Report on Canadian participation in NORWESTLANT 2
May-June, 1963

Two Canadian ships CSS "Baffin" and CNAV "Sackville" participated in the NORWESTLANT-2 survey from May 21 -June 16, 1963. The "Baffin", being an ice strengthened vessel, worked the northern region of the Labrador Sea and Davis Strait, while "Sackville" occupied the stations in the Central Labrador Sea in conjunction with oceanographic sections of Canadian interest, Fig. 1.

Concurrent with these surveys, Canada and the United States agreed to a joint survey of the Labrador and Baffin Coasts during the period these regions were ice covered. The United States Navy provided the USS "Atka" and agreed to occupy ICNAF stations located within the ice limits. The "Atka" was able to occupy all the stations on the Labrador Coast, but was unfortunately damaged by ice off Baffin Island and forced to abandon further work.

The chemical and physical data from all three ships were processed and made available to ICNAF by the Canadian Oceanographic Data Centre. Special thanks are owed to the U.S. Naval Oceanographic Office for their assistance in providing the "Atka" and making the data available to ICNAF.

The analyses of the biological data were undertaken by the Fisheries Research Board's Biological Station, St. John's, Newfoundland, and the Arctic Unit, Montreal.

Reports covering Canadian participation are the following:

1) Wells, R.

Egg and larval collections by CGS Baffin and CNAV Sackville off West Greenland 1963 (NORWESTLANT II) ICNAF 1964 Meeting Document No. 53
2) Campbell, N.J., J.R.N.Lazier, and R.H. Loucks. Preliminary Assessment of physical oceanography of Labrador Sea during NORWESTLANT-2, 1963. ICNAF 1964 Meeting Document No. 54
3) Platford, R.F. Preliminary report on Canadian program on chemical oc eanography during NOR WESTLANT - 2, 1963. ICNAF 1964 Meeting Document No. 55
4) Bursa, Adam S. Preliminary observations on ICNAF NORWESTLANT 2. Canadian phytoplankton collections. ICNAF 1964 Meeting Document No. 63
5) Grainger, E.H. Preliminary statement on ICNAF NORWESTLANT 2. Canadian zooplankton collections. ICNAF 1964 Meeting Document No. 64

Cruise Summaries

Cruise summaries of the survey work carried out by CSS "Baffin" and CNAV "Sackville" were prepared and distributed to the ICNAF participants on completion of the survey. Provisional cross-sectional drawings of the physical and chemical results were prepared for the Madrid meeting 6 of the NORWEST LANT coordinating committee (7 October 1963), but the drawings have now been updated as
recommended by Grasshoff and Platford. These are incorporated in the pertinent reports listed above.

GEBCO

The GEBCO sheets were prepared by the Canadian Hydrographic Service from the track soundings of CSS "Baffin" and CNAV "Sackville" and submitted to Mr. A.J. Lee. "Baffin" was equipped with an Alden Precision Graphic Recorder and an Edo recorder and transducer. "Sackville" was equipped with a Westrex Precision Depth Recorder, and an Edo recorder and transducer.

Oceanographic Data Processing

All countries have submitted their physical and chemical oceanographic data to the Canadian Oceanographic Data Centre for processing and listing. Provisional copies of all data were distributed in April, 1964. Changes or corrections received by CODC will be allowed to accumulate until June 1, 1964 at which time revisions will be prepared and distributed to the participants. The data listings and distribu tions are summarized as follows:

ICNAF NORWESTLANT 1-3

CANADA	Sackville	CODC Ref:	1801-63-004
	Baffin	CODC Ref:	1801-63-003
DENMARK	Dana	CODC Ref:	2601-63-002
	Dana	CODC Ref:	2601-63-003
FRANCE	Thalassa	CODC Ref:	3501-63-001
ICELAND	Aegir	CODC:Ref:	4601-63-002
NOR WA Y	G. O. Sars	CODC Ref:	5801-63-001
UNITED KINGDOM	Ernest Holt	CODC Ref:	7401-63-003
	Ernest Holt	CODC Ref:	7401-63-005
	Explorer	CODC Ref:	7402-63-001
U.S.S.R.	Ac. Knipovich	CODC Ref:	9001-63-001
	Topseda	CODC Ref:	9001-63-002
	Ac. Knipovich	CODC Ref:	9001-63-003
WEST GERMANY	Anton Dohrn	CODC Ref:	0601-63-069

ICNAF Support

Distribution

CANADA	Dr.R.W. Trites,
	A/Oceanographer-in-Charge,
	Atlantic Oceanographic Group
	Bedford Institute of Oceanography
	P.O. Box 1006, Dartmouth, N.S.
	Dr. N. J. Campbell
	Chief Oceanographer
	Marine Sciences Branch
	Department of Mines and Technical Surveys
	Ottawa, Ontario.
DENMARK	Mr. Frede Hermann
	Danmarks Fiskeri-og Havunders ϕ gelser
	Charlottenlund Slot
	Charlottenlund, Denmark
FRANCE	Dr. R. Letaconnoux
	Institut Scientifique et Technique des Pêches Maritimes
	59 Avenue Raymond-Poincare, Paris XVI eme, France.
ICELAND	Dr. Jakob Magnusson
	Atvinnudeild Haskolans-Fiskedeild
	4 Skulagata, Reykjavik, Iceland.
	Attention: Mr. Svend-Aage Malmberg
NOR WAY	Dr. J. Eggvin, Director
	Fiskeridir ektoratets Havforskningsinstitutt
	Oceanografisk Avdeling, Nordnesparken 2
	Bergen 5, Norway.
	Attention: Mr. J. Blindheim
$\begin{aligned} & \text { UNITED } \\ & \text { KINGDOM } \end{aligned}$	Mr.A.J. Lee, Ministry of Agriculture
	Fisheries and Food, Fisheries Laboratory,
	Lowestoft, Suffolk, England.
	Dr. John B. Tait, Department of Agriculture and Fisheries for Scotland, Marine Laboratory
	P.O. Box 101, Victoria Road, Aberdeen, U.K.
U.S.S.R.	Dr.A.S. Bogdanov, Director of VNIRO
	Union Research Institute for Marine Fisheries and Oceano-
	17 V . Krasnoselskaya, Moscow, USSR. graphy
	Attn: Dr. V. V. Rossov, Pinro, Kolskaya Str. Murmansk, U.S.S.R.
$\frac{\text { WEST }}{\text { GERMANY }}$	Prof. Dr. G. Dietrich, Institut fur Meereskunde der Univer-
	Hohenbergstrasse 2, Kiel, sitat Kiel,
	West Germany
	Attention: Dr. K. Grasshoff (two sets)
EXECUTIVE	Mr.L. R. Day
SECRETARY	International Commission for the Northwest Atlantic Fisheries
ICNAF	Bedford Institute of Oceanography
	P.O. Box 638
	Dartmouth, N.S., Canada.

IGY WDC	Dr.W.C. Jacobs
"A"	Director,
	World Data Centre A
	Washington, D. C. 20390, U.S.A.
IGY WDC	Dr. K. T. Logvinov
"B"	Director of the Institute
	World Data Centre BI
	Institute of Aeroclimatology
	Moscow, B-296, Molodezhnaya 3
ICES	Mr. Jens Smed
	Conseil Permanent International pour l'Exploration de la Mer Charlottenlund Slot
	Denmark

Program and Methods
The methods and analyses employed are briefly summarized in this report and attached Tables I and II. Referencesto the specific techniques employed on the survey and in the laboratory are contained in the meeting documents supporting this report.

Biology (see 1964 ICNAF Meeting Documents \#53, 63 and 64)
Four types of observations were made:

1) Phytoplankton samples were drawn from the 10 m bottle at every station.
2) One vertical haul was made from 100 m at each station with a standard Hensen net.
3) Oblique hauls were made with either the Icelandic High Speed Sampler or a two metre Stramin net.

Chemical Analyses (see 1964 Meeting Document No. 55)

Samples at depth were obtained with Knudsen reversing water bottles, the insides of which were Teflon coated. When drawing water from the reversing bottles, an oxygen sample was taken first. It was drawn into a calibrated 50 ml glass stoppered flask of German manufacture (Otto Hamp. 34 Haspitalstrasse, Kiel, West Germany). Secondly, a pH sample was drawn into a 2 oz wide mouth polyethylene bottle and sealed with a screw cap. Thirdly, a sample for salinity determinations was drawn into an 8 oz medicine bottle and sealed with a polycone lined screw cap. A reference salinity from each station was taken at random depths and stored. Finally, the remainder of the water sample was drained into a one litre polyethylene bottle. This water was then filtered through a millipore filter of 1.5 micron porosity and appropriate aliquots used for the chemical nutrient determinations. Dissolved oxygen was determined by a modified Winkler method using calibrated 50 ml glass stoppered bottles. Reagent concentrations:

1) 40 g manganous chloride per 100 ml distilled water.
2) 30 g potassium hydroxide plus 60 g potassium iodide per 100 ml distilled water.
3) 50 volume per cent sulphuric acid. Standardization according to Strickland and Parsons (1960).
pH was determined using a Radiometer Model 4 pH meter with a reproducibility of $\pm 0.01 \mathrm{pH}$ units, method according to Strickland and Parsons (1960).

Phosphate was determined by the modified single solution method of Murphy and Riley. Analysis was completed within four hours of collection using a Beckman DU spectrophotometer equipped with 10 cm cells.

Silicate was determined by a method proposed by Dr. Grasshoff of Kiel University which is described briefly: two filter ed samples of 50 ml each were pipetted into 100 ml plastic bottles containing 1 ml of mono-chloroacetric acid each. One ml of a solution containing 121 g sodium molybdate dihydrate per liter of silica-free water was added to 50 ml of filtered seawater. The intensity of the yellow colour was measured after 2 hours on a Beckman DU spectrophotometer against filtered seawater at 390 millimicrons.

Nitrate and nitrite were determined by the methods described by Strickland and Parsons (1960). Because of the rather long time required for the nitrate analyses (about 24 hours), "it was not possible to carry them out at every station. Instead they were determined at selected stations in deep water and on the Greenland shelf for each station.

Alkalinity determinations were made according to the method described by Strickland and Parsons (1960). The results are not included in this report but can be obtained from the Bedford Institute of Oceanography.

Physical Oceanography (see 1964 ICNAF Meeting Document No. 54)

83 bathythermographs were collected by CSS "Baffin" and 25 by CNAF 'Sackville". BT's from both ships were processed at the Bathythermograph Data Centre, Bedford Institute of Oceanography.

Subsidiary Programs
The extensive coverage of the Labrador Sea and Davis Strait regions by "Baffin" and "Sackville" provided an opportunity for some of the scientists to carry out other scientific investigations. The results of these programs will be published elsewhere by the individuals concerned.

Continuous recording of the earth's magnetic anomaly was made wherever practical. On some occasions the magnetometer could not be towed continuously as it conflicted with the collection of other data, or ice conditions prevented its use. Despite these inter ruptions some 4,000 miles of magnetic profiles were obtained by "Baffin".

Biologists from the Institute of Oceanography at Dalhousie Univer sity undertook a study of the energy relationship of zooplankton. A new technique for estimating zooplankton abundance based on an assay for succinic acid dehydrogenase was tested and found to give encouraging results.

Samples for fluoride determinations were taken at selected positions and depths as requested by Dr.J.R. Riley of the University of Liverpool, England.

Samples for boron determinations were collected at every station from the bottom bottle for Dr. A. A. Mills, Dalhousie University, Halifax, N.S.

Positional and Meteorological Observations
Position measurements were made by the ship's officer on watch. Specially seconded meteorological observers assisted the ship's officers for meteorological observations and interpretation of the facsimile weather and ice broadcasts.

Summary Tables

Table I is a summary of chemical analyses, while Table II lists the obser vational program carried out by "Baffin" and "Sackville" in the survey.
Table I．Methods used in obtaining Canadian results during NORWESTLANT 2， 1963.

	Sampling bottle	Filter	Standing time before analysis	Method	Photometer cell length	Average blank	Standard
S \％ 100	3	－	＂Sackville＂：several months＂Baffin＂： imme diately	Conductivity： NIO Salinometer for＂Sackville＂． Hytech Salino－ meter for＂Baffin＂	－	－	Copenhagen water
Temp．	$\begin{aligned} & \text { 岕 } \\ & \text { Z } \end{aligned}$	－	－	Reversing Thermometer	－	－	－
${ }^{0} 2$		－	$<30 \mathrm{~min}$ ．	Winkler	－	0	Bi－iodate 0．01N
PO_{4}		$\begin{aligned} & \text { Millipore } \\ & 1.5 \mu \\ & \text { pore size } \end{aligned}$	<1 hour	Murphy \＆ Riley	Beckman DU $10 \mathrm{~cm}$	0.017	Supplied by UK
SiO 3		Millipore 1.5μ pore size	＜l hounr \quad ：	Grasshoff	DU 10 cm	0.005	Supplied by UK
NO_{3}	会准	$\begin{gathered} \text { Millipore } \\ 1.5 \boldsymbol{\mu} \\ \hline \end{gathered}$	About 2 hours	Strickland＇s Manual	DU 1 cm	0.018	KNO_{3}
NO_{2}		$\begin{gathered} \text { Millipore } \\ 1.5 \mu \\ \hline \end{gathered}$	$\angle 1$ hour	Strickland＇s Manual	DU 10 cm	0.016	NaNO_{2}
pH		－	About 1 hour	Strickland＇s Manual			Borate Buffer Phosphate Buffer
Alkalinity		$\begin{gathered} \text { Millipore } \\ 1.5 \mathrm{u} \end{gathered}$		Strickland＇s Manual Grasshoff＇s Tables			Potassium Acid Phthalate Buffer BDH std． HCL

Table II. Observational program of Canadian ships in NORWESTLANT 2 and explanation of terms.

Time:	GMT
Date:	Day of Station
Position:	Latitude and Longitude
Oc. Stn. :	Oceanographic station number in chronological order
BT:	Bathythermograph number or biological station in chronological order.
Sal:	Salinity samples drawn at all standard depths
O_{2} :	Oxygen samples drawn and analyzed
$\mathrm{PO}_{4}{ }^{\text {: }}$	Phosphate samples drawn and analyzed
SiO_{3} :	Silicate samples drawn and analyzed
$\mathrm{NO}_{3}:$	Nitrate samples drawn and analyzed
NO_{2} :	Nitrite samples drawn and analyzed
pH :	pH samples drawn and analyzed
Alk:	Alkalinity samples drawn and analyzed
Boron:	Boron samples drawn for the Institute of Oceanography, Dalhousie University
Fluoride:	Fluoride samples drawn for Dr. J. Riley, Liverpool University, England
Rd. Salinity:	Held in reserve for future checking
10 m Phyto:	Samples drawn for Dr. M. Gillbricht
Van Dohrn:	Biological Program, Dr. C. Boyd, Institute of Oceanography, Dalhousie University
0-50 phyto:	Phytoplankton samples drawn for Fisheries Research Board, Arctic Unit, Montreal 18, Quebec, Dr.E.H. Grainger
C-14:	Institute of Oceanography, Dalhousie University, Dr. C. Boyd
Tandem:	Tandem net hauls (100 m) Institute of Oceanography, Dalhousie University, Dr. C. Boyd
Resp.:	Respiratory studies, Institute of Oceanography, Dalhousie University
Hensen:	Hensen net hauls from 100 m
Stram:	Stramin tows
Ic eland:	Icelandic tows
Depth:	Depth of water

$\stackrel{\square}{4}$

7180	Dato	Position	00. sta.	Br.	Toup.
2132	23/5	$4826.3_{5229.2}$	1	2	x
2208	26/5	$5^{5727.0_{5850.3}}$	2	3	x
2055	26/5	${ }^{5813.5}{ }_{5704.0}$	3	4	x
0529	27/5	5847.0 5508.0	4	5	x
1428	27/5	${ }_{5925.0}^{5309.2}$	5	6	x
0002	28/5	$6000.0_{5115.0}$	6	7	x
0537	28/5	$6^{6029.0}{ }_{5024.8}$	7	8	x
1029	20/5	$6^{6025.0}{ }_{4950.0}$	8	9	x
1427	28/5	$6050 .{ }_{49923.5}$	9	10	x
1801	28/5	$6049 .{ }_{48334.5}$	10	11	x
0627	29/5	$6^{6157.0}{ }_{5002.0}$	11	12	x
0902	29/5	$6150.9_{5036.5}$	12	13	x
3219	29/5	$\begin{aligned} & 6145.8 \\ & 5110.0 \end{aligned}$	13	14	x
1648	29/5	${ }^{6140.5} 5145.0$	4	25	x
2127	29/5	$6^{6135.0} 5230.0$	15	16	x
0254	30/5	${ }^{6126.0}{ }_{5330.2}$	16	17	x
0858	30/5	61085531.0	17	18	x
2555	30/5	60485730.0	28	19	x
0001	31/5	$6026.0_{5920: 0}$	19	20	x
0510	31/5	$6012.0_{6031.5}$	20	21	x
2143	31/5	${ }^{6310.0} 6013.0$	21	22	x
0355	1/6	${ }^{6311.0}{ }_{5813.0}$	22	23	x
0859	2/6	$6311.5_{5719.5}$	23	24	π
1345	1/6	${ }^{6320.0}{ }_{5607.0}$	24	25	x
1807	1/6	$6337.2_{5523.0}$	25	26	x

