By W. R. Martin
Fisheries Research Board of Canada Biological Station, St. Andrews, N. B.

Abstract
A 10-year study of ICNAF subarea 4 cod has demonstrated that sizes, abundance and landings are controlled by the environment and by fishing. Special emphasis hes been given to the cod fisheries of subdivisions $4 T$ and $4 X$, but the results are believed to be applicable to the whole subarea, west of the Laurentian Channel.

Landings depend in part on the sbundance of year-classes. Year-class strength is related to water temperatures during early development. Good year-classes have been produced in relatively cold yedrs.

The growth rate of cod is of considerable importance as a limiting factor on landings. An increase in cod growth in 1955 and 1956 in subdivision $4 T$ was coincident with a herring disease, Ichthrorporidium hoferi, and with a reduced density of cod. The change restalted in record landings of cod.

Landings have been positively correlated with landed price of cod. Adverse economic conditions have reduced landed price and landings.

Construction of models of the fisheries shows that landings can be expected to decrease when size at first capture 1s too smail, or when fishing intensity is too high. optimum size for first capture is estimated to be considerably higher than the 50% retention length of a $4 \frac{1}{8}$ inch mesh. Optimum fishing intensity, for high catch-per-init-effort consistent with maximum landings, is calculated to be lower than that of the 1950's, at comparable sizes for first capture.

The large increases in sizes, abundance, and landings of subarea 4 cod at the end of World Far II, following a period of reduced otter trawling, are consistent with the changes expected from the study of models.

It is contended that adoption of a $4 \frac{1}{2}$ inch mesh size for subarea 4 cod is only a first step in international management, and that as a second step a mesh size of 5 t to 6 inches is belleved to be desirabie and practical. Equivalent restriction of hook and line fishing may also be required.

Methods of measuring the effects of regulations require apecial emphasis in the research program.

- 2 -

Introduction

In 1955 the International Commission for the Northwest Atlantic Fisheries recommended a $4 \frac{1}{2}$ inch mesh size for cod and haddock fishing in subarea 4 . This mesh regulation was proposed to increase landings from these fisheries. Adoption of this mesh regulation will release large numbers of small, fast-growing fish at aizes which were previousiy caught and discarded at sea because they were unmaricetable. It is expected that many of these fish will ilve and grow to augment the landings of mariretable sizes.

This paper contends that adoption of a $4 \frac{1}{2}$ inch mesh is only a first step in making better use of the subarea 4 cod stocks. The status of evidence bearing on optimum size for first capture of two stocks of cod is considered. A discussion of various mesh and hook sizes indicates that a further increase in size at first capture of subarea 4 cod is a practical possibility. Finaliy, a number of research problems are proposed for action before the commission takes additional steps in the management of subarea 4 cod .

Subaxer 4 1andinge

Annual landings of cod from subarea 4 have varied Widely. Landings for the period 1938 to 1955 , as recorded in ICNAF Statisticai Builetins, are plotted in Figure l. Cod from subdivision 4 R have been excluded since they are part of the different cod stocks which live east of the Laurentian Channel in subarea 3 (Templeman, 1955). Canada, Un1ted States and three European countries, France, Portugal and Spain, have shared the catch in the proportions shown. The Canadian statistica are based on landings from subarea 4 in Ganada, excluding rewfoundland. This is reasonable because most of the Howfoundland landings from subarea 4 were taken from subdivision $4 R$, and landings in other Canadian Atlantic provinces from subdivision $4 R$ were negilsible. Total United States landinge from subarea 4 are shown. Here again, landings from aubdivision $4 R$ were very suall. It has been necessary to estimate most of the European Iandings. Landings for 195^{4} and 1955 have then reported by subdivisions, and combined landings from all subareas are available for the whole period. on the basis of percentages ianded from subarea 4 (excluding 4R) in $195^{\prime} 4$ and 1955 , landinga for the years 1938 to 1953 have been cotinated to be 7% of the total landings. Landings by latin countries from subarea 4 are known to have been small during mar years. Total landings of cod from subarea 4 (excluding subdivision 4R) are recorded as the sum of these reported and

Those total landings are shown again, in relation to sizes landed and abundance indices, in Figure 2. Annual variation in sizes landed is indicated by the percentage of large cod (over 10 pounds, head-on, gutted weight) in United

Figure 2. Total cod landings from subarea 4 (excluding subdivision $4 R$); percentage of large cod in United States landings from this area; and landings per weekiy trip of scrod, market, and steak cod by Canadian trawlers.

States landings from subarea 4 . Individual trip reports for Canadian otter trawlers (151 to 500 gross tons) provided indices of abundance for steak (over 10 pounds, head-on gutted weight), market (2.5 to 10 pounds) and scrod (1.5 to 2.5 pounds) cod.

During war years total fishing effort decreased sharply and this was particularly true for otter trawlers. Host of the European fishing in the southern part of the Conventien Area was by Portuguese dory schooners, and ifttle of this wat carried out in subarea 4. United States otter trawiers fisite: less in subarea 4 , especially in 1942 and 1943. The five Canadian otter trawlers which were in operation before the the wareidiverted from fishing during the early war jears. Cantadan otter trawling did not start to expand until 1945.

At the end of the war Canadian line fishermen landed more cod per year from subarea 4 than all countries combined landed in 1938 or 1955. The abundance of cod, as measured by average landings per weekly trip of otter trawlers, increased to a peak in 1944. Average landings per trip of steak cod were higher then than the average landings per trip of all size categories of cod in the years 1951 to 1953. The proportion of large cod in United States cod Iandings from subarea 4 increased during war years and reached about 50% by weight during the years $19+6$ to $19+8$.

To sum up, high total landings, high individual catches, and large sizes of cod were taicen from subarea 4 at the end of World Far II.

A number of explanations for this peak in the cod fishery have been considered:
(1) Gordon (1955) has shown that Canadian landings of cod have been correlated with economic factors. Daring depression years, in the 1930's, landed price and landings were low for cod. During war yeara landed price and landings were high. He pointed out that the economic rolationship was tentative, and that other cyclical changes were observed which could not be attributed to fiuctustions in economic factors.
what y miollap and Lausier (1956) have shown that the ritetuatiod annually in a manner similar to colderges in water temperature on the Scotian Shelf. The relationship is consistent with the known preference of cod for colder water than that favoured by haddock.
(3) Changes in distribution, recruitment, and growth of cod may have resulted in the peak landings of cod. Large variations in all three factors have been observed in other areas with resultant effects on landings.

Figure 3. Cod landings for the 3 .ars 1954 and 1955 from the subdialsions

(4) The situation resembles that of some of the grondifish of the North Sea immediately following each World War (Graham, 1956) when landings, abundance and sizes of fish all increased following a period of greatly reduced fisiking efforif. Fishing effort did not change as dpapticaily in subarea 4 during war years as in the North fota. Otter trawling declined to a very low level ing the siddie of the war, the amount of line fishing gear, as reported in Fisheries statistics of Canada, decreased, but remained large enough in subarea 4 to maintain landings at a level equal to that of total landings in 1938 or 1955 whon international fishing with all types of gear wais much more intensive.
(5) The high relative importance of line fishing during war years meant that the size of cod at first capture was larger then than during the post-war period. By 1954 over half the cod catch was taken by small-meshed otter trawls, and the size at first capture was considerably smaller than it was during war years when otter trawing was of iittle importance in the Iishery.

The subarea 4 cod stocks were not studied biologically during war years, and the relative importance of these various factors is not known. However, subsequent investigations of their effects on the quantities and sizes of cod landed from subarea 4 have provided background for interpretation of earilier fluctuations, and for prediction and management of the cod fishery. Some of the results of these cod studies are considered in this paper.

Iandings by subdivisions

The subarea 4 cod-fishing grounds are divided by tortuous land masses, and by deep-water galfs and gullies, into a number of distinct regions. South of Nova 8 cotia inshore grounds are separated from offshore grounds, and offshore grounds are divided into a number of banks. In the Gulf of St. Lawrence there is an extensive shoal-water fishing area extending from Cape Breton Island to the Gaspa Peninsula. Extensive studies of vertebral counts (McKenzie and Smith, 1955) and tagging (McKenzie, 1956) have shown that these various fishing grounds support a number of cod populations. Separate inshore cod populations are found off western, central, and eastern Nova Scotia. On offshore Nova Scotia benks cod populations are similarly divided. Gulf of St. Lawrence cod are distinct from these Nova Scotian cod populations.

The statistical subdivisions of subarea 4 conveniently separate the major cod stocks along the southern Canadian mainland, and further discussion of cod populations will use these terms of reference.

The quantities of cod landed by gear and by country from the various subdivisions of subarea 4 in 1954 and 1955 are shown in Figure 3. Cod has been an important commercial speades in all subdivisions. The smallest landings were taken from subdivision 48 and the largest landings from subdivision $4 T$.

Otter trainling has become increasingly, important during the post-war pexiod. More than half the innifings were taken by otter trawlers in 1954, and additional amais quantities were landed by aimilar gear, Spanish pair trawiers. The remainder were taken by miscellaneous fishing mainly by inshore hook and line gear (longlines and handilnes with baited hooks). Dory schooners, jigs, and a few trap nets contributed small percentages of the miscellaneous landings. Yudie of the line fishing, which was of primary importance durine war years, has been replaced by otter trawling.

Most of the Taited states cod landinga, were taken by otter trawlers fron sudtwision 4X. Trawlers fron France, Portugal and Spain fishod during spring months in deep water along the Laurentian Channel, and took large catches from subdivisions 4P, 4 and $4 V$.

Camadig hing accounted for a large share of the has been a rapid post-war conversion from line fishing craft to draggers (small otter trawlers of 26 to 50 gross tons). However, inshore line fishing has continued to be important in subdivision 4 T , particularly along the Gaspe coast of Quebec. In subdivision $4 \bar{X}$ cod have been mainly caught on rough bottom With baited hooks. Adoption of longlining with power haulers has increased the efficiency of ine fishing there since the end of World War II.

Biological investigations of the cod fisheries off Caraquet; Tr. B., in subdivision 4 T , and off Lockeport, N. S., in subditision $4 X$, have provided detailed information on geographic and annual variations in the cod landings from subarea 4 . In both cases, studies have been carried out from the principal landing port in a subdivision where Canadian ishing accounted for most of the total catch. Since about haif the cod taken west of the Laurentian Channel in subarea 4 have come from these two subdivisions, the results undoubtediy apply to the whole subarea. The blological characteristics of cod from subdivisions $4 V$ and $4 W$ are intermediate between thöse of 4 T and 4 X . The following two sections will deal with some of the results of the studies of subdivisions $4 T$ and $4 X$ cod.

Subdivision $4 T$ cod

Tendings. Most of the cod caught in subdivision $4 T$ have been linded in Canada, and most of these Canadian landinga have

Figure 5. Annual variation in landings, landings per "Gloucester" dragger per week, sizes, ages, and landed price of cod in northern New Brunswick, Canada, during the years 1947 to 1956.
been in the provinces of Quebec, New Brunswick and Prince Bdward Island. Landings from other subdivisions in these provinces have been small. Statistics of cod landings in Quebec, New Brunswick and Prince Edward Island for the years 1913 to 1956 are shown in Figure 4 . The annual variations are belleved to be of the same order as annual variations in total landings from subdivision $4 T$.

Annual landings were lowest in 1937 and highest in 1918, 1946 and 1956. Landings were relatively low during depression years, and relatively high during the latter part of each World War. Shorter-term variations in landings were also large. Landings in 1956 were almost double those of 1954.

Landings in New Brunswick during the past 10 years (1947 to 1956) are shown in Figure 5. Most of the New Brunswick cod have been landed along the northeast shore of the province, in Gloudester County. Landings there inereased in 1946, before draggers were introduced to the Gloucester County fishery in 1947 (Figure 4). By 1954 the inne fishery took only about 20\% of the New Brunswick landings, and draggers landed the other 80\%. Daring this conversion from line fishing to dragging, total cod landings in Gloucester County remained fairly steady at abgat 20 million pounds per year until 1954. Landings than increased to 39 mililon pounds in 1956. During the expansion of the dragger fleet, landings per week of fishing by "Gloucester" class draggers decreased from 39 to 21 thousand pounds (Figure 5). In 1956 this abundance index increased again to 27 thousand pounds.

Giges and ages. The average sizes and ages of cod landed by Caraquet draggers varied a great deal during this 10 -year period (Figure 5). During the years 1947 to 1951 the cod were relatively large (average 5 pounds) and old (average 8 jears). Average size and age decreased in 1952, and according to Marcotte (1955) decreased substantially from 1952 to 1953. our sampling was incomplete in 1953 and 1954. In 1955 cod were similar in size to those landed in 1952, but they were fastergrowing cod, averaging about one year younger. In 1956 growth continued to be rapid. Average size of dragger cod was the highest in 10 years, but the average age was lower than that observed in the years 1947 to 1952.

The sizes and ages of cod landed by draggers at Caraquet are shown in greater detail in Figure 6. During the years 1948 to 1950 many age groups were represented in the landings, and average size and age increased silghtly as the dominant $19+1$ year-class passed through the fishery. In 1951 younger age groups became more important, and the proportion of scrod cod increased. In 1952 and 1955 the dominant age grotip what 5-yeảr-old'rish. In 1956 average age increased by a yeâr, and the dominant size group was 5 -pound cod.
gipes discarded. In 1956 the regular sampling for length composition of commercial landings of cod at Caraquet was supplemented by sampling of the sizes and relative numbers of

- 12 -

Pigure 6. Percentage length and age distribution of cod landed at Caraquet, N. B., from subdivision 4 T during the months of August to October, 1948 to 1952 and 1955 to 1956. Average lengths are noted, and numbers of fish measured and aged are recorded in brackets.
cod discarded at sea from commercial draggers. Five trips were made on draggers ($55-75$ feet) to Bonaventure Island and Orphan grounds ($30-125$ fathoma). Two trips were made on smaller draggers ($45-49$ feet) to Chaleur Bay and Shippegan Gully grounds (20-45 fathoms). In all cases the mesh size was $3 \frac{1}{2}$ inches between knot centres, new, $100 / 3$ strand manila, or about $27 / 8$ inches, inside, stretched, used, wet measure. The results are summarized in Figure 7. The percentages of cod discarded were 18 by maber and 4 by weight for the deep-water, large-fish, large-dragger trips, and 55 by number and 14 by weight for the shoal-water, smali-Fish, small-dragger trips. Most of these cod were dead or beyond recovery when rejected at sea as unmarketable fish.

Tagging. Cod were tagged in the Caraquet area in 1955 to provide information on movements and mortalities. Yellow plastic Petersen disk tags were attached with stainless steel wire to the backs of $2,650 \mathrm{cod}$, and Lea hydrostatic tags were similarly attached to $1,208 \mathrm{cod}$.

The locations of recaptures to May, 1956, of Miscou and Shippegan Gully taggings are shown in Figure 8. During the "summer" season of June to November, 1955, most recaptures were taken by Canadian draggers close to the area of tagging. Some of the cod moved in a northeasterly direction during this season. The Gulf fishery stops because of bad weather and ice conditions during the "winter" season of December to May. But during this "winter" period the tagged cod continued to be taken along the Laurentian Channel off eastern Nova Scotia. Most of these recaptures were taken by large European trawlers operating in deep water, over 100 fathoms. In the "summer" of 1956 most recaptures were again taken by Canadian draggers in the northern part of subaivision 4T. It is apparent that these cod support two major fisheries, one in the western Gulf of St. Lawrence during sumer, the other in the western Cabot Strait area in winter.

The distribution of tag recoveries, by season and by subdivision, is summarized below. About 20% of the cod tagged during the summer of 1955 had been recaptured and reported by the end of December, 1956.

Subdivision	$\begin{gathered} \text { June-December } \\ 1955 . \\ \hline \end{gathered}$	$\begin{gathered} \text { January-May } \\ \hline 1956 \\ \hline \end{gathered}$	$\begin{gathered} \text { June-December } \\ 1956 \\ \hline \end{gathered}$
$4 T$	163	14	255
4V	2	50	1
Otherg .	2	9	4

Factors affecting landings. Some of the causes of annual variations in landings of subdivision 4 T cod are considered

- 14 -

Figure 7. Percentage and size distribution of cod discarded at sea by draggers fishing from northern New Brunswick in subdivision $4 T$ during 1956. Numbers of fish measured are recorded in brackets.
under environmental and fishing headings. The envifonmentai factors are described under "recruitment" and "growth"。 Effects of fishing are considered under "landed prive " and models".
(a) Recruitment. At the northern limit of the cod range, in subarea 1, Hansen and Hermann (1953) have observed that the years with the highest temperatures coincide with the best year-clesses in cod. Conversely, at the southern end of the cod range, in subarea 5, Martin (1953) has observed that hygh yields of cod were produced when surface temperatures were below the long-term average, and low yields of cod have been observed when average temperatures during the first year of development were above normal.

Mean surface water temperatures ir subdivision itro at Entry Island in the Magdalen Islands of wiebec; are compared with dominant year-classes of cod in Tabie i. Maximum spawning occurred in the latter part of June in 1755 , but soane spawang was observed as late as August: Mean monthiy temperatures for the period May to October (Lauzies lors) wat averages oc obtain an index of the annual varistion a mora semperan. during development. It may be noces that twse of the :"... dominant year-classes shown in fiedut w we fruytux when water temperatures weve telow the $z 0$ yra dear

 year 1939. The $19+1$ yearaclass, witch wes At risan for four years, was produced in the vijes, yar

Year	Terep.	Temp. below normal	```Dom1nant year- class```	Yoar	Teme		$\begin{gathered} \because y_{1}: x \\ y=1 a s k \end{gathered}$
1937	12.2			194.	12.3		X
1938	12.1			1948	11.2	χ	X
1939	11.3	X	X	1949	12.2		
1940	11.3	X		1950	11.8	X	X
1941	10.5	X	I	1951	12.8		
194	12.9			1952	12.5		
$19+3$	11.4	X		1953	12.0		
1944	11.9			1954	11.4	X	
1945	12.1			1955	11.9		
1946	11.9			1956	11.7		
				Mean	2i.9		

A general warming of subarea ${ }^{2}$ katers was obs: weat
during the years 1940 to 1953 (Lauzjer. $195-$ Some lrirotion of this trend is apparent ir the table, The: as no suegestion of a reduction in recruitmer as temperacures anada-en ratro are so many year-classes involves an tra land fres rf at at

Figure 8. Recaptures of 1799 cod tages off Miscou Ieland erd ireo tagged off
year (Figure 6) that landings do not appear to be greatiy affected by fluctuations in year-ciass strength. It should be noted, however, that the good year-classes, produced in the relatively cold years 1948 and 1950 were dominant in the peak landings of 1956.
(b) Growth. The growth rate of subdivision 4 I aci is or primary interest in the stury of offects of ewfromonts. fectors and fishing on landings. We have already uited that gioh wos

 on landings warrant examination,
 growth points for Caraquet cod, are showr; in figira ? The

 1956, but spectal simples of smil. cod wert t. tion ?

 fresh, head-on, gutted weight:

tur 1

In 1956. Crustaceans precominated an sma $i=0$, metres, and fish was the princtpa. fond litarey omi gerapod: ouphasilds and mysids were the mejoz rustacuar groups tierriak contributed 50% by volume of the fish dist. Fiourater, an am capelin were the other important fish found these coc.

The increased growth rate of wed appeared to result from increased availability of moribund herr*nge f heavy mortality of herring was observer in subdivision l. T in the yeers 1954 to 1956. It was caused by a fungas, Ichthycsporidium hoferi (Leim, 1955). During mest: selectinn studies ia 1954 large numbers of dead herring were observed in the ret, and it was noted that cod were frequently gorgea with afcaylne herring.

The density of cod as meesure ty cotch oer water fishing by "Gloucester" ciass dragyers. Aecrased fra : 9 to to 1953, as the amount of fishing on this stack by cariedian and Ruropean otter trawlers increased. The requesd density of sod in subdivision 4 m my have had an additive offect in tnoreaging the growth rate.

The increased growth and incriasing average size was associated with increasing landings in the gesrs 1955 and $19 \% 6$ Landinge dia not increase in numbers in 20 , but the iarger

Fisure 9. Growth in length of cod caught in the northern part of subdivision 4 F by Caraquet draggers during two periods, 1948-52 and 1956. Observed average lengths and Bertalanffy growth curves are shown for the August to october season. an equivalent weight scale has been added.
sizes of fast-growing ead brought about a zutsterticj. increase in landings by weight. Landiaes io Queber, New Firunswick, and Prince Edward Island totalied 118 myilion wornds, guted weight the largest landings on rerors.
(c) Landed price. In oyder to fojiow up Gozaor's
contention that economic factors oontribute to catch fluctuations in cod, average price per pound to New Brunswick fishermen is plotted in relation to landinge in Figure \bar{i}. Pifee fiuctuations did not appear to have a pronounced offect on post war landings. Landings and price we:e botr fiatirezy low a 2953 ,
 average price per poling i. farmer.

In 1921, and during the ins and prices were relativeiy World War, during the i 42 C	

Fishing effort ard latirn ine depression years. However, auriris year whea fich tizne no relatively high factors other that landed ,it: apperm our responsible for large fluctaattons ir landinge
(d) Models. Over and above :

 y1eld.

It is beiteve :c....... . .

up to the smallest marketabe ar a oted a w

to be considered.

a geriea of models have been calcuateo if igure the fupor-
tant variables involved are size ft first :apure an fishing
intensity. Relative yields of cod have teen determinec for twi
levels of natural mortality, two growth rates, ficu mesh sizeas
and a series of fishing mortalities. Yield vurves have been
drawn for the four mesh sizes, and ines representing three
levels of catch-per-unit-effort are shown for each model.

Ylelds were calculated on the basis of $10,000 \mathrm{fish}$, fully recruited to the fishery at 30 sentimetres. As noted in Figure ?, full recruitment at such a small size was not the case in 1956. Further studies may show that zalculatioas should be based on a much higher size at recruitment, for it is known that eod are differentialiy distributed by size and that small cod are not as avallable to commerciai fishermen as small haddock.

Age composition and tagging studies are still inadequate for good estimates of mortalities. The size and age compositions for the periods $19+8-49$ and 1950-53 suggest estimates of 15% and 30\%, reapectively, for total mortality. An estimate of total mortality rate for the period $1955-56$ was only 22% for ages 5 to 10 years (in 1955). This relatively low value resulted from the fact that abundance indices of two year-classes of large cod actualiy increased in 1.956. Returns from the 1955 tagging in this area are incomplete. Preliminary analysis suggests that the totaf instantaneous mortality rate for tagged fish was about .60 (45%). The true total instantaneous mortality rate as dotermined from age analysis, appears to have increased with the development of otter trawling to about .40 (33%). On these asaumptions estimates of instantaneous tagging, natural, and fishing mortality rates in 1955-56 were each . 20 (15x). Models have been calculated for instantaneous natural mortaisities of .12 and .20 , in order to cover the probable range of natural mortalities.

The two growth rates used in Figure 10 are based on the curves for 1948-52 and 1956, shown in Figure 9.

Selection curves for $2 \frac{1}{2}, 4 \frac{1}{2}, 5 \frac{1}{\frac{2}{2}}$ and $6 \frac{1}{\frac{1}{2}}$ inch mesin nets (ICNAF masure) were approximated by straight lines, with 50% retention lengths at $22,38,46$ and 54 centimetres, respectively to provide recruitment data (McCracken, 1957b).

An examination of the models shows that changes in growth or natural mortality can be expected to have marked effects on the stabilized yield. With a $4 \frac{1}{2}$ inch mesh, at instantaneous natural mortality rate (M) : Inch mesh, and instan fishing mortality rate (F) 2 an incress and that observed in 1955-56 would in an increase in growth such as A decrese in A decraase in natural mortality from .20 to $\cdot 12$ would have a similar offect on yield at the fast growth rate.

If growth and natural mortalities remain constant, a change in fishing intensity can be expected to affect the longtera yield. Lines of equal landings per unit of effort have been drawn in order to see the relationship between total yield and oatch-per-unit-effort. Catch-per-unit-effort decreases continuousiy as fishing intensity is increased. Total landings, on the other hand, increase to an optimun and then decrease with increased isishing. Such information is useful for a coneideration of greatest profit to fishermen, consistent with maximum landings.

For given growth, natural mortality, and fishing mortality rates, the yield increases as mesh size is increased. The modals show that the optimum mesh $81 z e$ is well above $6 \frac{1}{2}$ inches if growth is fast, or if growth is slow and fishing intensity is high. With slow growth and low fishing intensity optimum mesh size is about $5 \frac{1}{2}$ inches.

The calculated yields are based on catches rather than landings. They do not take account of the fact that some small

cod are discarded at sea. Wherever such rastage at sea is substantial, the gain in yield with lafge mesh rets will bs greater than that shown since the propertion of scl discarded is small as compared with haddock, we hate hosen to ignore this added advantage of large mesin nets in the modela.

The fluctuations in landings of sixbdivision it sod (Figure 4) are consistent wit; the effect oi fisntne irtenstry, size at first capture, and g. ait rite icwh inthe mouels. During depression years prises ach ianding wefe rulatively low. During war years prioes tructabed sin inodings ineseased
 increased with better prices in pist. what yeara fishine intensity increased, and the aze at rere captine was tern

On the pasis of these siludes of models fot the assot of the fishery, it is predicteg that the ancage $\quad 10 \%$ y can be increased by increasing asen sioe resi we ne it frein mesh size presently accepted for zabarea !. Whe ratum mesh

 can be deternined.

 would have to be adopted to produes a measarable stent a landings.

Suadivision it $\alpha \operatorname{cod}$

been in Shelburne County, Nova Scutia. Statistics of landings for the years 1938 to 1956 from the inshore grounds off shejourrie County (statistical unit area $4 \mathrm{XO}_{\text {, }}$ including Rosemay Banik) ate shown in Figure 1l. United States landings from these groands have been relatively small throughout the period, and they have been less than one million pounds annually since $19+6$. Totai landings varied between 10 and 14 million pounds arnually duriag
the years 1938 to 1942 , and $19+7$ to 1956 . but they ware between 16 and 18 million pounds during the years 194.4 to 1946 . As noted above for subdivision $4 T$, and for subares it as whole landings were unusually high at the end of World Wiz II.

The proportion of laree :od $\left\{\begin{array}{c}\mathrm{Z} \\ 20 \\ 0\end{array}\right.$
head-on, gutted) caught off southorn pow eretis (Figare II
was taken from United States statistics ay landrgs at tre

Figure 12. Percentage length and age distribution of cod landed at Lockeport, N. S., from instore gromide during the quarter November to January, 248 to 1951 anc $=953$-o 1955. Average lengths are noted, and numbers of fish measured and aged are resorded ir breckets.
major New England ports. As in zubarca 4 as a whols the pars
centage of large sod inereased during the latter part of the war, and the proportion of large vod was exeeptionaliy high during the years 1946 to 1948 .

Fishing effort records have been colleoted for more than half the boats landing at Lockeport, Shelburne courity, sinde 1946. Landings by market categories, and numbers of tubs of gear fished have been recorded. A the of gear represents an average of eleven 50-fathom Ines, with about 50 dafted hooks per ilne。 The annual variation in landings per tub is shown in Figure 11。 This index of abundance was highest when landings were highest In 1946 and 1952. Catch per tub of large $\operatorname{cod} 9$ orer 10 pounds. varied in the same manner as that of total cod.

Sizes and agea. The average sizes and ages of cut landed by hook-and-1ine fishermen from sabdiviston 4 X differ \ddagger it ran 7 respects from those landed by draggers from subaiviston $4 T$ (rigure 12). In general, the average length has been considerabis smaller than that of Caraquet cod, and the modal length has been in the scrod market category, below $2 \frac{1}{8}$ pounds, fresh, gutted weight. Size composition has been more stable during the years 1948 to 1955 than that observed at Caraquet, New Brunswick.

The comparison of size compositions of Lockeport and Caraquet cod becomes more meaning ful when interpreted in the light of age composition studies. Approximately one fifth of the cod measured were assigned to age groups by examining trestr otoliths. The cod fishery off Lockeport jepends on much younge: fish than that off Caraquet. Three-year.old cod rontribite. substantially to the fishery, and cod over 6 years are of sme: importance. As in the case of size compositionc age compositicn has been more stable at Lockeport than at craraque?.

The size and age compositions described represent. those for the quarter November to January. Thera are some seasonal variations in sizes and ages of cod at Lockeport. During the months of February to Aprilg larger cod are landec, although young, 4-year-old fish frequently dominate the landings. The older, mature cod spawn during this quarter. The propertion of large cod is considerably lower in the second and third quarters of the year (May to October) but $4+y e a r=o l d$ cod con* tinued to be dominant in landings. By the fourth quarter, November to January, younger, 3-year =o1d cod normally sontribate the largest numbers to the fishery.

Sizes discarded. There is little information available concerning the quantities and sizes of cod discarded at sea on inshore grounds off Shelburne County. It has been noted above that most of the cod tairen from this area have been eaught by. baited hooks. The smallest hooks used commercialiy for cod and haddock fishing in subarea 4 , \#l7 Mustad or \#6/O Pfieuger, are used at Lockeport. Fishermen have claimed that negligible quantities of cod are discarded at sea as too small for mar keting. Studies of hook selection by MeGracken (195\%) support this contention, in that the smallest cod taken with \#li hooks

$$
-26-
$$

Figure 13. Growth in length of cod landed from inshore grounds at Lockeport, N. S., by line fishermen during the years 1947 to 1956. Observed average lengths and a Bertalanffy growth curve are shown for the February to April quarter. an equivalent weight scale has been added.
were 31 centimetres long. Very few cod wera syaller thar the smallest 36 centimetre cod in comercial landings.

In 1953 a few observations on jsecards were obtained from data collected during bait experiments at Lookepcrt imartin and HeCracken, 1954). In Apri1, 1953, a sample of 20 d measured at sea had a mean length of 62 centimetres and 43% of the fiss were of scrod size, below 49 centimetres. A commercial sample taken at Lockeport at the same time had \because mana lengtn of 65 centimetres and 19% of the fish were scrud.

Some cod are discarded at ses in the southern Nova Scotia area, but the proportion wasted is much smeller than that observed in dragger fishing off northera New Brunswick. The proportion discarded by line fishing $1 s$ believed to be small. The proportion discarded by otser trawlers in subdicision 4X is unknown, but we do know that the total catch by tiss methor. is relatively small, and the proportion of laxge fish orer ? pounds) in the landings has averaged about 50% by weigt duradg the past 20 years. Most of these trawl coz wers saiaght in deep water, incidental to fishing for redfish.

Growth. The growth rate of southern Nova Scotia oot is described in Figure 13. Since no changs in growth rete compara:with that of subdivision $4 T$ was observed, one growth curve is shown, representing average growth during the years 104 to 1950°. The February to April quarter was selected becauss it was a per 1od of good sampling, growth stagnation, and large number; of yésre classes. A Bertalanffy growth curve was caicuistec fiom tre observed mean lengths of each age groum.

Examination of 325 gonads collerted ai Fseeport, Nox"a Scotia, from subdivision 4 X cod, showed that the size gt milick 50% matured was about 66 centimetres for maiesg and ajout 70 centimetres for females. Growth rate appears to decrease mors rapidily beyond maturity, at 6 to 7 years.

Cod have been longer for a given age in landings from subdivision 4 X than in those from subdivision 4 T , even in the years 1955-56 when cod growth in the Gulf of St. Lawrence wes me:trapis.

Growth in weight is fastest in young aod. Growth does not drop below 50% by weight per year until after the age of 5 years (58 centimetree or $3 \frac{1}{2}$ pounds). It will be noted below ticet losses by natural mortality are much smalier than gairi by growth. It is accordingly belleved to be advantageous to leave smail, fast-growing cod in the water until growth begins to slow dowr. The best size for first capture is undoubtediy well above the smallest sizes now landed from southern Nova Scotia grounds.

Tagaing. The distribution of recaptures from the onily poste war tagging of southern Nova Scotia cod in June tc Octoder, 1753. is hown in Figure ilt (McGracken, 1956). Recaptures weae mainiy taken by line fishermen from neighbouring inshore grounds. In contrast to the extengive seasonai migrations of cod obseryed

In the Gulf of St. Lawrence, the Lockeport tagging indiosted no pronounced seasonal movements. Howeyers more cod were recaptured deeper, at about 50 fathoms during "winterk months

There was a considerable amount of seasonal variation In the numbers of tags returned (Table II). Most tags were recovered during "sumer" months. Although large quantitiea of cod were caught during the "winter" season, the numbers of tags returned then were very small. The results of pre-war tagging by McKenzie (1956) indicate that the cod that move Into the Lockeport area during the "winteis months live to the east of the Shelburne County area in inshore waters during "summer" months.

It appears that this southern Ncra Scotia cod fishery depends largely on a resident stock of sca which dees not con tribute to the cod fisheries of other arezs. The fishery during "winter" months takes large numbers of cod which move irite the Lockeport area.

The number of tag recoverles, ty type of tag ana by season and year, is summarized in Tabie II. The intensity the fishery, and the high importance of fishing mo reaiter, relative to natural and tagging mortality ig shown ty the fa? that 60% of the disk tags have been recoveled.

Table II. Recoveries from cod tagad ofi Lcckepsris Ne See in May to 0etober, 125 .

Recoveries from 608 disk tags.

Year	May-Oct.	Hov. $\mathrm{A}_{\text {A }}$	20tay
1953-4	171 (28\%)	65 (22\%)	236 (39\%)
1954-5	105	6 (2x)	20.
195.5-6	8	3	12
'1956-7	4	1	5
Total	288 (47\%)	75 (12\%)	363 (60\%)

Recoveries from 933 Lea hydrostatic tags.

$1953-4$	$152(16 \%)$	$76(8 \%)$	$228(24 \%)$	
$1954-5$	77	2	79	
$1955-6$	3	0	3	
$1956-7$	1	0	1	
rota1	$233(25 \%)$	78	(8%)	$311(93 \%)$

Factors affecting landings. Some of the effects of the environment and fishing on landings of sod from subdivision 4 X are considered under the headings "recruitment", "landed prise" and "model".

Figure 15. Annual mean surface water temperatures at St. Andrews, N.B., in subdivision 4X (scale reversed); numbers of 3- and 4-year old cod larded per tub of gear fished by year-classes on inshore grounds off Lockeport, N.S., during the November to April season; numbers of cod contributed as 4- to 6-year-olds and total contributions by year-classes; annual lanaines of total and steak cod per tub of gear, ard total landings by the seme Lockeport boats, with the scale shiftec by 4 years.
(a) Recruitment. In the southera Nora Scctia area cod grow rapidly. They enter the fishery in large numbers a: the age of 3 and most of the cod die, largely because of ilshing, by the age of 6. Under these circumstances. $1=$ hs: Deen rosiswle in in years to examine the abundance of a number ci year-claszes dist after recruitment to the fishery. Fc: a few year...iasses we have determined the total contribution $\%$ the "Lockeacrt" fishery. Recent fluctuations in year-slass strength ase soas:30.ud in
 and in relation to landjegs on the other.

There was a close relationship between variations ia temperature during development and variations in tae abindarace of cod recruited to the fishery (Figure if). Recrust mant was relatively high when water temperatures were velativen low. Conversely, recruitment decreaser durine relativeiy wam ;esis. However, it should be noted that althongh wite temps: itases
 show a similar gradation. Sotac aun tactor as way lat. a or spawniag time might be of importance bres.
 old cod conformed with varlationz ini abmanee indix 5 a recruitment. Total contributions of year classes also varjed f.. a similar manner, but the 1943 year-class zontrttiuted wore oid cod than subsequent year=classes, posethiy besziss of les. intensive fishing.
 same pattern as variations $\pm r_{i}$ weight landel psitatubot -gex fished, and in total weight landed (Figure l5). In this

comparison the landings are out of phase with year-ciasses by 4 years since 4 -year-old cod are normaily dominant in landings. Variations are not expected to ccrrespond closely in such years as 1947, when landings included more old cod. Fluctwations in landings by the "Lockeport" boats conform with the rariations in total landings presented in Figure 11.

It is concluded that annual varxation in $y \in a r-i x s s$ strength has been a factor of primary impurtance in pestewar fluctuations in landings of cod from the southern Nova soffe area.

Year-class strength has been correlated vith water temperatures, but the relationship is not fuils understood. Cod larvae may have a better chance for survival in this area when water temperatures are relatively low. Alternativelys the basis factor involved may be annual variation in the movement of weter over the Scotian Shelf during the early peiagic life of cod.
(b) Landed price. Landings if irishore cos in ghelburas Gounty have been positively correiated with landed. price. Annuaz landings varied between 99 and 171 milition poinds whan landed price was 3 to 4 cents per pound. Landings varied tetween 5j and 132 million pounds when landed price was 1 to 2 sonts per peund. In general, both landings and landed price haro increasen duriné the period 1921 to 1953. As observed G-Gordon (2055) inatrmation: in cod landings have been partialiy affecter oy economis factors.

The average annual landed prices of zod is siciburce County are shown in relation to landings for the pericd 1933 40 1956 in Figure 11. The highest landings were made when inared prices were highest, but landings and landed price weze mat closely correlated auring this wartime ana post-var pelid.
 price of cod were lower between the two Wrat pars than they were during and after World War II. Although landings have been correlated with landed price, it is clear that other factors have been responsible for large fluctuaticis in landings.
(c) Model. In order to consider the effects or size at first capture and fishine interisity on the yield of subdivision $4 X$ cod, a mcdel of the "Lockeport" cod fistery has been drawn up. It is presented in two forms in figure le. Relative yielus of cod have been determined for one level of satural mortality, one growth rate, four sizes at first capture, and fiva levels of fishing intensity. In one panel an isopleth modei is shown. In the other, yield curves are presented for the varicus sizes at first capture, and lines representing three leveis of satch-per-unit-effort are shown.

Yields were calculated on the basis of $10,000 \mathrm{cod}$, fully recruited to the fishery at 30 centimetres. As notea above, this is the size at which rod first enter the commerclal fishery in southern Nova Scotia. Cod are viormaliy not fuliy recruited until they reach a length of abest 45 ventimetres.

A 50% retention length of about 40 centimetres would appear to describe the selection of "Lockeport" cod. Because of the lack of precise information on discards of cod, we have chosen to use a lower size for recruitment. The general conclusions are not affected.

Paloheimo (1957) has used the catch-per-unit-effort, age composition, and tagging data described above to determine natural and fishing mortalities of "Lockeport" cod. The total instantaneous mortality rate was estimated to be about . 60 (45\%) for the "summer" seasons. This gave values of .07 (5\%) for instantaneous natural mortality rate and . 53 (40%) for instantaneous fishing mortality rate. Since this does not take account of tagging mortality, an even lower natural mortality rate is implied. A consideration of confidence limits places the instantaneous natural mortality rate between . 00 (0\%) and .20 (18\%). Fishing mortality was high during the months of MayAugust, and low during the rest of the year when fishing moved to deeper water, and a different population of cod moved intc the area. The estimates of mortality rates were further obscured by the sudden decrease in numbers of recovered tags in the second and third years after tagging, possibly because of losses of tags under conditions of rapid growth. The instantaneous natural mortality rate used in the model was .20.

The growth rate used in calculating the model was based on the Bertalanffy curve shown in Figure 13.

The 50% retention lengths of $30,38,46$ and 54 centimetres correspond with mesh sizes of $3 \frac{1}{2}, 4 \frac{1}{2} 5 \frac{1}{2}$ and $6 \frac{1}{2}$ inches. Most of the "Lockeport" cod are caught on \#17 Mustad hooks? and these have a 50% retention length, comparable with a $4 \frac{1}{2}$ inch mesh, at about 38 centimetres (McGracken, 1957a).

A point describing the estimated post-war size at first capture and fishing intensity is marked on the model. The model shows that catch-per-unit-effort and landings can be increased by decreasing fishing intensity, or by increasing size at first capture. The greatest benefit is expected to result from an increase in size at first capture. This might be achieved by using a larger hook size in ine fishing and a larger mesh size in otter trawling. If the instantaneous natural mortality rate is lower than .20 , we can see from Figure 10 that the benefit of reduced fishing, or larger hook and mesh sizes, would be greater than that shown in Figure 16.

Since data are lacking on the effects of density on natural mortality and growth, optimum size for first capture has not been estimated. Only the direction of change for greater yields is clear.

The wartime increase in landings, shown in Figure il, is consistent with the effects of changes in fishing shown in the model. During the years $19+2$ and $19+3$ fishing by United States otter trawlers declined. In Canada, the number of men fishing and the number of tubs of trawl, as shown in annual
fisheries statistics for Sheiburne County, deainnea substantially In the years 1941 to 194.3. The net result was a decoease in fishing effort, a possibie net increase in size at first capttras and a slight reduction in cotal landings. In igut to 1946 the yield was substantially above the long term awerage, satch-per-undt-effort was higher than during post-war years, and the average size of cod increased. In post-war years as rishing intensity increased, landings, catch per writweffort, and average size of cod reverted to preswar Zevels.

It might be argued that a few good yearariasses couid have produced the increased landings ofserved during the iatter part of the war. This appears unikely since landyngs increased during the same years in subdivision 4 T and in subarea 4 as a whole, as in subdivision 4 X , and the year-2.esses anvoived must have differed greatly from one anea to arother besause of the very different growh rates in the different prpilations.

On the basis of these studser of a model and uf thr history of the fishery, it is predicted that the lung-temm sustained yield could be increased in subditisior 4 X by increasing hook and mesh sizes, or by decreasing fishing initensty.

Management

Now that it has been predicted that the ortaum sate for first capture of subarea 4 cod is considerably nigner than the 38 centimetres retention length already aseapted by ICNAF, it is desirable to give consideration to some of the practi:at problems involved in a further increase in gear sele:tion. in the first place, we are interested in the equivalent mesh sices and hook sizes for a series of cod sizes which naye commereiay. or biological significance. Secondly, we are soncerned with the effects of advantageous changes in aod~fishing gear on other species which are caught with cod.

In Table III a series of cod lengths are ilsted which have commercial and biological significance. The mesh and hook sizes which provide 50% retention of fish at these lengthe are also listed. The data on selection factor: for sod with manila codends, and 50% retention lengths for cod with a few of the standard commercial hooks, are taken from MoCracken (1957). Hie has shown that the selection factor (50% retention length/ equivalent manila mesh size) for sod is about $3.3 y$ and that the smallest standard commercial hook size, \#1? Mustad, is approxin mately equivalent in selective properties for cod to a $4 \frac{1}{2}$ inch manila mesh size (ICNAF measure).

The $4 \frac{1}{2}$ inch mesh size accepted for subarea 4 and the \#l7 hook size select cod at the smallest marketable size ón cod in Canada. Since smaller cod are not normaliy taken in very large numbers by the commercial fieet, the protestion offered to cod by this gear selection is small and the adrantages are not measurable.
Table III. Equivalent mesh and hook sizes for a series of cod sizes which have

The 5 $\frac{1}{2}$ inch mesh and \#14 hook sizes have a 50% retention length for cod at about 46 centimetres. This fish size is in the low-priced, small (scrod) market category. It is predicted that selection at this fish size would have 1ittle immediate effect on total landed value of cod, and that the long-term yield would be higher than that observed under present environmental and fishing conditions.

A $6 \frac{1}{2}$ inch mesh and a \#l2 hook would release all the scrod and the smallest medium cod. For subarea 4 as a whole the total landings and total landed value are predicted to be still higher for selection at this level. Only under conditions of low fishing intensity would we not expect increased landings.

A $7 \frac{1}{2}$ inch mesh and a \#11 hook would provide a 50% retention length for cod at about 63 centimetres. This lengin is close to the Canadian cull between small and medium markat. categories for green-salted cod (about 5 pounds fresh, headeoay gutted weight). The optimum size for first capture of cod may well be this high in subarea 4 but more information is neefed. It is of interest to note that the 1956 Report of the Ad Hoc Committee of the Permanent Commission ciaims an optimm mesh size fopllorth Sea cod of about 200 milinetres (8 inches).

In general then, size at first capture of subarea 4 cod can be increased to at least 50 centimetres with a small immediate loss in total landed value and a substantial longterm increase in total landings of larger, more valuable cod. This increase can be achieved with a mesh size of 6 inches and a hook size of about \#13 Mustad.

If size at first capture of cod were increased to 50 centimetres by controlling the sizes of meshes and hooks, whet would be the effects on landings of other groundish apenies? In order to give superficial consideration to this probleas subarea 4 landings of groundfish by species, subdivisions, and countries have been summarized for the years 1954 and 1955 (Figure 17).

In the Guif of St. Lawrence area (subdivisions $4 R, 4 S$ and 4) the dominant species is cod. Haddock is of relatively low importance in the area, and almost all the catch is taken from the southern part of subdivision $4 T$. The redfish catch is substantial, but this species is caught in deep water by otter trawlers fishing specifically for this species. Negilgible quantities of redfish are landed with landings of cod. Large catches of flounders, mainly American plaice, Hfppogiorsotdes platessotdes (Fabricius), are taken from subdivision 4 incidental to dragging for cod. The only other species of importance in groundfish landing from the Gulf of St. Lawrence is hake, Trophycia tennis (Mitchill), most of which are caught on baited hooks in the southern part or subdivision $4 T$.

In subdivisions $4 V$ to $4 X$, which inciude the offshore Nova Scotia banks, the species composition of groundfish landings 1s. more mixed than that of the Gulf of St. Lawrence. Haddook and pollock are of much greater importancen. In fishing for cod, haddock and flounders contribute substantially to the total landings.

Species composition of these groundfish landings differs from one country to another. The European countries, France, Portugal and Spain, have been primarily interested in cod, and particularly large cod, for salting. The Untted States has been most interested in redfish and haddock during recent years. Canadian landings have been primarily cods but about half the total groundfish landings have been other species, with haddock second to cod.

In recommending a $4 \frac{1}{2}$ inch wesh size for haddock fishing in subarea 5, Graham (1952) has pointed out that this is but a first step in management. A second step to about jit inch mesh (age 3 years and 50% retention at 44 centimetres) has been advocated by scientific advisers to ICNAF Pare: 5to further increase haddock landings. Optimum size for first capture of subarea 4 haddock may also well be about $+{ }_{4}$ centi. metres (equivalent mesh size $5 \frac{1}{2}$ inches and equivalear hook size \#17) (Doc. 8, ICNAF 1955). An increase in mesh size for subarea 4 cod to 5 inches is thus expected to have a beneficial effect on landings of haddock. The equivaient nook size for cod (about \#l 4 Mustad) might be too large for haudock fishing, but this may prove to be of little concern since most of the subarea 4 haddock are now caught in otter trawls.

Subarea 4 redfish are of little conceria here sinc: they are mainly caught independently of cod and haddock.

MeCracken (1957) has demonstrated a seleciion factor of 2.0 for plaice taken in manila codends, and similar selectivity for other flounders. The minimum size of plaice culled for commercial landings in Canada is about 35 centimetres. Jnder these circumstances, none of the marketable sizes of plaice would be lost to commercial landings by adopting a mesh size as high as $6 \frac{1}{2}$ inches. A similar conclusion presumabiy applies to other offshore flounder species. Since most flounders are taken in otter trawls, hook selection is of little concern for these species.

It is concluded that landings of the other major groundfish species would not decrease by the adoption of a 5t or 6 inch minimum mesh size in otter trawis used for cod-fishing in subarea 4. In the case of haddock, such action would probabily increase landings.

Research

Fluctuations in landings of subarea 4 cod have been related to both environmental factors and effects of fishing, but their relative importance is not yet clear. There is need for intensive research on cod and other groundfish species to permit more precise predictions of landings and improved estimates of the effects of restrictions on fishing prastices on the maximum sustained yield of cod and other groundfish
species. Research should be intensified along the following lines:
(1) Statistics -- (a) Statistics of past landings by European vessels should be obtained from log books and landing records of individual trips.
(b) Indices of abundance should be studied thoroughly in order to obtain a better understanding of fluctuations in stocks.
Sampling -- (a) Better data are needed on the size
and age composition of stocks and landings.
sizes of groundfish caught and discarded at sea is
required particularly.
(3) Ecology -- (a) The pelagic and deep-water distribution of groundfish is not sufficiently well known. Further exploration is needed to determine the relation of fishing to total stocks.
(b) What are the environmental factors controlling the distribution of groundfish?
(4) Recruitment --(a) What are the effects of temperature and larval drift on the strength of year-classes entering the fishery?
(b) Under what fishing conditions can
we expect optimum long-term recruitment?
Growth -- (a) Special sampling of small unmarketabla fish is requifed for more complete growth curves. (b) To what extent is growth dependent on climate, food and density?
(6) Natural mortality -- (a) It is important to determine the magnitude and variations of natural mortality at the smallest fish sizes now caught, under conditions of reduced fishing intensity.
(b) Is natural mortality density dependent?
(7) Fishing mortality -- Tagging studies should be continued to provide data on mortalities.
(8) Food -- What is the extent of annual variation in the abundance and availability of groundfish food supplies?
(9) Competition -- A study of fish food of various sizes and species of groundfish will provide data on competition and predation.
(10) Selection -- The selective properties of various hook sises and of trap nets are poorly understood.
(11) Models -- The effects of size at first capture and fishing intensity on long-term landings from representative populations of the major groundfish species can be better understood by the construction of models. There is need for more intensive work in this field.

$\cdots+1=$

A research program of thas magrinde $\pm=$ expensive and long-term, and predietions or the sfist x^{2} managements of the fisheries will improve wary siomiy. In sone wases the process can be speeded up by consilis. te the oddi in favour of restricting fisting oparations, art on this basis introduce experimental regulations whiti an be adjusted in accordance with observed changes in the ilshertes. This has been the approach to management of suberot 5 haddock, and the principle should be extended tc subarea ${ }^{4}$ tod, if methods of measuring the effects of management can be devejoped. Researar effort should accoraingly be concentrated on projeots which will provide base-line irformation in suficcient detailito permit evaluation of the effects of maragement. From this point of view, we should place researcherrhasis on detailed statistics and sanpiine of comperaial satrhes, ant the relation of these catches to total sto:ks. The triesta of environmental factors on landings shouid be datemmines as precisely as possible in order ti improv= the ars. iryon the effects of changes in size at fitat cifture or fisiont intensity on the yield from the fishezies.

Acknowledgements

This study of subarea L_{4} sod has been darizied out as a teamwork project of the groundflsh in restigation at the Biological Station in St. Andrews, No B. Mary of the pci. $1 t=$ considered in this paper have beer or will be repores in greater detail by the other scientists partioipating in groundfish research. I am particulariy fisebted to ja. Fo, McGracken for data on cod tagging and geaz seje:thor: to Mr. A. C. Kohler for data on age and growth of acd, and tc Mr. J. E. Paloheimo for analyses used in whe ocnstruct:ce of the models. A number of techniciars have sortributed the basic data. of these, M 。 DoNoFitageresid in sharge of sampling, and Mr. G.J.W. Sullivan, in charge of stacistios, were particularly helpful.

References

Fisheries Statistics of Canada, 1913-56. Dominion Bureau of Statistics, Ottawa.

Fishery Statistics of the United States, 1938-55.
Gordon, H. Scott. 1955. Economic factors in catch
fluctuations. J. Fish. Res. Bd. Canada, 12(1):85-92.
Graham, H. W. 1952. Mesh regulations to increase the yield of the Georges Bank haddock fishery. Inter. Comm. for the Northwest Atl. Fish., Second Ann. Rept. for 1951-52, pp. 23-33.

Graham, Michael. 1956. Sea Fisheries. Their investigation in the United Kingdom. E. Arnold, London.

Hachey, H. B. and H. J. McLellan. 1948 . Trends and cycles in surface temperatures of the Canadian Atlantic. J. Fish. Res. Bd. Canada, 7(6):355-362.
Hansen, Paul M. and F. Hermann. 1953. Fisken og Havet ved Gronland. Skrifter fra Danm. Fiskeri -og Havundersфgelser, Nr. 15, Kobenhavn.

International Commission for the Northwest Atlantic Fisheries. 1952. Second Ann. Rept. for the year 1951-52, Part 4 , Statistics of landings of groundfish from the Convention Area.

International Commission for the Northwest Atlantic Fisheries. 1954-57. Stat. Bull. Vol. 2-5, for the years 1952-55.

Lauzier, L. 1953. Coastal station data, Atlantic Coast. Ms. Rept. Fo. 33 , Atlantic Oceanographic Group, St. Andrews, N. B.

Lauzier, L. 1954 . Recent surface water temperatures along the Canadian Atlantic coast. Cold years - Warm years. Fish. Res. Bd. Canada, Atl. Prog. Rept., No. 58, pp. 6-1I.
Leim, A. H. 1955. Herring mortalities in the Bay of Chaleur in l955. Fish. Res. Bd. Canada, Atl. Prog. Rept., No. 62, pp. 30-32.

Marcotte, A. 1955. Rapport préliminaire de la station de Blologie Marine. Rapport genéral du Département des Pîcheries de la Province de Québec, 1953-54. Contr. Dépt. Pêch., Québec, No. 46.
Martin, W. R. 1953. Long-term prediction based on climatic changes. Paper presented to Comm. Biol. Invest., Ann. Meeting Fish. Res. Bd. Canada (unpub. Ms.).

Martin, W. R. and F. D. McCracken, 1954. Relative efficacy of baits for groundfish. Fish. Res. Bd. Canada, Atl. Prog. Rept., No. 50, pp. 17-21.

McCracken, F. D. 1956. Cod and haddock tagging off Lockeport, N. S. Fish. Res. Bd. Canada, Atl. Prog. Rept., No. 64, pp. 10-15.

MCCracken, F. D. 1957 ${ }^{\text {a }}$. Hook seletion for cod and haddock. Paper submitted to Joint Scientific Meeting of ICES/ICNAF/ FAO, 1957.

McGracken, F.D. $1957^{\text {b }}$. Selectio factors for cod and hadidock with codends of different ma rials. Paper submitted to Joint Scientific Meeting of NS/ICNMF/FAO, 1957.

McGracken, F. D. 1957°. Selection by large mesh codends of flatfish and redfish. Paper submitted to Joint Scientific Meeting of ICES/ICNAF/FAO, 1957.

McKenzie, R. A. 1956. Atlantic cod tagging off the southern Canadian mainland. Bull., Fish. Res. Bd. Canada, No. 105, 93 pp.

McKenzie, R. A. and G.F. M. Smith, 1955. Atlantic cod popilations along the Canadian mainland as shown by vertebral count studies. J. Fish. Res. Bd. Canada, 12(5):698-705.

McLellan, H. J. and L. Lauzier. 1956. The prediction of water temperatures. Canadian Fisherman, 43(9):11-12.

Paloheimo, J.E. 1957. Determination of natural and fishing mortalities; analysis of tag records off western Nova Scotia. Paper submitted to Joint Scientific Meeting of ICES/ICNAF/FAO, 1957.

Powles, P. M. 1957. Studies of feeding and reproduction of cod in southwestern Gulf of St. Lawrence. M.Sc. Thesis, University of Western Ontario, 1957.

Report of Ad Hoc Committee of the Permanent Commission. i956.
Templeman, W. 1955. Groundfish stocks of the western North Atlantic. Trans., 20th N. Amer. Wildilfe Conf., 1955, pp. 454-476.

Figure 18. Map of subarea 4 showing geographic locations mentioned in text.

