Relationship of Length Distribution of Redfish to Depth of Catch
by R. C. Hennemuth and B. E. Brown
Bureau of Commercial Fisheries, Biological Laboratory, Woods Hole, Massachusetts

Difficulties in interpretation of observed changes in length composition of redfish may arise because of an association of length with depth. Thus the average length in landings may depend on the distribution of catches relative to depth.

Length-frequency samples from landings of redfish by U.S. otter trawlers in 1962 and 1963 were analyzed to provide some measure of the importance of the depth variable. The samples were
 were not sufficient samples to analyze on a seasonal basis, however, there was not any differential distribution of samples among seasons and depth to confound the analysis. Depth zones will be-referred to hy their numerical designation: $1=30-60 \mathrm{f}, \mathrm{i}=61-100 \mathrm{f}, \mathrm{H}=101$ 150 f., $4=151-200$ f. Depths greater than 200 fathoms were not fished.

The $25 \mathrm{th}, 50 \mathrm{th}$, and 75 th centile lengths were computed, and the differences, d, of each of these values between adjacent depths were used as the basic variables for comparative purposes. These data are presented in Table 1.

[^0]The depth-differences are somewhat larger for the southern divisions, particularly $5 Y$ and $4 X$, but there are several exceptions to this pattern.

For purppses of exposition, the trends noted above were ignored. The overall average between-depth differences were computed for each of the three centiles, and judged significant using a one-tailed t-test at the 5% probability level (Table 2), i.e., with the alternative hypothesis that the differences were greater than zero.

[^1]Tis mean differences between depth zones 1 and $2, d_{2-1}$, for the 50 th and 75 th centiles were 3.8 and 4.8 cm. , and were both significant. The mean differences between depth zones 2 and 3, d_{3-2}, which were all about 3 cm , were significant for all three measures. The mean differences between depth zones 3 and 4 were not significant.

The cumulative average differences (in cm.) between depth zones are as follows:

Centile	Depth zone		
	$2-1$	$3-1$	$4-1$
$25 t h$	2.2	5.1	5.9
$50 t h$	3.8	6.9	7.5
75 th	4.8	7.5	7.8

The increases both with regard to centile and depth indicate not only an increasing average size with depth, but an increasing skewness to the right in the length-frequencies. However, the selectivity of the nets used, about $50-60 \mathrm{~mm}$. mesh size, has some dampening effect on the differences for the lower centile lengths.

At any rate, there is a definite trend towards proportionately more of the larger fish in the catch with increasing depth, at least up to 150 fathoms. The implications of these conclusions regarding the study of dynamics of redfish populations are serious enough to warrant some further study of this problem with more comprehensive data.

Table 2, -- Average differences between depths, d, and tests of significance.

	25th centile			Median			75th centile		
	d_{2-1}	d_{3-2}	d_{4-3}	d_{2-1}	d_{3-2}	d_{4-3}	d_{2-1}	d_{3-2}	$\mathrm{d}_{4-3}{ }^{\text {¢ }}$
$\sum \mathrm{d}$	9	47	6	15	49	5	19	43	2
n	4	16	8	4	16	8	4	16	8
¢	2.2	29	0.8	$3{ }^{4}$	3.1	0.6	4.8	2.7	0.25
$\mathrm{s}_{\text {d }}$	1.31	0.41	0.66	1.37	0.56	0.46	1.37	0.61	0.38
t	168	7.07*	1.21	2.77 *	5.54*	1.30	3.50*	4.43*	0.66

Table 1.--Estimated centile leagths of redfish and differences between depth zones.

Sex	Year	Div.		$\begin{aligned} & \text { th cent } \\ & \text { Depth } \\ & 2 \end{aligned}$	$\begin{gathered} \text { dlle } \\ \text { Zove } \\ 3 \end{gathered}$	4	(iffe	$\begin{aligned} & \text { rence } \\ & 3-2 \end{aligned}$	$\stackrel{(d)}{4-3}$	1	$\underset{\sim}{\text { med }}$	${ }_{3}$	4	diste	rences	cog	1	$\begin{gathered} \text { 5th cen } \\ \text { Depth } \\ 2 \end{gathered}$	ile Zone \$	4	diffe	$\begin{aligned} & \text { rencen } \\ & 3-2 \end{aligned}$	(d)
Male	1962	3N	---	-	23	23	---	---	0	--	\cdots	23	24	-	---								
		30	-..	-	33	23		-	0	--		24	24	---	---	-1	---	-.-	28	26		-	0
		4 4	--.	22	23.	---	\cdots	1		---	24	26	-	...	2	-.-	---	28	27				
		4W	---	- 21	23	...	---	1		---	22	24	-..	...	2	-	---	24.	25	--	-	${ }^{2}$	- 5
		${ }_{51}$	---	21	23	-..	-	2	---	--	23	27	-..	-	4	0	-	25	30	---			0
		$5 \mathbf{5}$	17	21	23	---	4	2		19	24	24	---	5	- 0	0	21	27	26	-..	6		3iv
	$\mathrm{Sum}_{\mathrm{N}}$ mean		$\begin{aligned} & 17 \\ & 1 \end{aligned}$	$\begin{array}{r} 85 \\ 4 \\ \hline 21.2 \end{array}$	$\begin{aligned} & 137 \\ & 62 \end{aligned}$	$\begin{array}{r} 46 \\ 2 \end{array}$	1	6 4	0 2	${ }_{19}^{19}$	$\begin{gathered} 93 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 150 \\ 6 \end{gathered}$	48	1	8 8	-1 2	22	${ }^{108}$	180	52	1	\%	2
Female																			26.	26.8	4	1.5.	0
	1962	3N	---	--*	24	38	---	---	2	---	---	27	28	--.			-..	--					
		30	---	-..	24	24	\cdots	*	0	---	--	25	26	-..	---	1	\cdots			-28	-2	-	8
		4 V	---	23	26	\cdots	-	3.	.	-..	26	28		--	3	1		29	3	-28	-		23
		${ }_{4}^{4 W}$	---	22	26	\cdots	-.-	2	-	---	25	28.	---	*--	1	--	\rightarrow	27	29.	--	\cdots	2	--
		${ }_{5 Y}{ }^{\text {P }}$	18	23 23	28	---	\cdots	3	\cdots	\cdots	25	32	--	---	7	--.	-	28	35	\cdots			\sim
					28	--*	8	2	-	20	27	28	--	7.	1	---	24	. 32	$\because 31$	-	8	1	--2
	$\frac{\mathrm{Suma}}{\mathbf{N}}$		18	${ }_{9}^{91}$	148	180	1	10	2	20	103	167	34	\cdots	12			116	183	60	8	10	$\therefore 3$
	mean									20.0	25.1	27.8			s.0		24.0	20,	308	${ }_{30,0}^{2}$	8.0		1.5
Male	1963	3N	--.	---	24	24	-	-	0	-	---	25											
		4 V	--.	23	24	27	-..	1	3	-	25	27	28	-	-		-	\cdots	27.	${ }_{30}$	\cdots		0
		4 W	---	20	23	---	\cdots	4		-	22	28	\cdots	-*	: 1	$\underline{4}$	-	2		30,		3	0
		4 x	--	20	25	-..-	---	5			22	27		-		-m	-	28	29	--.		5	--
		5 Y	22	22	24	---	- 0	2	-*	23	25	25	\cdots	z:			5	28	28	-..	s	0	
																		\%					
	N		1	3	5	2	1	13	2	$\begin{array}{r} 23 \\ 1 \end{array}$		$\begin{array}{r} 151 \\ 8 \end{array}$	${ }_{2}$	2.	${ }^{12}$	2	28	103.	142	${ }^{57}$	3	12	0
	mean		22.0	21.2	24.2	25.5	0		1.5	23.0	23.5	26.2	27.0	2.0	3.0	1.0	25.0	28.8	28.4	28.5	3.0	3.0	0
Female	1963	3M	---	--	28				-2	\cdots	---							2					
		4 V	---	25	28	31	---	3	3	--.	29	30	39	---	1	3	-	37	32	35	--.	2	-2
		4 W	--	22	27	--	-	5		---	24	30	\cdots	--	1	--	--	27	33-		
		4 x	--	21	28	---	-	7		--	24	31	-..	*	7	\cdots	---	28	33	--	..-	5	
		5 Y	23	23	27	---	0	4	\cdots	28	27	30	---	1	3	-..	29	31	33	-..	2	2	
	$\begin{gathered} \text { Sum } \\ \mathbf{N} \end{gathered}$ mean		$\begin{gathered} 23 \\ 3 \\ 23.0 \end{gathered}$	$\begin{gathered} 91 \\ 22.8 \end{gathered}$	$\begin{gathered} 136 \\ 57.2 \end{gathered}$	$\begin{gathered} 53 \\ 2 \\ 28.5 \end{gathered}$	$\begin{array}{r} \mathbf{0} \\ \mathbf{j} \\ \mathbf{0} \end{array}$	$\begin{array}{r} 10 \\ 4 \\ 4.8 \end{array}$	$\begin{array}{r} 1 \\ 2 \\ 0.5 \end{array}$	$\begin{gathered} 26 \\ 1 \\ 26.0 \end{gathered}$	$\begin{aligned} & 104 \\ & 26.0 \end{aligned}$	$\begin{gathered} 149 \\ 5 \\ 29.8 \end{gathered}$	$\begin{gathered} 80 \\ 2 \\ 30.0 \end{gathered}$	$\begin{array}{r} 1 \\ 1 \\ 1.0 \end{array}$	$\begin{array}{r} 17 \\ 4.2 \end{array}$	$\begin{array}{r} 2 \\ 2 \\ 1.0 \end{array}$	$\begin{gathered} 29 \\ 1 \\ 29.0 \end{gathered}$	$\begin{aligned} & 118 \\ & 29.5 \end{aligned}$	$\begin{gathered} 165 \\ 5 \\ 33.0 \end{gathered}$	$\begin{gathered} 63 \\ 2 \\ 32.5 \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \end{aligned} .$	$\begin{array}{r} 15 \\ 3.8 \end{array}$	$\begin{array}{r} -1 \\ 2 \\ -0.5 \end{array}$

[^0]: Inspection of Table 1 shows that within each year and division the length distributions for males were smaller than those for females. The greatest spread occurred at the 75 th centile. The differences between depth zones were also less for males than for females.

 There is some indication from these data that the samples taken in 1963 contained larger fish than those for 1962, and the differences between the depth zones were often greater in 1963.

[^1]: * The first two depth zones actually range from 0-60 and 61-100 fathoms respectively. Furthermore, all of the landings from the first depth zone, from which samples were taken, were caught in the 31-60 fathom depth range.

