```
by Mario Ruivo
```

The present paper is a preliminary summary of observations on cod during the 1956 campaign in Greenland waters (Subarea 1).

1. Material and Methods

50 samples, or around 7,500 individuals, were studied. The samples were collected on board trawlers (indicated in the text by the sign ') and on dory vessels (indicated in the text by the sign ").

The mean size of the meshes of the codend used by the trawlers is around 117 mm . The hooks of the dory vessels are No. $14 \frac{1}{2}$.

The trawler samples are from the fish destined for landing after discarding into the sea of individuals without commercial interest (of a size below $35-40 \mathrm{~cm}$.). The liner samples are from fish brought on board by the dories.

In Table 1 (Fig.1) the positions of the samples and the observations made for each sampleare shown; for the convenience of the study some samples were united in larger groups in accordance with geographical distribution and season of the year (Table 2).

Sample Group	Samples	Subdivision	Dates
A^{1}	1-2-3-5-6-20	$\begin{aligned} & \text { 1D-1E } \\ & (\text { Danas) } \end{aligned}$	10 May- 5 June756
B ${ }^{1}$	9-10-11-13	$\begin{gathered} 1 \mathrm{C} \\ (\text { Banana) } \end{gathered}$	22-28 May/56
C^{1}	15-16-18-21	1D	30 May-6 June/56
D^{1}	22-23-24-26	1D	8-15 June/56
E'	37-39	$\begin{gathered} 1 D \\ (\text { Fyllas }) \end{gathered}$	27-29 August/56
F ${ }^{1}$	40-41-42-44	$\begin{gathered} 1 \mathrm{~B} \\ \text { (Store) } \end{gathered}$	30 Aug. -5 Sept/56
G	48-50-51	$\begin{gathered} \text { IB } \\ \text { Store) } \end{gathered}$	10-13 Sept. 756

Table:2. The grouping of the samples from trawlers, Greenland 1956.
The total length is the size of the fish from the point of the snout to the end of the middle rays of the caudal fin. The measurements are made to the nearest cm .

The age was determined by means of the otoliths of around 2,700 individuals.. The age at first maturity was determined from the first spawning ring.

The stage of maturity was found through macroscopic observation of the gonads, using a scale of classification of seven stages. For the convenience of tabulation, the data and the interpretation of the results were grouped in four stages: I) Resting (immature individuals and individuals after-spawning), II) Developing maturity, III) Full maturity (spawning), IV) After-spawning.

All weights were carried out on board. Therefore they are subjected to possible errors from the scale used and from the movements of the vessels. Total weight is the weight of the whole fresh fish (with all the intestines).

We wish to mention, and also to thank for, the efficient collaboration given to the work carried out in connection with the Portuguese investigations in the ICNAF area by our assistant, Glicinia Quartin and by the Technician Aldino Victorino.

2. Age Distribution

a) Travi- let Campatgn May-June): The samples collected
 visions 1C, $1 D$ and IE, from 10 May to 13 June 1956, show in general a pronounced predominance or age-gronp IX (1947; 38-56\%), followed by the group VI (1950 ; $17-2)^{\prime} r^{\prime}$, being only around 10% in samples C^{\prime} and D^{\prime}, , and group VIII (948; 10-12\%). Age-group VII (1949) accounted for $8-10 \%$. All the other age-groups are below 5\%.

Sample 0^{\prime}, from the area between Dena and Fiskenaes Bank, must be considered by itself. Ago-group VI predominates in this sam-

Sample 25', from the rest slope of Banana Bank in depths around $500 \mathrm{~m} .$, shows a less pronounced predoninance of group IX (35\%), followed by VI. (32\% and by VITI (I8\%). AII the other groups are very poorly represented or not present.
b) Traiziz_2rd Campaign (August-September). The samples collected during the second campaign (iable 3, latter part, Fig. 1) were from Subdivision 1D - Fylla Ban' (${ }^{9}$, 27-29 August 1956) and from Subdivision 1B - Sto e Fe?lefislce Bank (F^{\prime}, H^{\prime} and $\mathrm{G}^{\prime} ; 30$ August13 September 195ó).

Sample E^{\prime} shows a predominance of age-groups VI (28\%) and V (21%) Group VII 末s 25% and srouF IV 1I\%, Groups IX and X are represented by around 10%.

The samples from Suidivision 1B show, on the contrary, a very marked piedonjinance of age group VI (41-59\%); it is followed by age-group V (in samples F^{i} and G 2l $21+\%$ in sample 46^{1}, only 13%). Age-group VII accounts for around 77% in samples F' and 46^{\prime}, being much less abundant ini, saniple $¢ 1(6 \%)$. Age-group IX varies between 5 and 10%. In sample G the 1952 jear-class (age-group IV) is represented by 13%.

Sumary: In the first campaign in Subdivisions 1C-1D-1E the 1947, 1950, and, in some cases, the 1948 year-classes predominate. In the second campaign, in Subdivision 1B, the 1950 and 1951 year-classes predominate, foilowed by the 1949 year-class and in a single sample by the 1952 year-class.
3. Size Distribution
a) Trawlers. 1 st Campaiga. These fisheries were carried out in Subdivisions $1 \mathrm{C}-1 \mathrm{D}-1 \mathrm{E}$ (Samples $\mathrm{A}^{\prime}, 4^{\prime}, 7^{\prime}, \mathrm{B}^{\prime}, 12^{\prime}, 1^{\prime}{ }^{\prime}, 17^{\prime}, 19^{\prime}, 25^{\prime} ;$ Table 3 and Table 5: Fig.1). In the mejority of the samples, the peaks of the size curves are around 72 cm . $(251+0 \%)$ and 67 cm . $(20-30 \%)$. In sample 7^{\prime} the peak is as Iow as 62 cm . for morning and afternoon catches, even as low as 57 cm . in night catches. In sample 8^{\prime}, from a very nearby locality, :etween Dana and Fiskenaes Bank, the length frequency curve is bimodal with peaks in the classes 52 and 57 cm .

Thus the size composition corresponds to the age composition With a predominance of age-group IX, and in samples 7^{\prime} and 8^{\prime} of groups $V I$ and V In cases with observations from fisheries in the mornings, in the afternoons and at night, the corresponding size compositions do not differ significantly, There is, however, an indication ot the catching of smaller fish at night than during the day.
b) Line Fishing (Samples 28", 36", 24 June-19 August 1956, Table 6, Fig. 2) In sample $28^{\text {" }}$ from Fylla Bank (Subdivision 1D), the peak is at the 72 cm . class (38%); the same is found for sample 291 , which was taken a little more to the north (Helders Bank, Subdivision 1C); here the peak also falls in the 72 cm . class (24%), which corres ponds to the predominance of age-group IX already observed in samples from the trawlers.

In the remaining samples from Subdivision 1B, the peaks are in the smaller size group, 62 cm . $(25-30 \%)$, which coincides with the predominance of age-groups VI and V.
c) Trawlers, 2nd Campaign (Samples E', 38', F', 43', G', 46' and 52'; 27 August-14 September 1956, Table 3 and Table 7; Fig.1). The peaks are in the 62 and 67 cm . classes, in a single case in the 57 cm . class (sample G^{1}), which corresponds with the predominance of age-groups VI and V.

Summary: From the total of these samples, it is seen that the peaks fall on larger size groups in fisheries carried out in the central and southern region of Greenland, corresponding to the predominance of age-group IX. The cod of the Store Hellefiske Bank are somewhat smaller, corresponding to the predominance of age-groups VI and V in this region. Although the samples of the fisheries from the three periods of the 24 hours (morning, afternoon and night), do not show any significant difference in size composition, there is perhaps a small tendency for smaller fish to be caught during the night than in day.
4. Growth

In Table 3 the mean sizes of the age groups are given. Based on these data the mean growth was determined for males and females in Subdivisions IC-1D-1E (Table 8, Fig.3) and 1B (Table 9,Fig.4)

In both regions (north and south) the growth of the males is just a little lower than that of the females. The difference is a little more pronounced in Subdivision 1B than elsewhere. The crossing of the growth curves is between Gr.VI-VII which corresponds to the age at first maturity.

Fig. 5. Cod. West Greenland Annual Growth, 1955-56, in the southern (S) and northern (N) region. .

Tables 8-9 (Fig.5) show also the annual growths of the more abundant year-classes. The results are rather doubtrul for the year-classes older than 1946 owing to the small number of otoliths investigated.

The annual growth is a little more marked in the northern zone.
5. Sex Ratio
a) The samples from Subdivision 1D and the southern part of IC (Sample $A^{\prime}-38^{\prime}$, Table 3) show a great irregularity as far as sex ratio is concerned. The percentage of males is particularly high in the samples 8^{t} (59%), C^{\prime} (55%), in sample 4^{\prime}, from the morning, (57%) and in sample 12^{\prime} - morning and night - (57%); the females show a high percentage in the afternoon in sample $4^{\prime}(60 \%)$, in sample 7^{\prime} ($53-59 \%$), in sample B' (58%), in the afternoon sample 14 ! (62%) and also in sample $25^{\circ}(57 \%)$ and E' (53\%) 。

These data seem to suggest that the males have a tendency to predominate in the area south of Subdivision 1D, and the females in Subdivisions 1D-1C. The variation of the sex ratio during the various periods of the 24 hours cannot be determined; apparently it is quite irregular.
b) The samples from Subdivision 1B (Sample F' to 52', Table 3 and Table 7) show nearly equal sex ratios. Only in sample F , slope of the Store Hellefiske Bank, is there a predominance of females (56\%).
G. Stage of Maturity

For the study of the development of the gonads, the samples ware arranged according to time of the year (Table 10, Fig.6). The majority of the samples are from Subdivisions IC and ID with the exception of the samples $F^{\prime}, 4^{\prime}$ and G^{\prime}, from Subdivision 1B.

Mā 3 . In May the majority were in the resting stage (40$57 \%$) and in the after-spawning stage ($27-41 \%$). A small percentage were in the doreloping stage (15\%) or still showing signs of full maturity (2-3\%).

In June the individuals in the resting stage are more abuncant ($40-60,{ }_{0}$), the stages of after-spawning are less frequent (16-32\%); a simall percentage (2%) is still in full maturity.

There are no observations from the month of July.: 'In August and September the great majority of the individuals are in the resting stege (more than 85%); the rest are in the after-spawning stage (15%).

Fenales. In May, with the exception of sample ' $^{\prime}$, collected hetween Dana and Fiskenaes Bank, where practically all females were in the resting stage (97%), a predominance of the after-spawning stage ($55-70 \%$) occurs. The romainder are in the resting stage (29-42\%). Only one sample shows a small percentage (0.4%) in the spawning stage.

In Jine tine majority were in the after-spawning.stage (5584\%), the remainder in: the resting stage.

Tin A ugust-September the majority were in the developing siage ($5+-90 \%$), and the remainder in the resting stage.

Thesc results are obviously influenced by the age composie iton of the crmples as there is a pronounced precocity of the males with respect to tio females and a different age at first maturity. 7. First vicurtiy

The ape at first maturiter (Table 11, Fig.7) is found by de- terminimg the first spawning ring in the otoliths. Only those age groups best represented in the samples will be considered. These were regionaly arranged in two groups: Subdivision 1B (northern region) and 1C-1! (southern region).

MI cases with difficulties in interpretation of the existends or position of the first spawning ring were included in the douctivl caterory. Generally the first spawning ring occurs between the 6th
gth ycar of age, anly very rarely in the 5 th or in the loth year.

Tho mojority of males spawn in the 8 th and especially in the ith year. Tho females spawn for the first time in the 7 th and the 8 th year, mostly in the 8th year; they thus mature later than the males. maturity The data do not show any clear difference as to age of first maturity beiween cod from the north and the south regions.

The high number of individuals of age-groups VII and VIII which, from the reading and interpretation of the rings in the otoliths, were considered as having not yet reached the first maturity,
may. result from the difficulty of interpretation of the peripheral ring, yet only badly developed. In fact, in cases where these were still under formation and where more peripheral rings to compare were lacking, the definition of the spawning ring is not very clear.

Thus the results obtained for Groups VII and VIII contradict the results of the macroscopic observation of the gonads and the results obtained through the reading of the otoliths of the older yearclasses.
8. Weight Data

Weight observations carried out on a number of individuals are summarized in Table 12.

No difference between males and females was found as to the weight by size-classes. The weights by size-classes are slightly smaller than those found in 1955.

The weights obtained for gonads are low, which confirms that we are not dealing with spawning stages.

Table 1. Portuga1. List of $\overline{\text { I }}$ ish Samples Taken During 1956.

					$$		- Observations Mene -					
$1 . \mathrm{Cod}$	V	1.		$62^{0} 4^{\prime} \mathrm{N}, 510^{1} \mathrm{~W}$	Sea	Trawler	100	x	x	\times OT	$\mathrm{X} \times$	X x
2^{\prime}	1	IE	$62^{\circ} 24^{\prime} \mathrm{N}, 50^{\circ} 5^{\prime} \mathrm{W}$ W			100	x	x	\times OT	$\mathrm{x} \times$	$\mathrm{x} \times$	
31	"	IE	$62^{\circ} 29^{\prime \prime} \mathrm{N}, 510^{\circ} 10^{\prime} \mathrm{W}$	"	"	99	x	x	\times OT	$\mathrm{x} \times$	$\mathrm{x} \times$	
$4{ }^{11}$	"	1D	$62^{\circ} 31 \mathrm{~N}, 510^{\circ} \mathrm{W}$	"	"	300	X	X				
$5^{\prime \prime} 11$	"	1E	$62^{\circ} 29^{\prime} \mathrm{N}, 51^{\circ} 15^{\prime} \mathrm{W}$	"	11	100	x	X	\times OT	X x	X X	
6111	"	1D	$62^{\circ} 35^{\prime} \mathrm{N}, 51^{\circ} 20^{\circ} \mathrm{W}$	"	"	59	x X	x X	x OT			
711	"	1D	$625^{\circ} \mathrm{N}, 51^{\circ} 46^{\prime} \mathrm{W}$	"	11	300	x					
8.11	"	1D	$62^{\circ} 50^{\prime} \mathrm{N}, 51^{\circ} 50^{\prime} \mathrm{W}$	"	"	100	x	x	x OT	$\mathrm{x} \times$	x x	
9	"	1 C	$64{ }^{\circ} 21 . \mathrm{N}, 53023^{\prime} \mathrm{W}$	"	"	100	x	x	\times OT	$\mathrm{x} \times$	$\times \mathrm{x}$	
10',	"	1C	$64^{\circ} 21{ }^{\prime} \mathrm{N}, 53{ }^{\circ} 20^{\circ} \mathrm{W}$	"	"	100	X	X	\times OT	X x	x x	
11. "	11	1D	$64^{\circ} 13^{\prime} \mathrm{N}, 53{ }^{\circ} 10^{\prime} \mathrm{W}$	11	"	98	x x	$\times \mathrm{x}$	\times OT	$\mathrm{x} \times$	x	
12, "'	11	1D	$64^{\circ} 10^{\prime} \mathrm{N}, 53^{\circ} 10^{\prime} \mathrm{W}$	11	11	300	x	x				
13. "	"	1D	$64^{\circ} 12 \mathrm{~N}, 53^{\circ} 10^{\prime} \mathrm{W}$	"	"	100	x	X	\times OT	$\mathrm{x} \times$	x x	
14, "	"	1D	$63^{\circ} 49^{\prime} \mathrm{N}, 53^{\circ} 05^{\prime} \mathrm{W}$	"	"	200	x	x				
15',	"	ID	$62^{\circ} 50^{\prime} \mathrm{N}, 51^{\circ} 51^{\prime} \mathrm{W}$	"	"	100	x	x	\times OT	X \times	x x	
16,	"	1D	$62^{\circ} 50^{\prime} \mathrm{N}, 51{ }^{\circ} 51^{\prime} \mathrm{W}$	"	"	75	x X	x x	\times OT	$\mathrm{x} \times$	$x \mathrm{x}$	
17.'	VI	1D	$62^{\circ} 53^{\prime} \mathrm{N}, 51^{\circ} 51 \mathrm{~W}$	I	"	300	x	x				
18, "	I'	1D	$62^{\circ} 48^{\prime} \mathrm{N}, 51^{\circ} 50^{\prime} \mathrm{W}$	"	1	75	X	X	\times OT	x x	x X	
19, "	"	1D	$62^{\circ} 36^{\prime} \mathrm{W}, 51{ }^{\circ}{ }^{\prime} 8^{\prime} \mathrm{W}$	"	"	300	x	X				
20,	"	1D	$62^{\circ} 30^{\prime} \mathrm{N}, 51{ }^{4} 8^{\prime} \mathrm{W}$	I'	"	100	x	x	$\times \quad 0 T$	x x	x x	
21,	"	1 D	$62^{\circ} 8^{\prime} \mathrm{N}, 5155{ }^{\prime} \mathrm{W}$	"	"	100	x	x	\times OT	x x	x x	
22,	"	1 D	$63^{\circ} 25^{\prime} \mathrm{N}, 520^{\circ} \mathrm{F}$ 'W	"	"	100	x		\times OT	$\mathrm{x} \times$	$\mathrm{x} \times$	
23,	"	1D	$63030^{\prime} \mathrm{N}, 5230^{\prime \prime} \mathrm{W}$	"	"	50		x x	x OT	x x	x x	
24, "	"	1D	$63.30^{\prime} \mathrm{N}, 520^{\prime \prime} \mathrm{W}$	"	"	100	x	x	\times OT	$\mathrm{x} \times$	x x	
25."'	"	1C	$64^{\circ} 27^{\prime} \mathrm{N}, 545^{\circ} \mathrm{F}$,	11	"	100	x	X	x OT	$\mathrm{x} \times$	X X	
26^{\prime}	"	1D	$63^{\circ} 33^{\prime} \mathrm{N}, 52^{\circ} 15^{\prime} \mathrm{W}$	H	"	100	X	,	x OT	X X	X	
28" ${ }^{\prime \prime}$	"	1D	$635^{\circ} \mathrm{N}, 520^{\prime} \mathrm{W}$	"	Line	200	x					
29" "	VII	1C	$66^{\circ} 07{ }^{\prime} \mathrm{N}, 54{ }^{4} 0^{\prime} \mathrm{W}$	"	"	200	X					
$30^{\prime \prime \prime}$	VII	1B	$67{ }^{\circ} 3^{\prime} \mathrm{N}, 5{ }^{\circ}{ }^{\circ} 40^{\prime} \mathrm{W}$	"	"	200	X					
31" "	VII	1B	$66^{\circ} 55^{\prime} \mathrm{N}, 54^{\circ} 55^{\prime} \mathrm{W}$	"	"	200	x					
32" "	VII	1B	$67^{\circ} 32^{\prime} \mathrm{N}, 55^{\circ} 20^{\prime} \mathrm{W}$	"	"	200	X					
$33^{\prime \prime \prime}$	VIII	1 B	$67058^{\prime} \mathrm{N}, 540^{\prime \prime} \mathrm{W}$	"	"	200	x					
$3{ }^{\prime \prime \prime}{ }^{\prime \prime}$	VIII	1B	$670^{4}+0^{\prime} \mathrm{N}, 55^{\circ} 00^{\prime} \mathrm{W}$	"	"	200	x					
$35^{\prime \prime \prime}$	VIII	1B	$67^{\circ} 55^{\prime} \mathrm{N}, 55^{\circ} \mathrm{O}{ }^{\prime} \mathrm{W}$	"	"	200	x					
36" 1	VIII	1B	$670^{\circ} 5{ }^{\prime} \mathrm{N}, 54{ }^{\circ} 20^{\prime} \mathrm{W}$	"	"	200	x					
37^{\prime}	VIII	1D	$64^{\circ} 02{ }^{\prime} \mathrm{N}, 52036^{\prime} \mathrm{W}$	"	Trawler	100	x	x	x OT	$\mathrm{x} \times$	x	
381	VIII	1 D	$64_{0}^{\circ} \mathrm{OL}{ }^{1} \mathrm{~N}, 52 \mathrm{O}^{4} 1^{\prime} \mathrm{W}$	I		300	x	x				
39^{\prime}	VIII	1 D	$64002 \mathrm{~N}, 52036^{\prime} \mathrm{N}$	"	"	75	x	x	x OT	$\mathrm{x} \times$		
40^{\prime}	VIII	1B	$660^{\circ}+1^{\prime} \mathrm{N}, 543^{\prime} \mathrm{W}$	"	"	50	x	x	\times OT	$\mathrm{x} \times$		
41.	VIII	1B	$660^{4} 3^{\prime} \mathrm{N}, 55000 \mathrm{~W}$	I'	"	100	x	x	\times OT	x X	x	
421	IX	1B	$66043^{\prime} \mathrm{N}, 54+39^{\prime} \mathrm{W}$	I'	"	75	$\mathrm{x} \times$	x x	x OT	$\mathrm{x} \times$		
431	IX	1B	$660^{4} 3^{\prime} \mathrm{N}, 54039^{\prime} \mathrm{W}$	1	"	300	x	x				
$4{ }^{\prime}$	IX	1 B	$66^{\circ} 42^{\prime} \mathrm{N}, 54{ }^{\circ} 30^{\prime} \mathrm{W}$	"	"	75	x	x	\times OT			
45^{\prime}	IX	$1 . \mathrm{B}$	$66^{\circ}+6^{\prime} \mathrm{N}, 543^{\prime} \mathrm{W}$	"	"	75	x x	x x	x OT			
46^{\prime}	IX.	1B	$67055^{\prime} \mathrm{N}, 550^{2} 5^{\prime} \mathrm{W}$	"	"	75	x	x	x OT			
48'	IX	1 B	$670^{\circ} 5{ }^{\prime} \mathrm{N}, 5500{ }^{\prime} \mathrm{W}$	"	"	75	x x	$\mathrm{x} \times \mathrm{x}$	x OT			
49^{\prime}	IX	1B	$67.50^{\prime} \mathrm{N}, 540^{\circ} 20^{\prime} \mathrm{W}$	"	"	196	X	X				
50'	IX	1B	$670^{\circ} 50^{\prime N}{ }^{\prime} 5+020{ }^{\prime} \mathrm{W}$	"	"	75	x	x	x OT	x x		
51 '	IX	1B	$670^{\circ} 55^{\prime} \mathrm{N}, 54+20^{\prime} \mathrm{W}$	"	"	75	x	x \times	\times OT	$\mathrm{x} \times$		
52^{\prime}	IX	1B	$66^{\prime} 46^{\prime} \mathrm{N}, 54+30^{\prime} \mathrm{W}$	I'	"	300	x	x				

TABLE 3. Cod. Greenland. Vcrentảo Ase Distribution, Average Length cm. of Misles, Fomales and Total, and Sex Ratio. From Travlers

TABLE 3. Cod. Greenland. Percentage Age Distribution, Average Length (cont'd) cm. of Males, Females and Total, and Sex Ratio. From Trawlers.

Cod Percentage. Length compesiticn by
TiBLE 45 cm . Ercups. Pertuguese samples. Subarea 1or 1956.

$$
\begin{aligned}
& \text { \# }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CCd, GRGZML.ND, Size distribution and sor-ratic ci six smpies }
\end{aligned}
$$

\sim°
界

	$28+$	$29+$	$30+$	$31+$	$32+$	$33+$	$34+$	$35+$	$36+$	
CLASS	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$		$\%$	$\%$	
42	-	-	$1: 0$	-	-	-	-	-	-	
47	-	2.0	4.0	2.0	1.5	1.0	-	5.5	0.5	
52	-	2.5	8.5	5.5	3.0	7.0	3.0	7.5	4.5	
57	1.5	6.0	20.5	11.0	13.0	21.0	18.0	13.0	7.0	
62	6.5	11.0	30.0	19.0	15.5	30.5	26.5	15.0	24.0	
67	23.0	15.5	18.0	19.5	16.5	18.5	20.5	27.5	23.5	
77	21.5	22.5	5.	14.5	17.0	8.0	10.0	6.5	13.0	
82	11.0	10.5	4.5	6.0	6.0	2.5	5.5	3.5	3.0	
87	3.0	4.5	1.0	3.0	5.0	1.0	2.0	2.5	0.5	
92	-	-	0.5	2.0	3.0	-	1.0	-	-	
97	-	0.5	-	-	3.0	0.5	-	0.5	0.5	
102	-	0.5	-	-	0	5	-	-	-	-
107	-	-	-	-	-	-	-	-	-	
112	-	-	-	0.5	-	-	-	-	-	

No. of.
Spec.200.0 200.0 $200.0 \quad 200.0 \quad 200.0 \quad 200.0 \quad 200.0 \quad 200.0 \quad 200.0$

Table 6 Greenland Size Distribution of 9 samples from liners (28+,24--VI-56-,29+,2-VII-56,30+,13-VII-56,3士-21-VII-56, 32+26-VII-56,33+,3
from*Subdivision ID, IC, and IB

38^{\prime}			43^{\prime}		49		52^{\prime}	
CLASS	day	night	day	night	day	night	day	night
CM.	\%		\%	$\%^{*}$	\%	\%	\%	\%
42	4.0	3.0	1.0	-	8.1	0.4	-	
47	10.0	7.0	1.6	0.4	8.2	4.2	0.4	
52	9.0	9.5	6.4	5.2	16.3	4.	-	
57	13.5	15.0	6.4	11.6	14.3	1.2	4.8	
62	21.5	25.0	20.8	28.4	36.7	31.2	21.6	
67	21.0	19.0	36.0	30.4	9.2	32.4	43.6	
72	11.0	15.0	13.2	17.2	8.2	13.2	21.6	
77	5.5	3.5	10.8	6.0	2.0	3.2	7.6	
82	4.0	2.0	2.8	0.8	-	-	-	
87	-	0.5	0.4	-	-	-	0.4	
92	0.5	0.5	-	-	-	-	-	
No. of Speo.	250	250	250	250	196	250	250	
	500	530	490	490	480	490	520	

Table 7 Greenland-Size distribution and sex-ratio of 4 Samples from tra.. lers ($38^{\prime}, 28-V I I I-56,43^{\prime 2--I X-56,49 ' 11-I X-56,52 ' 14-I X-56) f r o m ~ S u b d i v i s i o n s ~}$ ID-IB.

YEARCLASS	$\begin{gathered} \mathrm{AGE} \\ (1956) \end{gathered}$	CM	C	1955	1956	ArruAL GRUWTH
1951	V	03.6	52.7	41.3	52.3	11.0
1950	V1	61.8	61.4	55.2	61.1	5.9
1949	V11	67.1	65.6	61.3	65.6	4.3
1948	V111	69.5	70.5	65.8	65.9	4.1
1947	1π	70.4	71.9	69.7	71.7	2.0
1945	π	75.1	78.0	71.9	76.8	4.9

Cod, GKwir it Southern Fegi 1 . 「ean size of nales anu ferales and inual erowth (ia cta.)

Tabllk 8. of tae nure i i,hly represelted year_ciasee?, baseu oa sanpie groups or \therefore u bers $A, B, 8, C$, D, 25 and E (Trawlers).

YEARULiASS	(1956)	$0 \times$	C 5	195\%	1956	$\begin{aligned} & \therefore \text { nUuL } \\ & \text { GNOWTH } \end{aligned}$
1952	1V	40.8	40.0	-	40.4	-
1951	\checkmark	55.3	56.9	46.8	56.1	8.3
1950	V1.	63.3	62.5	$55 . \mathrm{S}$	62.8	6.9
1549	V11	65.3	58.0	60.7	65.7	6.0
194〕	V111	69.8	79.4	67.4	70.1	2.7
1947	$1 .:$	71.7	76.9	70.7	$73.8)$	3.1)
1946	-	75.3	73.1	75.2	75.3	$0.1)$
1945	-	79.0	73.6	79.3	76.3	, ${ }^{\text {? }}$
		9.0	93.0	19.3	10.3)	.
1944	X11	81.0	80.0	80.5	84.5)	4.0)
9. Jf the nure richly represe ted year- lasses,						
based on sapple groups or Hdibers F, 46 ard G io						
Subuivision 1D, Trawlers.						

Table 10 Cod. Greenland May to Sptember 1956. Stage of maturity determined by macroscopic observation of the gonads.

- -G6T xөquə7dəs

$$
\begin{aligned}
& \text { स N }
\end{aligned}
$$

Lenglic.	No of Spec	Whole	$\left\lvert\, \begin{aligned} & \text { Liver } \\ & 0.0\end{aligned}\right.$	Gonads:	Intes tines	No of	Finol'	Liver 0.01	Gon :ds	$\left\|\begin{array}{l}\text { Intes } \\ \text { tines }\end{array}\right\|$
42	1	780	40	10	70	2	675	50	10	70
47	3	1055	58	10	95	6	988	54	10	94
52	9	1302	92	11	117	16	1303	8.1	12	117
57	31	1693	203	19	138	29	1643	105	19	141
62	51	2113	126	28	166	44	2058	144	28	165
67	63	2556	133	38	168	64	2548	158	42	177
72	45	2975	158	47	178	60	2956	149	77	190
77	22	3588	163	63	194	35	3 c 81	164	83	230
82	6	4321	154	55	216	13	4150	159	92	267
87	1 1	4420	70	20	220	4 273	4680	143	98	1200

Table 12 Cod. Greenland. Weight in grams by size-groups of whole fish livers, gonads, and intestines- Sample Nos:(6',15-V-56;11',25-V56; 16', 31-V-56; 23',9-VI -56;42', 1-IX-56; 45', 6-IX-56; 48'-10-IX-56.

Fig. 1. Greenland. 1956. Cod. Samples; localities; age and lenght

IV V1 KIII X XII XIV
Fig. 3. Cod. West Greenland. 1956 rennoth in the solithern region.

IV V1 V111 X X11 X1V
Fig. 4. Cod. West Greenland. I956.

(an Doubttu) Niy Veveloping 两 ollerr Spurnirg
Recting ripe
Fig. 6 - Cod. West Greenland. 1956. Percentage number of the various stages of maturity in males and females of the various agegroups. Sample-gr. or sample no. indicated above

Fig. 7 cont'd (see next page)

Fig. 7. Cod. Greenland. Percentage number of males (striated columns) and females (white columns) spawning for the first time at varlcus ages (age-groups) of the abundant age-groups (VI, VII, VIII, IX, X,XI,XII, XIII, and XIV). $S=$ southern, $N=n$ nerthern region。 θ indicates no spawning mark.

