 \\ 38.8 \\ \hline \end{array}$	5.6	$5^{1} .6$	5.6	- -	${ }^{1}$	18.	-	45.0	6 30.0	10.0	. 0	-		1 5.0	20
${ }_{4}^{\text {Ho. }}$	-		4 50.0	50.0.			- -	-	8	- -	2	6 60.0	1	10.0	-	-	-	10

TABLE 12 - COD. LABLADOL. DATA OX VAFIOUS WEIGHTS BY SILE CLASSES. SAMPLE L5, 23.10.1956

Cm.	$8{ }^{3} 7$					9				
	Ho.Obs.	$\begin{aligned} & \text { Total } \\ & \text { Weirht } \end{aligned}$	4ver	Goned	Guts	$\mathrm{No}, \mathrm{Obs}$,	Total Woight	Liver	Ganpds	Guts
47	3	1050	So	37	143	,	1140	70	30	120
	3	1375	100	44	192	9	1483	116	54	167
57 62 62	13	1826	158	73	247	26	1782	165	67	223
$\begin{array}{r}52 \\ 62 \\ \hline\end{array}$	18	2335	174	112	449	15	2308	218	90	281
	1	2500	210	80	290	6	2802	242	97	303

