ANNUAL MEETING-JUNE, 1963.
Length-Weight Relationship of Redfish Collected from
U. S. Landings in 1951
by Bradford E. Brown
Bureau of Commercial Fisheries Woods Hole, Mass.

## Introduction

Fishery investigations often require information on the relationship between length and weight of fish. Some studies, for example, require estimates of the number of fish caught, and these estimates can be obtained from length samples of the catch using weight at length data. This report contains the results of analysis of available data on length and weight of redfish caught in the Northwest Atlantic, collected by the United States Fish and Wildlife Service. Geographical and temporal variations are discussed, and equations for estimating weight at length are presented. The Data

Lengths in milimeters and weight in grams were recorded for redfish sampled from the commercial landings. Redfish ${ }^{*}$ are landed round, but have been stored on ice for varying periods up to two weeks. A total of 2000 fish, in 22 samples, were obtained from landings caught during the months of April through August 1951, in 12 sampling areas. In addition 300 more fish were taken in 6 samples from landings from mixed subareas. These sampling areas include fishing grounds in ICNAF Subareas

4 and 5. A two digit code was assigned to sampling units within these Subareas, (fig. 1). The first digit of the code indicates an area corresponding to an ICNAF Division. Division 4 T is considered as a separate sampling area, 30. Analysis

An equation of the form $-W=\underline{c l}^{b}$ was assumed. Lengths and weights were transformed by natural logarithims:

$$
y=\log _{e} W, x=\log _{e} 1
$$

Regressions were fitted by the least square method to the equation

$$
\text { where }-\begin{aligned}
y & =a+b x, \\
a & =\log _{e} c
\end{aligned}
$$

Notation for regression and covariance analyses throughout this report follows that of Snedecore (1956).

Comparisons between sexes
Regressions were first computed for each sex within each sample, (Table 1). The differences between regressions of males and females were tested by covariance analyses. The F value obtained by pooling all 28 analysis (Table 2) indicated that there was, on the average, no significant difference between the regressions. Five of the 28 individual comparisons were significantly different, but the pooled analysis showed that these differences were not consistent. Therefore, further analyses in this study were made with measurements of males and females combined within each sample.



B 5
Table 1.-- Continued

| Sampling Area | Month | Sex | Number | $\Sigma \mathrm{x}^{2}{ }^{1}$ | Exy ${ }^{2}$ | $\Sigma y^{2}{ }^{3}$ | SS ${ }^{4}$ | MS ${ }^{5}$ | b | a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $42+43$ | July |  | 54 | 0.53926 | 1.49829 | 4. 42039 | 0.2575 | 0.0050 | 2.778 | -9.822 |
|  |  |  | 96 | 1. 51474 | 4. 25208 | 12.92551 | 0.9894 | 0.0105 | 2.807 | -9.930 |
|  |  | Total | 150 | 2. 38788 | 6.88092 | 21.16943 | 1. 3414 | 0.0091 | 2.881 | -10.380 |
| 43 | Aug |  | 61 | 0.44415 | 1. 14423 | 3. 20282 | 0. 2551 | 0.0043 | 2.576 | -8.652 |
|  |  |  | 89 | 0.91122 | 2.72397 | 8. 74197 | 0. 5991 | 0. 0059 | 2.989 | -11.012 |
|  |  | Total | 150 | 2. 03406 | $5.887 \div 5$ | 17.95642 | 0. 9156 | 0.0062 | 2.894 | -10.461 |
| 51 | June |  | 7 | 0.03926 | 0.11020 | 0.34127 | 0.0319 | 0.0064 | 2.807 | -9.959 |
|  |  |  | 43 | 0.59723 | 1.60063 | 4. 46735 | 0.1775 | 0.0043 | 2.680 | -9.239 |
|  |  | Total | 50 | 0.72675 | 1.95692 | 5. 47993 | 0.2105 | 0.0044 | 2. 693 | -9.312 |
|  | Aug |  | 25 | 0.22757 | 0.62303 | 1. 79704 | 0.0913 | 0.0040 | 2.738 | -9.641 |
|  |  |  | 25 | 0.33868 | 0.88557 | 2. 39962 | 0.0841 | 0.0037 | 2.615 | -8.855 |
|  |  | Total | 50 | 0.81978 | 2. 34947 | 6.98615 | 0. 2526 | 0.0053 | 2.866 | -10.324 |
| 58 | Aug |  | 13 | 0.06397 | 0.17929 | 0.53153 | 0.0290 | 0.0026 | 2.803 | -9.945 |
|  |  |  | 37 | 0. 39971 | 1.17958 | 3.68097 | 0.1106 | 0.0032 | 3.027 | -11.223 |
|  |  | Total | 50 | 0.54007 | 1. 57463 | 4.75157 | 0.1606 | 0.0033 | 2.916 | -10.592 |

Table 1, -- Continued

| $\begin{aligned} & \text { Samping } \\ & \text { Area } \end{aligned}$ | Month | Sex | Number | $\Sigma x^{2}$ | $\Sigma x y^{2}$ | $E y^{2}$ | SS ${ }^{4}$ | MS ${ }^{5}$ | b | a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | April |  | 11 | 0.04716 | 0.11662 | 0.33595 | 0.0476 | 0.0053 | 2.473 | -8. 207 |
|  |  |  | 39 | 0.23698 | 0.73070 | 2.44644 | 0.1935 | 0.0052 | 3.083 | -11.492 |
|  |  | Total | 50 | 0.36545 | 1. $17 \pm 24$ | 4.09470 | 0.3217 | 0.0067 | 3.213 | -12. 240 |
| 63 | May |  | 67 | 0.52769 | 1.49988 | 4.94739 | 0.6844 | 0.0105 | 2.842 | -10.244 |
|  |  |  | 83 | 1. 09058 | 3. 38931 | 11.07156 | 0.5382 | 0.0066 | 3. 108 | -11.709 |
|  |  | Total | 150 | 1.95032 | 5.88641 | 19.01575 | 1. 2495 | 0.0084 | 3.018 | -11.209 |
|  | June |  | 63 | 1. 05229 | 3.15135 | 9.78461 | 0.3471 | 0.0057 | 2.995 | -11.086 |
|  |  |  | 87 | 1.23654 | 3.38153 | 15.11810 | 5.8707 | 0.0691 | 2.735 | -9.602 i |
|  |  | Total | 150 | 2.70966 | 7.92694 | 29.52191 | 6.3321 | 0.0428 | 2.925 | $-10.683$ |
|  | July |  | 38 | 0.13437 | 0.40981 | 1.51819 | 0.2683 | 0.0074 | 3.050 | -11.373 |
|  |  |  | 62 | 1.08171 | 3.19145 | 9.73251 | 0.3165 | 0.0053 | 2.950 | -10.835 |
|  |  | Total | 100 | 1. 37918 | 4.06433 | 12.56595 | 0.0589 | 0.0060 | 2.947 | -10.813 |
|  | Aug |  | 18 | 0.28873 | 0.85915 | 2.66644 | 0.1099 | 0.0069 | 2.976 | -11.004 |
|  |  |  | 32 | 0.43103 | 1. 20313 | 3.59970 | 0.1817 | 0.0061 | 2.791 | -10.007 |
|  |  | Total | 50 | 0.89064 | 2. 54128 | 7.54912 | 0.2981 | 0.0062 | 2.853 | $-10.347$ |

Table 1.-- Continued

| Sampling Area | Month | Sex | Number | $\Sigma \mathrm{x}^{2}$ | $\Sigma x y^{2}$ | $\Sigma y^{2}{ }^{3}$ | SS ${ }^{4}$ | MS ${ }^{5}$ | $b$ | a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | April |  | 45 | 0.37834 | 1.19043 | 3. 94307 | 0.1974 | 0.0046 | 3.146 | $-11.887$ |
|  |  |  | 55 | 0.88841 | 2.91183 | 9.91516 | 0.3714 | 0.0070 | 3.278 | -12.600 |
|  |  | Total | 100 | 1.41400 | 4. 61426 | 15.63428 | 0.5767 | 0.0059 | 3.263 | -12.527 |
|  | May |  | 77 | 0.75061 | 2.29163 | 7.42410 | 0.4277 | 0.0057 | 3.053 | -11.409 |
|  |  |  | 123 | 2.33334 | 7.87085 | 27.32233 | 0.7723 | 0.0064 | 3. 373 | $-13.183$ |
|  |  | Total | 200 | 4. 04510 | 13.41010 | 45.71014 | 1.2538 | 0.0063 | 3.315 | -12.857 |
|  | June |  | 36 | 0.22650 | 0.64049 | 2.10001 | 0.2889 | 0.0085 | 2.828 | -10.143 |
|  |  |  | 64 | 0.67230 | 2.09985 | 6.90146 | 0.3428 | 0.0055 | 3.123 | -11.785 |
|  |  | Total | 100 | 1.21777 | 3.73599 | 12.10504 | 0.6434 | 0.0066 | 3.068 | -11.473 |
|  | July |  | 39 | 0.37099 | 1.16214 | 3.95193 | 0.3115 | 0.0084 | 3.132 | -11.831 |
|  |  |  | 61 | 1. 08276 | 3. 26459 | 10.38724 | 0.5443 | 0.0092 | 3.015 | -11.203 |
|  |  | Total | 100 | 1.51419 | 4.58112 | 14.73584 | 0.8759 | 0.0089 | 3.025 | -11.252 |
| 21 | May |  | 25 | 0.07618 | 0.23795 | 0.79446 | 0.0512 | 0.0022 | 3. 123 | -11.811 |
|  |  |  | 25 | 0.25889 | 0.82442 | 2.68815 | 0.0628 | 0.0027 | 3.184 | -12.167 |
|  |  | Total | 50 | 0.57736 | 1. 80443 | 5.75635 | 0.1170 | 0.0024 | 3.125 | -11.825 |

Table 1. -- Continued

| $\begin{aligned} & \text { Sampling } \\ & \text { Area } \end{aligned}$ | Month | Sex | Number | $\Sigma x^{2}$ | Exy ${ }^{2}$ | $\Sigma y^{2}{ }^{3}$ | SS ${ }^{4}$ | MS ${ }^{5}$ | $b$ | a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | June | Total | 29 | 9.34754 | 1.07932 | 3.47733 | 0.1254 | 0.0046 | 3.106 | -11.700 |
|  |  |  | 21 | 0.35405 | 1. 11313 | 3.58475 | 0.0851 | 0.0045 | 3. 144 | -11.950 |
|  | Aug |  | 50 | 0.89661 | 2.75110 | 8. 66153 | 0.2202 | 0.0046 | 3.068 | -11.504 |
|  |  |  | 24 | 0.59193 | 1.71435 | 5. 22678 | 0.2617 | 0.0119 | 2,896 | -10.492 |
|  |  |  | 26 | 0.24429 | 0.72714 | 2.22960 | 0.0652 | 0.0027 | 2.976 | -10.986 |
| $41-43-31$ | June | Total | 50 | 1.02368 | 2.92856 | 8.72264 | 0.3446 | 0.0072 | 2.861 | -10.312 |
|  |  |  | 16 | 0.03964 | 0.12026 | 0.43403 | 0.0692 | 0.0049 | 3. 034 | -11.305 |
|  |  |  | 34 | 0.09395 | 0.24011 | 0.69318 | 0.0795 | 0.0025 | 2.556 | -8. 5860 |
| 14-21 | July | Total | 50 | 0.38318 | 1. 04057 | 2.98045 | 0.1546 | 0.0032 | 2.716 | -9. 511 |
|  |  |  | 22 | 0.21929 | 0.66551 | 2.13745 | 0.1177 | 0.0059 | 3.035 | -11.302 |
|  |  |  | 28 | 0.56795 | 1.72772 | 5.42021 | 0.1644 | 0.0063 | 3.042 | -11.346 |
| $12+14$ | Aug | Total | 50 | 0.90088 | 2.73430 | 8. 57924 | 0.2802 | 0.0058 | 3.035 | -11.306 |
|  |  |  | 21 | 0.26140 | 0.76772 | 2.39729 | 0.1425 | 0.0075 | 2.937 | -10.741 |
|  |  |  | 29 | 0.64259 | 1. 80846 | 5. 37695 | 0.2873 | 0.0106 | 2.814 | -10.027 |
|  |  | Total | 50 | 1.09438 | 3. 16837 | 9.61548 | 0.4426 | 0.0092 | 2.895 | -10.495 |

$$
-9-
$$

$$
\begin{aligned}
& \text { ㅍ } / \Sigma x^{2}=\Sigma X^{2}-(\Sigma X)^{2} / N \\
& \underline{2} / \Sigma x y=\Sigma X Y-(\Sigma X)(\Sigma Y) / N \\
& \underline{3} / \Sigma y^{2}=\Sigma Y^{2}-(\Sigma Y)^{2} / N \\
& \underline{4} / S S=\Sigma y^{2}-(\Sigma x y) / \Sigma x^{2} \\
& \underline{5} / \mathrm{MS}=S S / \mathbb{N}-2)
\end{aligned}
$$

Table 2. --Pooled analysis of covariance between sexes.

| Source of variation | DF | SS | MS | F |
| ---: | :---: | :---: | :---: | :---: |
| Total | 2244 | 19.8526 | 0.0088 |  |
| Common | 2216 | 19.8219 | .0089 |  |
| Within | 2188 | 19.5048 | 0.0089 |  |
| Between regression <br> coefficients | 28 | 0.3171 | 0.0113 | 1.27 |
| Between adjusted <br> means | 28 | 0.0307 | 0.0011 | 0.012 |

## Comparisons among month and areas

Differences among areas-within-months (Table 3) and among months-within-areas (Table 4), were studied by both separate and pooled covariance analyses. The differences in adjusted means among areas-within-months were highly significant in the pooled analyses, and in all but one of the individual months. This could well indicate that redfish within each area comprise independent stock units. It most certainly means that the condition of the fish were different among the various areas within the same months.

The adjusted means were significantly different for sampling area 30 and for Subarea 4 in the pooled analyses of covariance among months-within-areas, although two of the three individual sampling areas did not show such differences. However, in the pooled analyses for Subarea 5 and Subareas 4 and 5 combined, the regression coefficients were significantly different. In this case, the further test of adjusted means was superfluous.

Gonadal condition undoubtedly changed throughout the months studied herein, which include the period of extrusion of the young. As only mature fish would experience these changes, it was possible that differences; in the proportion of mature fish from sample to sample could have been responsible for the differences in slopes.

Table 3.--Redfish length-weight regressions: Analysis of covariance among Areas within months.

| ICNAF <br> Subarea | 4 | 4 | 4 | 4 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Month | April | May | June | July | August |
| N | 150 | 300 | 250 | 250 | 300 |
| M. S. for total <br> regression | 0.0074 | 0.0078 | 0.0289 | 0.0083 | 0.0065 |
| M. S. for common <br> regression | 0.0074 | 0.0077 | 0.0287 | 0.0078 | 0.0055 |
| M.S. within <br> samples | 0.0074 | 0.0077 | 0.0287 | 0.0078 | 0.0056 |
| M. S. arnong <br> regression <br> coefficients | 0.0099 | 0.0205 | 0.0185 | 0.0037 | 0.0006 |
| M. S. among <br> adjusted means | 0.0090 | $0.0469 *$ | 0.0697 | $0.1425 * *$ | $0.1083 * *$ |


| Area | 4 pooled, | 5 | 5 | 5 pooled, | 4\&5 pooled, |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Month | All months | May | June | All months | All months |
| M | 1250 | 250 | 150 | 400 | 1650 |
| M.S.for total <br> regression | 0.0118 | 0.0058 | 0.0060 | 0.0060 | 0.0104 |
| M.S. for common <br> regression | 0.0114 | 0.0057 | 0.0059 | 0.0057 | 0.0100 |
| M.S. within <br> samples | 0.0114 | 0.0058 | 0.0059 | 0.0057 | 0.0100 |
| M.S. among <br> regression <br> coefficients | 0.0090 | 0.0181 | 0.0001 | 0.0090 | 0.0090 |
| M.S. among <br> adjusted means | $0.0828 * *$ | $0.0741 * *$ | $0.0327 *$ | $0.0534 * *$ | $0.0770 * *$ |

## * 5\% level of significance

** $1 \%$ level of simnificance

Table 4.--Redfish length-weight regressions: Analysis of covariance among months within Areas.

| Area | 30 | 42 \& 43 | 51. | 63 P | Pooled sub area 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N | 100 | 550 | 100 | 450 | 1100 |
| M. S. for total regression | 0.0083 | 0.0081 | 0.0050 | 0.0192 | 0.0124 |
| M.S. for common regression | 0.0070 | 0.0075 | 0.0049 | 0.0191 | 0.0120 |
| M. S. within samples | 0.0089 | 0.0075 | 0.0048 | 0.0192 | 0.0120 |
| M.S. among regression coefficients | 0.0070 | 0.0152 | 0.0116 | 0.0063 | 0.0108 |
| M.S. among adjusted means | 0.1332* | $0.1273 \% *$ | 0.0151 | 0.0390 | 0.0719** |
| Area | 14 | $21 \& 22$ | $\begin{aligned} & \text { Pooled sub- } \\ & \text { area } 5 \end{aligned}$ | Pooled subareas 4 \& 5 |  |
| M | 500 | 150 | 650 | 1750 |  |
| M. S. for total regression | 0.0077 | 0.0049 | 0.0071 | 0.0104 |  |
| M.S. for common regression | . 0.0077 | 0.0049 | 0.0070 | 0.0100 |  |
| M.S. within samples | 0.0074 | 0.0047 | 0.0068 | 0.0101 | - |
| M.S. among regression coefficients | $0.0536 * *$ | 0.0165 | $0.0387 \% *$ | 0.0225** |  |
| M.S. among adjusted means | 0.0143 | 0.0098 | 0.0125 | 0.0472 |  |

* $5 \%$ level of significance
** $1 \%$ level of significance

To examine the above hypothesis, the samples were divided into mature and immature fish, and covariance analyses made separately on these two groups to test differences among months within an area. From data on size at maturity provided by George Kelly, (U. S. Fish and Wildlife Service, Woods Hole, Massachusetts unpublished data), the author decided to use the following approximate dividing lines between mature and immature fish: Areas 14, 51, and 63, 25 mm . ; Areas 21 and $22,26 \mathrm{~mm}$. ; and Areas 42 and 43, 29 mm . In the pooled covariance analyses (Table 5) the immature fish did not show significant differences among months. However, slope differences were still significant for the mature fish. 'Therefore, the slope differences observed in the original analyses did not appear to be explainable by differing proportions of mature and immature fish in the samples. The reason for the apparent change in relative rate of growth among months is not known.

The assumption that there was no inter-action between months and areas was made in order to test separately differences among months-within-areas and among areas-within-months. Inspection of Table 6 leads to the conclusion that such interactions are probable. The $b$ values tended to decrease from April to August for each area, and increase from North to South for each month. The values were generally lower for samples from Subarea 4 than for Subarea 5 for corresponding months. However, when b values for samples taken in June and July in Subarea 5 are compared with those from Subarea 4 taken in April and May,

Table $6 .-$-Regression 3 tatistics for redfish by month and area.

Table B. .. Continued

they are approximately equal. Further studies are necessary to investigate the possibility of interaction. Differences in latitude between Subareas 4 and 5 suggest the possibility that changes in environmental factors, which may affect condition of fish, occur at different times in the Subareas. Such changes could produce an interaction between months and areas.

Estimators of length-weight conversion
The data examined in this study indicated that in most cases a separate estimating equation would be desirable for each month and area. As data was lacking in many cells, such a procedure would not be practical. In addition, further analysis of within cell variation is desired. In combining regression equations where significant differences exisi, the common equation is the least biased estimator. The parameters of the estimating equation $\log _{e} W=a+b \log _{e} 1$ necessary for converting length to weight are given in Table 6 for each area and month, as well as the areas and months combined.

The error mean square of the pooled analysis of covariance among areas-within-months for Subareas $4+5$ ( 0.086 ) was greater than that for months-within areas (0.070). This indicated that differences between areas were freater han those between months. When Subareas 4 and 5 were combined, the pooled within mean square for month-within-areas was considerably larger than that
for Subarea 5 separately, and only sightly less than the within mean square for Subarea 4, (Table 4). The b values for Subarea 5 are also generally higher than those for Subarea 4, and those from sampling area 30 were lower still. These observations indicated that a single equation may be used for the Subarea 5 , for sampling area 30, (Division T of Subarea 4) and Division V, W, and X of Subarea 4, without too much loss in precision, depending, of course, on the purposes to which the data are put. Sample size

The formula:

$$
(\bar{y}+t / .05!S \bar{y}) \cdots(y-1.05 S \bar{y})=\frac{S y}{/ \bar{N}^{\prime}} \times 1^{\prime} .05
$$

where $t$ was chosen at ( $\mathrm{N}-2$ ) degrees of freedom was used to estimate requirements of sample size for future lenglh-weight sampling. The pooled estimate of the within mean square (0.01) for area 21 and area 22 combined (Tables 2 and 3) was used as an estimate of Sy . $x^{2}$.

Table 7 gives the widtlis of the confidence intervals for various values of $N$. These data indicate that there is little to be gained by increasing size above 150 fish , and that 100 fish per sample would be sufficient for most purposes.

Table 7. - Confidence intervals for various sample sizes.

| Number of fish | Confidence interval <br> in grams |
| :---: | :---: |
| 25 | 24 |
| 50 | 17 |
| 75 | 14 |
| 100 | 12 |
| 150 | 10 |
| 250 | 8 |
| 500 | 7 |

## Literature Cited

Snedecore, George W.
1956. Statistical Methods, 5th cd., Iowa State College Press, Ames Iowa XIII, 534 pp.

