bu
D. H. JOML
Occanographic Laboratory, Edinburgh.

During the poriod of this survey line-fishing for redfish was carried out from two French and two British weather ships at Station Alf a as part of the trials being conducted by tho Fdinburgh Oceanographic laboratory. In addition, reports of successful fishing during NORWESTLANP cruises have been received from the research vessels AEMIR, DANA and EXPLORERR. ANTON DOHRN fished unsuccessfully at one station. This preliminary report deals with 176 fish which were returned to the Edinburgh laboratory from the woather ships and DANA.

A sumnary of hours of fishing, number of fish caught etc, is given in Table I and the positions of fishing atations are shown in Figure 1.

1. Identification. All the fish returned to the Oceanographic laboratory are the large-eyed, boaked form and fit the criteria usod by Andriiashev (1954) for Sobastes marinus mentella. For example, the lowest proportions of orbit diamoter to head length were 30.2% (Station Alf a) and 30.4\% (DAMA); according to Andriashev a proportion of more than 26% classifies the fish as \mathbf{G}, marirus mentella. The frequency distribution of these proportions is shom in Table II.
2. Depth distribution. Then using a rod and line it is impossible to make precise estimates of the depth at which fish are caught; the length of line used will always indicate a maximal dopth and, in conditions of extrere driftine of the ship, this may be considerably in excess of the real depth of capture.

With these reservations in mind, it seemb highly likely that the large catches during June and July came from depths if roughly $100-150 \mathrm{~m}$. The 144 fish caught by WEATHR ADVISEIR at the end of Junc and in the first half of July were all taken within this range, although fishing was attempted at all depths from 50 to 400 m . The most succossful fishing from WEATHER MONITOR (in June) occurred at a similar depth range durine calm weather when there was little or no drifting of the ship. It seems that during May, at Station M1fa, the fish were lying deeper, as FilaiNCE II, fishing during calm woather, caught fish easily from $200-300 \mathrm{~m}$. DANA, also during May, but further to the south and west (Sec Fig. 1), took fish from a depth range of $90-180 \mathrm{~m}$ (mean 126 m .) excent at the most westerly successful station where the range was $90-300 \mathrm{~m}$ (nean 187 m). So few males vere caught (see below) that it is impossible to make gencre isations about their distribution within the range sampled $(0-400 \mathrm{~m})$. However, there did not appear to be any distinct separation of the sexes as the rangen overlapped and both males and females were caucht on adjacent hooks.

Similarly, there is no ovidence to suggest that different size groups yere distributed at different depths.

During the period of the survoy the anount of nifht-fiahing vas necessarily low and oomparisone of depth diotributions or case of capture by day and night are diffioult to assess. However, there is no evidence that any marked upward vertical movemont of redfish occurs during the nipht and they have been caught at; the shallowast depths ($70-80 \mathrm{~m}$) during daylight hours. On board the MONITOR in June, on two occasions when fishing was continued from daylight hours until after dark sucoess was achioved at much the same depth throughout the period,

3. Shoaling /

3. Shoaline. Evidence collected during these trials suggests that during the three months following spawning (May, June and July) dense aggregations of redfish occur in the open ocean. On some occasions fish could be hauled in immediately a line was lowered and at these times catches were made at an averafe of approximately 6 fish per line per hour. - On other occasions, under apparently similar conditions, fishing was very variable; long periods of unsuccessful fishing at all depths being relieved by occasional small catches.
4. Sex ratio, maturity and gonad conditions. Females were predominait in all the samples, particularly at Station Alfa where only 6 out of 116 were males. Amonest the 60 fish caucht by the DAFM there were 12 malos.

From EXPLOHER, two malo S. mentella (36.0 and 37.4 cm overall length) wie caught
 Fore landed by Aigill and five of tiwse wero feikies; no lengths or wights were given for these fish.

Most of the fomales showed evidenco of recent spaming by the retention of somo larvae within the ovaries (sce Table III). Of the others, prectically all were mature spent fish as shown by the presence of empty follicles. The smallest fomale fish (weicht 0.5 Kg. , standard length 27.0 cms .) we. found to be spent although its ovaries weightd only 1.0 gm .

Histological examinations of the terster to determine the state of riponess and maturity have not yet been completed although all the males appcar to bs mature fish with ripening testes, as judged by the size of the testes and the proportion of gonad weight to body weight.

The \% maturity factors for both male and female fish (gonad weight/body weight x 100, Sorokin, 1961) havo been calculated and the weekly means throughout the period of the NORWESTLANT Survey are show in Table III.
5. Larvac. Any larvae retained in the ovaries or oviduct were removed and thoso in a good state of proservation weee examined for the presence or asence of sub-caudal melanophoros. Because of the natural breakdown of thr ticsues in retained larvae, and some inadeguate preservation, only 243 larvas out or more then 1000 could be examined but in none of these were any sub-caudal melanophores found.
6. Feoundity. In conjunction with lone-term atudies on rediish from station Alfa, some estimates of feoundity have been made from all fish w' 'h developing eggs of a suitable size for counting.

The ovaries were weighed., subsamples were removed with a cork.-borer and the weights of these were recorded. Samples were generally $2-3 \%$ of the weight of the pair of ovaries. All the developing eggs were counted in the sub-samples and, from these, an estimate was made of the number of potential eggs in both ovaries. Confirmatory counts on three whole ripe ovaries, made on the eggcounting machine at Aberdeen, showed a close agreement with the estimates from the sub-sampling method.

The results are listed in 'fable IV and, although some size groups are poorly represented, the overall mean fecundity of 67,932 is similar to that estimated from the material from Station Alfa during the last 3 years ($59,42.6$).
7. Morphometric data. The measurements listed in Table V were selected from those Buggested by Kelly, Barker and Clarke (1961) as being among the most reliable adde to racial diatinction. All the figures given here are from fomalin-preserved matorial (a shrinkage of $1-2 \mathrm{~cm}$. occurs in fish of a standard length range $28.0-$ 378° cms.). Although the suocessful DANA Stations extend from longitude 32° 40 W and are also from one to two degrees of latitude south of station Alfa, no great differences show up in the measuromentes either between stations or between the DANA and Station Alfa samplos. Plots of inean head lenfth, body depth, snout to ventral fin and snout to anal fin against the log of atandard lencth are given in Fig. 3. The eye-fitted straight lines indicate a close agreement in the proportional growth of the two samplen, suegesting that they came from the same stoak.
8. Parasites./
8. Parasites. In view of the sucgested use of Sphyrion lumpi (Krpyer)in distinguishing stocks of redifish, this and other parasites of the oceanic stocks
 ourvey, only data conceming the incidence and positional distribution of Ercition lumpt havo been obtained. These are aumarised in Table JI: signs of acti-je or previous infestation were found in 33.6% of the fish from Station Alfa and 30.0% of those from DANA. No male Sphyrion were found and subcutaneous examinations for recently settled atages have not yet been carried out.

All the fiah have been examined for gill parasitea but none have been found. The examination of the alimentary canal of 58 fish has produced only two mature oestodes and the examination of the heart of 50 fish has produced no evidence of parasitism. Larval nematodes occur frequently on the organs and mesenteries of the body cavity and a few adult nematodes have been found in the gut and, in one instance, in an ovary.
9. Black colouration. Areas of dense black colouration have been noted frequently on redfish returned to the laboratory. These vary in size from spots two or three mm . in diameter to areas covering most of the anterior part of the flank of a fish. Althouch the cause of these marks has not been determined, their presence has been reoorded and the position and intensity of the marking has been noted according to five arbitrary grades. A summary of the data collected from the fish caught during the NORWISTLANT survey is given in Table VII. The majority of the patches are located on one or both flanks and may consist ejther of discrete spots or an unbroken area of blick colouration, and may be a combination of the two. At prosent no pattorn can be seon in the occurrenoc of the markinge or their intensity but theso studies aro being continued.

The results of gampling during NolwesThan surveys will be incorporated into a detailed study of the oceanic atooks of redfish during the period 1962 to 1964.

REFERENCES

ANDRITASHEV, A.P., 1954. Fishes of the northern seas of the U.S.S.R. Guides to the fauna of the U.S.S.R., published by the Zoological Institute of the ncademy of Sciences of the U.S.S.R., 53, 1-566. Moscow and Leningrad. (Trans. by C.R. Robins, 1955).

KELLY, G.F., BAlkith, A.M. and CLARKL, G.M., 1961. Racial comparisons of redfish from the western North Atiantic and the Barents Sea. ICNAF Spec. Publ., 3: 28-41.

SOROKIN, V.P., 1961. The redfish, gametogenesis and migrations of the Sebastes marinus (L.) and Gebastes mentella Travin. ICNAF Spec. Publ., 3: 245-2.50.

LEECHDS

Fig. 1. Chart showing the positions of line-fishing atations. The small figures indicate the numbers of fish caught at each station during the NORNESTLANT surveys, 1963.

Fig. 2. Four body mensurements plotted against the log of standard length to demonstrato similar proportional growth between fish caught by DiNA and fish caught at station Nifa. Note that the abscissae for DANA samples are displaced ono centimotre to the right of those for the samples for Station Alfa.
4.

TABLE I. Ships taking part in the Fishing programne and details of their catches.

| Ship | Dates of | Total Hours
 fishing | Fish
 Fishing | caught |
| :---: | :---: | :---: | :---: | :---: |\quad| Fish returned |
| :---: |
| to Edinburgh |

STATION ALFA

			0	0
FRANCE I	$21 / 4-9 / 5$	9	60	10
FRANCE II	$15 / 5-22 / 5$	19	63	62
MONITOR	$5 / 6-27 / 6$	350	44	
ADVISER	$29 / 6-16 / 7$	39	140	-
			Totals 263	

NORHESTLANT CRUISES

			9	0
MEGIR	$30 / 4-31 / 5$	$?$	62	60
DANA	$20 / 5-24 / 5$	14	3	0
EXPLORHR	$4 / 7$	$?$	0	0
ANTON DOHRN	$6 / 6$	$?$	-	-
				Totals
		74		

TABLE II. The percentage proportion of Horizontal Orbit Diameter (HOD) to Head Length (HL).

0	STATION ALFA		DAFA	
$(100 / 14) \times 100$	Number of figh	\%	Number of fish	\%
30.0-30.9	1	0.9	2	3.3
$31.0-31.9$	10	8.6	4 10	6.7 16.7
$32.0-32.9$	11	9.5	15	25.0
33.0-33.9	26	22.4	16	26.7
34.0-34.9	23	19.8	7	11.7
35.0-35.9	22	19.0	4	6.7
36.0-36.9	11	9.5 6.9	1	1.7
$37.0-37.9$	8	6.9	1	1.7
38.0-38.9	2	1.7	1	1.7
$39.0-39.9$	1	0.9	0	
$40.0 \div 40.9$	1	0.9	0	
Total No. of fish	116		60	
Mean figure				9\%
Range	30.2%	40.7\%		38.1\%

TABLE III. Weekly changea in Maturity Factor ($\%$ K.F.), and the number of fish with larvae retained in the ovarjes.

STAPION ALFA

TABLE IV. Fecundity, grouped according to the standard lengths of the fish and their date of capture during NORWESTLANT, 1963. Each count refers to one fish, means for each lenpth-group being shom on the right.

Length in cms.	Date	Fecundity		Length in cms.	Date	Fecundity	
		Count	Mean			Count	Mean
29.0	- 22 Junc	42,864		33.0	22 June	72,540	72,540
	10 July	32,483					
	15 July	38,880	38,076	34.0	24 June	72,226	
					24 June	77,124	
30.0	17 June	35,629			4 July	93,130	
	3 July	65,820			8 July	90,759	
	11.	43,639			11 July	109,410	88,530
	16 July	63,762	22,213				
				35.0	10 July	62,125	
31.0	20 Junc	54,706			15 July	145,637	104,183
	15 July	72,777	63,742	36.0	8 June	78,771	
32.0	22 June	48,500			17 June	73,971	76,371
	2 July	65,805					
	10 July	49,999		37.0	24 June	97,190	27,190
	10 July	67,366			Overall mean		
	10 July	69,669					67.932
	11 July	40,315					
	16 July	68,455	58,587				

TABLE VI. Parasitization by Sphyrion lumpi
ACTIVE PARASITES.

	No. of fish with active Sphyrion	hean no. of parasites per fish.	Range of nos. of parasites per fish.	Sites of infestation
STATION LLFA	15 (12.9\%)	3.0	1-12	$\begin{array}{ll} \text { Cloacal } & 86.7 \% \\ \text { Flank } & 20.0 \% \end{array}$
Dank	$6(10.0 \%)$	1.8	1-5	Cloacal 66.7% Dorsal 16.7\% Ventral fin root 16.7%

PrLvious infectarions (OLI hbads).		
No. of fish with old heads.	Sites of infestation	
24 (24.7\%)	Cloacal	50\%
	Dorsal	39.2\%
	Flanks	41.7\%
12 (20\%)	Cloacal	30.8\%
	Dorsal	30.8%
	Flanks	30.8\%

'TABLE VII. Black Colouration

	STATION ALFA		DAFA	
	No.	\%	No.	$\%$
Total no. with marks	58/116	50.0	24/60	40.0
No. marked both sides	9/58	15.5	8/24	33.3
No. marked one side only	49/58	84.5	15/24	62.5
No. marked on flanks	53/58	91.4	22/24	91.7
No. marked left flank only	20/49	40.8	7/16	43.8
No. marked right flank only	29/49	59.2	8/16	50.0 .
No. in grade 4	4/58	6.9	2/24	8.3
" " " 3	7/58	12.1	7/24	29.2
" " " 2	17/58	29.3	5/24	20.8
" " " l	29/58	50.0	8/24	33.3
" " P	1/58	1.7	2/24	8.3

* Where both sides are marked the highest grade only is counted.

Arbitrary erades of colouration.
p. A few small spots.

1. One or two areas 5-10 min. diameter
2. An unbroken area up to 25 mm . in diameter or discrete apots covering a larger area.
3. In unbroken area up to 50 mm . in diameter or discrete spcts covering a larger area.
4. Unbroken and/or discrete areas larfor than the above.

Fig. 1

Fig. 2

