ANNUAL MLGTING - JUNL: 1962

Report No.l to IONAF Committee on : e esearch and fitatistics reparding the use of propeller data for the evaluation of fishing power
by Jan-ulof Traung
Chief, FAU Hishinr Boat Section

Abstract

At the Joint Joientific meeting of IUNAF, ICNO and tho in bisbun, jortugal, from 27 Vay to 3 June, $1 ; j 7$, a paper was wresented ment and Anilysis of fishing ouerations a deview. I contriguted an appendix to this paper discussing certain parameteru which could be

 used for ploting the fishinis power of brawlers mainly.It was stated that trawlers from one fort and of the same tie often had a certain relation between length, vearl, depth, power unc even neignt of the mast. By this it was meant that when comparing trawlers from one port cnly in did not really matter much wnich parameter one used.

However, the problem was more difficult when comparing trawlers from differerit norts, differeni countries arm of different ago. The length of trawlers is measured several different ways and, with the introduction of transom sterns in modern British trawlers, tae use of length could cause some confusion as to the real size of the vessel; gross register tumatise was considered to be roost representative ut the size of the vessel vit it siould pernaps have been luade much clearer in the paper that trawleri of the same fross lomage mignt have very different power of the propulsion plant. .

An explanation was riven of the dirferent powersattriouted to the propulsion plant which was intended to show how verj careful one nas to be with power ratings and how important it is always cu consider tne r.p.m. (revolvtions per minute) of the propeller. it was also indicated tnat trawlers did not always utilice the lull output of their engines while trawling; pernops it siould also have been emphasized that the percentsge used is quite different in various size groups of bawlers. "iany lons distance trawlers have their enfines mostly for steanins to and from far distant fisning gruands and only utilise a small part of unem for trawling. the appendix finished off by subgestinf various means of determining engine vutput and also proposing that the propeller could be used as an indicator of the thrust delivered by the agine.

In November $1-g\rangle$ i suggeste: that I'lifar should endeavour to include in future vessel lists infurmation on whe actual propellers used by the various trawlers corsther with a statement oithe r.pom. at which they work while trowlins. This would make it posioiole to determine for individual vessels a kind of "trawling number". nop "trawling number" was to be based on the thrust delivered by ine propeller. The resistance of trewlers at three t f four kiots iopd is verf low and the difference in the rosistance between trawhirs
of various desi.ns i:s still less. Thus it i. assumed that the "trawlinir number" can be based on the rropeller thrust disregarding completely the vessel resistance, in fact.the "trawlins number" would be proportional to the resistance of the trawl and would perhap sive a better linear relation when plottins fisaing power than lensth, norsepower uf gross tonnage had given. It is also felt that sucn a "trawlins number" would make possible comparisons between trawlers from one port and ancther and between those of une sise and another.

It was realized that such a number should preferably be based on the actual trawling speed. Trawling speed is however, seldom ineasured, skippers' judgments vary and, further, because currents filong the notton sometimes uiffer from those on the surface, even a correct measurement of the trawling speed misht contain errors. It was suggested that such a "trawling number" siould oe tried out in relation to a standiard speed, say of three knots, and that one should then simply assume that if the net is smaller than the standard, the trawlinys speed is higher or, vice versa, the "screenta water" would be approximately the same. It was admitted that this was a simplification because fish which were strong swinmer would naturally have greater diffjculty escaping if the trawling speed were higher.

It was suggested that the information on the propeller and the propeller r.p.m. shoudd be noted thile trawling in a wind force less than beaufurt 3. In hisher wind forces the r.p. m. of the engine would be increased in order to overcime the resistance of waves and wind. There would, however, be no more thrust delivered to the trawl and therefure its fishing power would not be influenced.
i'his proposial was consillered by ICNAF at its meeting in Hergen in 1960 ari it was decided to make a "pilot study of the possibility of using ! y ropeller spegifications and their operating r.p.m. as an index or \because shins power". It was suggested that a small number of trawlers (say ten) fishing in the ICNAF area should be selected for the study.

I recammended that we select the trawlers of different sizes and whose fisting powers had already been determind from statistic nf catch gnil reliated to herth f ross tonnage or horsepower. One would then be able to determine whether their fishing powers were better related to the propeller index. It was suggestod that it was most important tu get a very honest statement from the sxipper of the r.p.m. at which he lets his trawler run in a wind force below Be:uturt 3.
'lhe IVAR Vessel hist for 1959 cuntains intormation, for some trawlers, on the propeller imensions as well as the rop.m. at which the propeller is worxing while trawling in calm weatner. ; have calculated the thrust developed by the propellers for the tranling speeds siven and this has been listed in Table 1 . When these fiphres are plotted in relation to the nominal rating in $h . p$. っf the engines it is apparent that there is not a wery suod relation.

Thus it is clearly dangerous to use h.p. only, and it sugeents that there mas be a better relation between the thrust data and the fishing power than between the h.p, data. ilithout the fisning power data, this is naturally impossible to determine. A futher difficulty is that some of the ropom. particulars siven might not be true.

When working with the data it was felt that much might be mere desk data rather than actual infurmation from skippers. for example, the six Canadian buats having $5^{\prime \prime \prime} \times 36^{\prime \prime}$ propellers are all said to be trawling at exactly $266 \mathrm{r} . \mathrm{p} . \mathrm{ll}_{\mathrm{E}}$; this is hardly possible.

When working with the German data I was warmed by Dr. J. icnarfe, HAO Gear Technolofist, that the r.p.m. values given were probaily higher than those used during actual operations. It seened to him that the data given in the list were not obtained from the isippers themselves but rather consituted test data taken during the delivery trial. I the refore did not conclude my calculations on the German data but wrote to a personal contact in Germany to find out more, but I have not yet had an answer.

Some thing should perhaps be said avout using propeller data to calculate the thrust. In so called model testing tanks, series of related propeller models have been tested and the resulls plottea in various wajs. Propeller models with various number of blades, varying blade areas and varying relation between the pitch add the diameter have been tested. In order to calculate the thrust, we are interested in the curves for the thrust co-efficient K_{T}; Fiuure 1 shows such curvers for three blade propellers having 50% biade area, and pitch-diameter ratios P / D from 0.5 to 1.4 . If one wants to obtasn the trarust co-efficient while trawiling one has to calculate the speed co-efficient, i, which is a non-dimensional number made up of the ship's speed minus the wake divided by the propeller revolutions and the diameter of the propeller. The propeller of the Canadian trawler GERARD DIANE, entry No. 16 on the Canadian Sheet No.I, which is assumed to have a 50% propeller blade area, has three blades and its speed co-efficient during trawlinf is calculated as follows:-

$$
\begin{aligned}
& \Lambda=-\frac{V e}{n_{0}}, \text { where } V_{e}=\text { Fropeller speed in ft/sec. }= \\
& =0.8 \text { 'rrawling speed }= \\
& =0.8 .4 \text { knots. } 1.69=5.4 \\
& n=\text { revolutions per second }=
\end{aligned}
$$

$$
\begin{aligned}
& 60 \\
& D=\text { prop. diam. irfft. }=\frac{5 \underline{Z}^{\prime \prime}}{12}=4.33 \mathrm{ft} .
\end{aligned}
$$

thus $=\Lambda=\frac{+\frac{5}{2} \frac{4}{4.43 \cdot-----} 4.33}{4.282}=0.28$
The pitch-diameter ratio, I / D, is $\frac{36^{\prime \prime}}{\gamma 2^{\prime \prime}}=0.0 \% 3$, say 0.7
 0.2

```
The tinust is calculated from the following formula:-
\(T=K_{m} \cdot \rho \cdot n^{2} \cdot i^{4}\), where \(\rho=\) density factior for seawater
\(=1.988\)
```

trins $\mathrm{F}=0.2 \cdot 1.9 . j 0 \cdot 4.43^{2} \cdot 4.33^{4}=2790 \mathrm{lv} .=1.20$ ton (metric)

All the fisures in Table 1 have been calculated similarly and using the declared trawling speed. because this speed sems to be pather aritrafy, the question arises whether one could simplify detemination of the trawlins mumer oj asine simply O speed of advance. the K_{T} would tien be read off at tne speed co-efticiput $-\mathcal{L}=0$. Tais would make it possible to plot; the tarust coefficients for many different propellers on a iniple liargram imswhat similar to figuis $<$ instead of from a great number of diactams. Inter rolation for the exact ris ratio wuld be :impler an more precise. It would further make it possible to desicon some kint of calculation form with the nelp of wich even non-technical people could perhaps calculate the "trawlint numbers."

Uafortunately it has not deen poseible to devote as muca tire to this important matter us wcula nave been desi rabla. If, hotevir n, the fisnins pover could be fiven for a number of trawlere for miden we know the propeller data and the true r.p.m. (raica poritijs chuid be sbtained by conversation wita the skippers). 1 would be riad so investietate whether or not one coulid base the "tramlin" numoer" estimates on a diagram like fi.jure 2 an'l to dezign a iuitable fuma.
ro sumraize, it is surisested thot the I:NAF is + , s omitiee mipit arange to

1. Theck whe rop.m. particulars.
2. Ob ain fishing !over estimates for selected vessels for which propeller data are avalable.
3. investigate the exactneas of the suggestec simplified method fur calculating the: "traviing number."

		I		
Prawline tnrust in metric tons calculated from data jiven in$\qquad$$\qquad$ ICNir' $19 j 9$ Vessel List				
Country	Sheet No.	Row No.	Hocainal iruke h.p.	Trawling Thrust Mon
Canada	1	$\begin{aligned} & 16) \\ & 199 \\ & 20\} \\ & 24) \end{aligned}$	225	1.265
	2	16)		
	1	30	2: 5	1.35
	2	$\begin{gathered} \text { 28) } \\ 14 \\ 13 \\ 275 \end{gathered}$	650	6.57
	2	33	625	7.7
Prance	1	3		4.46
		6	1500	13.60
		7	1300	12.35
		8	2100	14.95
		14	1500	10.20
		17	1250	11.90
		20	1900	16.6 to 18.3
		2%	1200	12.75
		23	1200	10.25
		24	1000	6.9
		26	1200	13.75
		27	1500/1175	13.4
		$\begin{aligned} & 28 \\ & 30 \end{aligned}$	1100 1100	$\begin{aligned} & 6.5 \\ & 2.21 \text { to } 2.00 \end{aligned}$
Germany	1	1	1000	11.13
		2	375	12.3
		3	830	14.15
		4	1000	15.95
		12	1500	20. 1
Italy	1	2)	1200	9.35
Poland	1	2)	300	0.25
				!rop. iati: meit de arunc. Rindias gisen -nstexid dis.
	\wedge			
4			B6	

WHUKE 1

Turust soefficient, ril' Torque coofficient, \because and efficiency, Y, burves for proost j-bluded iropellers witi 50 blade irea and fitch/diabeter ratios, $\mathrm{B} / \mathrm{V}, \mathrm{U} . \dot{j}$ to l.4.

