the northwest atlantic fisheries

Document No. 12

ANNUAL MEETING = MAY 1257
 Recruitment and Mortality of the Marketable
 Stock of Cod in W_{0} Greenland Waters.

by Erik M. Poulsen

The cod fishery in the bank area off W. Greenland, Subarea 1 , is very diversified, being carried out by fishing fleets from nine nations, and by ottertrawl as well as by various kind of hook and line fishing.

Most of the countries fishing in the subarea have, in accordance with the ICNAF research programs, reported data of the samples of their fisheries to ICNAF (ICNAF papers Ser. No. 426). For some countries sample data are available for a series of years prior to 1952.

The material dealt with below is from data reported to ICNAF and published
the Research Reports (Ann.Proc. vol 3-6). In a few cases, when material Hor to 1952 is used, the data are taken from reports published by ICES .Ann. Biol.).

Table 1 gives for all samples by all nations, years 1952-55, (see Table A), the average frequency per mille for each age-group (number of samples in brackets); numbers of individuals are not stated (the total number of specimens amounts to around 50.000):

Table 1. Cod, Subarea 1. Age distribution in \% \% 1952-55, all countries, number of samples in ().

Age, ye	3	5	6		8		10	11	12	13		15	16	17	18			21	22	23
14 (12)	1	2	12	54	62	86	166	128	112	122	40	30	39	34	54	27	19	9	2	1
1 BHC (56)	118	113	143	198	148	59	82	72	48	52	13	12	18	8	7	6	2	1	5	
1D+12 (39)	114	90	116	187	238	57	75	79	30	42	17	8	10	14	7	8	5	1	1	
17 (12)	19	93			182	102	132	90	32	48	26	11	14	19	17	12	4	2	. 1	1
1A-1F	.313	75	85	142	158		111	92	56	66	24	15	20	19	21	13	8	3.3	. 7	. 05
smo		62	101					79	63	50	39	30	23	17	13	10	7	5	. 2	. 0

The samples are taken during the summer half of the year, some two to eight months after spawning; thus cod shown in teble as foi. 3 years old are in fact 3 1/4-3 1/2 years old (III-Gro)。

Fig.l shows these frequencies in graphic for'n. The bottom curve (also smoothed) gives the age distribution for the whole subarea. Up to the eighth year recruitment is stronger than mortality; from then on the strength of the age-groups decreases; mortality (including emigration) is stronger than recruitment. Very few cod enter the fishery at ages 3 and 4, it is only from an age of 5 years that the cod are caught in appreciable numbers. The oldest cod In the samples are 23 years old; they are exceedingly few; none of the agegroups older than 16 years yields more than 2%.

The age distribution differs to some degree from subdivision to subdivision. In the nor thern subdivision, la, recruitment is stronger than mortality right up to age 10 . The recruitment over the ages $4-8$ is here much smaller than in the central and southern subdivisions; compensating this the number of individuals of older ages are considerably higher.

The age distribution in $B+C$ and $D+E$ is very much alike with a steep recruitment curve, with peaks at 7.8 years, and with a strong decline in numbers after that age. The curve of age distribution for the southernmost subdivision F is intermediate between A and $\mathrm{B}-\mathrm{E}_{\mathrm{o}}$

From the right declining parts of the curves a crude calculation of total mortality can be made. Crude only because it is not based on a follow? \rightarrow of the separate yearmclasses through the years. However the fact that the percentages used are means of 4 consecutive years of observations to some degree compensates this delfect. Using this crude method on the figures in table 1 (both the observed (ohel) and the smoothed (sm.) figures) from the 8th year we get the following nortality rates:

Fig. 1. Age distribution curves. Cod. Subaren 1 , all samples, years 1952-55; with moothed curve for the whole subarea (from Table 1).

It is obvious from the two lines of figures that the mortality increase with increasing age. It is to be noted that the mortality figures for the oldest age-groups in many cases are based on rather small numbers of specimens; and that they therefore vary very much. In fact minus figures for mortality occur right up to the oldest ages. Whe considering the figures for the oldest years this must be borne \vdots i mind, and the increase in the mo tality figures for these years might not be an established fact. If the mean mortality is calculated for each of the three 5-years periods the following rates of mortality are found:

For the ages after the 13 th year, when recrultment may be considered as completed, the following mortall ty rates are found:
from observed figures: 34%
" smoothed figures: 34%

A certain check on these mortality rates is possible by using those separate fisheries from which sufficient sampling has been carried out.

For the Norwegian line fishery observations on age frequency are available for the years 1948-55 (Table B). From this table the following crude mortality rates are calculated from age 8 on for the years 1948-55 and for 1952-55, this latter for direct comparison with the ICNAF material from the same years:

The figures for $1948-55$ show a smaller irregularity of the variations iver the years than in the ICNAF material and in the Norwegian material for nly the years 1952-55.

The average mortality rates over 5 years periods are given below for the Norwegian material; the corresponding figures for the ICNAF material are shown for comparison:

AgoB	Norway $1948-55$	Norway $1952-55$	6
$\frac{11}{8 / 9}$ to $12 / 13$	25	14	ICMAF $1952-55$
$13 / 14$ to $17 / 18$	47	62	8
$18 / 19$ to $21 / 22$	40	32	11
$13 / 14$ to $21 / 22$	29	22	37
all ages			

The Norwegian figures for 1948-55 show somewhat higher mortalities than the ICNAF figures; apart from ages $13 / 14$ to $17 / 18$ the difference is, however, not large. The Norwegian figures for $1952-55$ coincide very closely with those for all ICNAF countries for the same years.

Another comparison can be made with the material from the Danish research -9ssel "Dana" from the years 1952-55. This material can be devided by sub-
visions. The table below gives from age 8 the frequency percentages and r the mortality rates calculated from them(based on Table A): - l

When these mortality rates are calculated for the same periods of ages as for the above-treated samples the following results are found:

Subdivision	A	B+C	D+E	F	BCID	A-F
Age $8 / 9$ to $12 / 13$	+18	16	26	6	21	8
H $13 / 14$ to $17 / 18$	10	27	21	6	24	16
" $18 / 19$ to $21 / 23$	50	28	34	55	$31-$	
" $13 / 14$ to $21 / 23$	31	27	26	27	27	50
All Ages	14	23	26	19	25	25

The agreement with the mortality rates for the ICNAF and Norwegian material is fairly good:

| area 1, Ages | $8 / 9$ to $12 / 13$ | $13 / 14$ to $17 / 18$ | $18 / 19$ | to $22 / 23$ | $13 / 14$ to 22/23 | All Ages |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Af 1952-55 | 8 | 11 | 57 | 34 | 25 | |
| Norwegian 1952-55 | 6 | 14 | 62 | 32 | 22 | |
| "Dang" 1952-55 | 8 | 16 | 50 | 33 | 25 | |

All three series show an increased mortality with increasing age (cpr. also Fig. 2). The rather low "mortality" during the ages $8-12$ is no doubt due to a considerable recruitment occurring during these years. If we consider the recruitment as completed at age 13, we get for the three' series the following "true mortality" for the ages after the 13 th year: 34, 32, 33. It must, however, be borne in mind that these figures are not just mortality rates; they include changes caused by immigration and emigration.

Fig.2- Comparison of mortality rates by ages of the materiel from the Norwegien line fishery, the "Dana" hook fishery, and from "all fisheries" by ICNAF countrias 1952-55.

The 66,088 not distributed by subdivisions were landed as follows:

$$
\begin{array}{lr}
\text { Fiaroes - } & 35_{8} 811 \\
\text { Iceland - } \\
\text { Norway - } & 21_{p} 097
\end{array}
$$

Iceland and the Faroes do not fish in A_{0}. When the Faroes and Iceland ilandings are distributed between B-F in proportion to the abovecited landines and the Norwegian landing between A-F in proportion to those Norwegian landings which are distributed by subdivisions, the following adjusted lanumag appear:

The landings from 1 A are thus quite negilgible compared to those from B, C and D, and some 5 times smaller than the landings from E and F. This is not due to a thinner stock in those areas of 1 A where cod fishery is carried out. The catch per unit of effort is not smaller in 1A than in the other subdivisions:

Norway,	line fishery, tons per day fished		
	I953	1954	1955
IA	7.8	6.7	7.0
IB	6.2	6.7	8.3
IC	7.6	8.4	8.5
ID	7.4	8.4	8.5
IE	4.3	12.4	9.8
IF	6.0	10.6	7.7

The very small landings from 1 A must therefore be due to the very small: effort spent on cod fishery, this again indicating that the cod stock there is nearly "virgin", and that fishing mortality therefore only can account
for a small part of the total mortality.
The mean mortality for all ages older than 8 is in $1 A 14$ against in $1 B$ to c 25. Stipulating that the cod stock in IA is virgin and living under the same conditions as in $B-E$, it means that fishing mortality in B-E would be il. This figure can be compared with the 10% recaptures during the first year from Danish tagging experiments.

The above mentioned mortalfties for the separate subdivisions are based on the "Dana" material only. When the material for "all countries" is subdivided by subdivisions the following figures appear:

A	$B+C$	$D+E$	F	$B C D E$	$A-F$
+19	12	12	8	12	3
3	20	22	18	21	16
49	50	49	60	50	52
26	33	34	36	34	32
12	26	26	26	26	23

These figures show about the same variations in mortality rates by subdivisions as the "Dana" material; Figure 3 shows a comparison for "all ages".

Fig. 3 - Mortality rates for all ages by subdivisions, "Denan" and ICNAF meterial.

When, as a standard of mortality are taken the figures for subdivisions B, C, D and E, where the main fishery is carried out, we get the following survey:

all countries	Dana"
26	26
34	28

This gives for W. Greenland cod a mortality rate of 26 for cod older than 8 years, and for cod older than 13 years (recruitment completed) of 28.34。

The mortality rates discussed in the preceding pages are all calculated just from the differences between strength of age-groups in samples from
series of years. This method is- as already mentioned - a rather crude -ne. As a more refined method is generally considered the calculation of the total number fished of each age-group per fishing unit, and the calcu-
tion of the difference in strength of the same class from one year to , other.

For the Norwegian line fishery samples as well as statistical data on efforts are available for a series of years; thus this fishery can be used for a more refined calculation.

Horwegian Lina Fishery

Year	$\begin{gathered} \text { No. of } \\ \text { Days } \\ \text { Fished } \end{gathered}$	Tons of cod Found Fresh Caught	Meen Length of Cod .in Gm .	Meas Weight of Cod in Grams	No. of individuals caught	Tons Lended per 1 day's flehery	No. of Individuals Lended per 1 dey's Fishozy
1952	3,226	15,158	76	3,600	5,322,000	5.94	1.650
1953	2,254	15,898	73	3,050	5,212,000	7.05	2,313
1954	2,405	18,538	74	3.300	5,618,000	7.71	2,336
1955	2,100	17,093	74	3,300	5,180,000	8.14	2,467

In table C are shown a calculation of the number of individuals caught per 1 day's fishing based on the figures in the table above, and on the age distribution in the samples.

The table gives the following mean figures for recruitment and mortality om age 8:

It appears from the table that ${ }^{2}$ ght up to the 11 th year recruitment is stronger than mortality: iron that iיe and onwards a gradual increase of the mortality rate is round.

When mean mortality is calculated for the same periods of ages as for the preceding cases the following fifures appear:

	Norw, line fishery	$\text { "Dana" } B+C$
" $13 / 14$ " $17 / 18$	30	22
" 18/19 " $21 / 22$	31	37
" 8/9 " 21/22	19	18
" 13/14 " <1/22	34	30

For comparison are shown the corresponding figures for the samples of the experimental "Dana" fishery in B-C, i.e. the subdivisions where also the main Norwegian fishery and sampling are carried out. The rates calculated from these two different kinds of mater ial and in two different ways are fairly close to one another, especially for the two last series of figures comprising the ages from 8 years and from 13 years and upwards.

Comparing these "refined" figures for the Norwegian line fishery with crude figures we get the following survey:

	Crude calculation for		refined calculation
Subdivision	"all countries"	"Dana"	Norway line fishery
BCDE 8-23 years	26	26	
" 13-23 "	34	28	
A-F 8-23	17	22	22
$13-23$	26	30	33

This gives for the W. Greenland cod stock a mortality of from 17-26 for all ages from 8 and upwards and from $26-33$ for all ages from 13 and upwards.

The mortality is rather low compared to that found for some other cod stocks. This is of course due to the rather slow growth of the Greenland cod, and to the fact (connected with slow growth) that the fishery is carried out on a comparatively large number of age groups.

Only few cod samples have been reported to the Commission from the other subareas; these by France, Portugal and Spain. From these the following mortality rates are calculated:

For the old ages (144) the mortality is not calculated owing to the very scarce material.

Although one can not rely too much on these mortality rates based on so very few samples, it is perhaps worth noting that they differ considerabiy. from those for Subarea $l_{\text {. }}$ The fishery in Subrieas 2 and 3 is based on a smaller number of age..proups and on younger areugroups than is the case in c... area 1 . Therefore the mortality rates are crrsiderably higher. Mortality overrates recrut tnent at a younger age; in subarea 1 from age 8-9, in Subarea 2 from age $7-8$, art ? ? ? from nre for, The mean mortality for the series of ages after the age woti mutr y overates recruitment is as follows:

$$
\ldots 07.0
$$

| Subarea | 1 （age $8 / 9$ to $22 / 23$ ） | - ca 26 | |
| :---: | :---: | :---: | :---: | :---: |
| ＂ | $2($ age $7 / 8$ to $15 / 16)$ | - | 36 |
| ＂ | 3 （age $6 / 7$ to $12 / 13$ ） | -39 | |

The big difference in mortality rates between the cod of W．Green－ land and that of the Grand Bank is no doubt connected with the much slower growth in Wo Greenland．The Labrador cod is even more slowgrowing than the W．Greenland cod（see ICNAF Serial No．429）．One should therefore expect its mortality rates to be lower，and the older ages－group to play a bigger role than in W．Greenland．This is，however，not so．The Labrador cod in fact holds a position intermediate between the stocks of W 。 Greenland and the Grand Bank． The explanation of this inconsistency may well be that considerable emigra－ tion takes place from the Labrador area，possibly to the Newfoundland area． In this connection it should be borne in mind that the term＂mortality＂as used here and elsewhere（in fisheries literature）is rather misleading．It is not a rate of mortality，but just a rate of change，decrease，this decrea－
－being caused partly by mortality（natural and fishery）partly by emi－
ation，or counteracted by immigration．When using the so called refined ＇alculation，including the number of individuals caught per unit of effort，
（ e further make the mortality rates dependent on such irrelevant factors as change from year to year in fishing effectivity（in gears，vessels，experi－ ence）or in the conditions for fishing，foiowinds，ice．

Mortality rate，in the way it is calculated，is not an unchanging quality of＂a certain stock of fish，not even over a very short period of yearis it is depending on a mixture of certain charachteristics of that stock and changing outside factors working on the stock．The refined calculation of mortality for the Norwegian Ilne fishery（Table C）shows to what a degree such mortality figures can change from one year to another：

Ages	$10 / 11$ to $13 / 14$
$1952 / 53$	3
$1953 / 54$	18
$1954 / 55$	29

This gradual，but strong，increase of mortality rate during 1952 to 1955，can hardly be attributed to the stock of cod itself，or to changes of the conditions for its living during these years．There is，however，some
ason to connect it with changes in the efficiency of the fishingo During －nese years the fishery by floating lines became more and more developed， and the yield in tons and number of individuals caught per 1 day fishing increased considerably：
$1952=6.0$ tons or 1650 ind。
$1953-7.1$ tons or 2313 ind．
$1954-7.7$ tons or 2352 ind．
$1955-8.1$ tons or 2472 ind．

Total mortality for the W 。 Greenland cod older than 8 years is around 25% ． From tagging experiments a percentage of ca 10% is reported for the first year． Owing to the amount of recaptures this figure is too low；considerations（see Ser．No．439）have led to a figure of 20% as a more true one．If we take the mean of these two figures 15\％，the Total Mortality for Wo Greenland cod can be devided as follows：Natural Mortality 10% ，Fishing Mortality 15\％．

The following conclustve remarks are made as an attempt to show - based on the mortality rates found for Subarea 1 cod - the effects on the landings which could be expected from an increase of age of first capture.

The youngest agemgroup now of some importance to the cod fishery on the W. Greenland banks is the V-Gr.

Table D shows the calculations of the effects on landings from an increase of age of first capture from age 5 to age 7. The calculations are following the lines of the example given in "Report of the ad hoc Committee established at the 4 th Meeting of the Permanent Commission" p. 13.

In W. Greenland waters recrultment is still strong for ages 5 to 8 , in cases even for older ages. Therefore "natural mortality" (recruitment minus natural mortality) is positive for a few years after. age 5, and small only for still some years.

For the ages 5, 6 and 7 "natural mortality" is, using the figures for age distribution, estimated to +115 , +165 , and +25 respectively. For the older ages two methods have been used: one (a) a fixed natural mortality of 10% for all following ages, and another gliding scale with increasing natural mortality for the older ages. Fishing mortality is fixed at 15% for all ages, which gives with the 10% of natural mortality of the fixed scale and with the mean of the rates of mortality of the gliding scale a total mortality of 25% 。

The calculations give the following yields from 1000 fish at age 5 + recruits from older ages. The detailed calculations for "starting fishery at age 6 and $8^{\prime \prime}$ are not shown in the main table:

Martality Scale Catch	Gliding			Ftxed		
	No. of cod	Height K $\mathrm{K}_{\text {g }}$.	Ind.Weight	No, of Cod	vieight Kgs.	Ind. Weilght
Start.Fish at age 5	3,264	12,974	4.0	2,929	11,255	3.8
" 6				2,986	11,832	
7	3,327	14,240	4.3	2,930	12,201	4.2
				2.713	12,005	
$\begin{array}{cc} \hline \text { Incroase ago } 5 \text { to } & 7 \end{array}$	63	$\begin{gathered} 1,266 \\ 9 \end{gathered}$		1	$\begin{gathered} 946 \\ 8 \end{gathered}$	

By delaying fishery to start at age 7 an increase in yield of 8-9\% is calculated. The gliding and the fixed scale for natural mortality give very much the same percentage increase but the catch figures are a little higher for the gliding than for the fixed scale. Delaying fishery even more, to age 8, will give no further gain.

TABLE A - Cod. Suberea $]$. Age distribution in frequency percenteges from samples reported to ICNAF $1952-55$. The figures behind name of country denote number of samples. (The Denish samples from the God thaab Fjord area excluded).

- AB - Cod Subarea 1 : Ago distribution in frequency percentages in or ples from Norwegian Line fishery. 1948-51 after ICES, Aan. Biol.;1952-55 after ICNAF, Ann. Proc.

Or.	5	-		-	9	10	11	12	13	14	15	16.	17	18	19	20	21	22	23
152	8	21	102	74	201	626	157	102	87	0	26	129	23	86	3	3	2	0	0
153	23	419	117	210	117	209	672	139	117	93	29	47	70	23	23	5	0	0	0
154	5	68	650	109	232	128	225	534	107	70	58	12	33	47	28	28	0	2	0
155	19.	30	170	994	200	245	118	150	357	64	39	22	5	7	30	5	10	2	0

Percentage "mortality": (∞ is disregarded)

\because

1) the individual weights used in the calculation are taken from Fig. 1 of $\mathrm{S}_{\text {erallo }} .459$
