INTERNATIONAL COMMISSION FOR

<u>Seriel</u> . 1386

THE NORTHWEST ATLANTIC FISHERIES

Document No. 90

ANNUAL MEETING - JUNE 1964

Length-veight Belationships of Haddock Collected from U.S.

Commercial Landings

by Bradford E. Brown

Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts

Introduction

Samples of length and weight measurements of haddock in commercial landings of United States otter trawlers were collected in several of the years from 1931 to 1935. A large part of these data were examined by Clark and Dietsch (1959), who reported that seasonal trends were evident in the length-weight relationships, and presented sets of weight at length tables for each month by special sampling areas (Figure 1). It was desirable, however, to conduct a more critical and comprehensive analysis of all available length-weight data for haddock, particularly since studies of the past history of the haddock fishery depend on the use of these data. In the present study variation among size category, year, area, and month strata was estimated, and statistical tests were applied to determine the degree of homogeneity and the most appropriate length-weight equations to be used in the study of population dynamics of haddock.

Collection of Data and Methods of Analysis

All measurements were taken from fish landed at the port of Boston. Fork lengths were recorded to the nearest centimeter and weights to the nearest 0.1 pound. Haddock were generally landed either gutted, or gutted and gilled. From April to November the fish were required to be gutted and gilled, and they were frequently gilled in the winter months also. Only the data from the gutted and gilled category were sufficient for analysis. Commercial landings were sorted into scrod (those fish under approximately 2.5 pounds) and large size categories. Fish of each size category were unloaded from the vessels into carts of about 500 pound capacity. A sample was composed of varying numbers of fish taken from one or more of these carts from a single vessel's trip. There were 82 samples for a total of 7,774 measurements. The distribution of these samples among the various strata is presented in Table 1. The areas considered are outlined in Figure 1.

Sampling done under existing port conditions was of necessity irregular, and the samples were not taken in strictly random fashion. In order to treat these data statistically, we must assume the samples taken from each boat's catch to be representative of the total catch and that the boats sampled were representative of all boats fishing in a given stratum.

- 2 -

For the length-weight regressions, an equation of the form $W = Cl^{6} + c^{2}$ assumed, where:

W = weight in tenths of pounds
l = fork length in centimeters
C and b are constants

Data were transformed by natural logarithms and regressions were fitted by the least squares method to the equation Y = a + bX, where:

 $Y = \log_e W$ $X = \log_e 1$ $a = \log_e C$

The regression equations for each length weight sample are given in Table 2. Covariance analyses were used to test significance of differences between various strata. Notations for regression and covariance analyses throughout this report follow Snedecor (1956).

Inadequate distribution of samples prevented the use of a factorial analysis to determine the existence and significance of interactions among the strata. Therefore, a separate analysis of covariance among the elements of a given type of stratum (e.g., among years) was run within each of the other strata, and the series of analyses thus obtained were pooled to yield a single result. Strata were combined only where between-strata differences were shown to be nonsignificant.

Analyses of Sampling Variation

Subsamples (within trips)

In April 1942, five trips from eastern Georges Bank were sampled in an attempt to measure variation within trips, i.e., among subsamples. These samples were taken over a 10 day period from catches of boats fishing in the same section of eastern Georges Bank in depths of 45 to 55 fathoms. Each subsample was composed of 25 fish taken from a single cart and from four to eight carts were sampled from each trip. All of these fish were in the large size-category.

The analysis of covariance for these data is presented in Table 3. There was a significant difference among the adjusted means of the subsamples. The mean square among samples (trips) was not significant.

The differences found between subsamples could have been the result of varying lengths of time or the position that the fish were kept in the hold. In addition, each cart may have contained fish caught in different sections of the general area that the boat fished in.

- 3 -

Manping (between trips)

In carry instances several trips were sampled within the same stream (c.f., Table 1). Covariance analyses were computed for each cell (each single combination of year, area, month, and size category) containing more than one sample. The pooled analysis of covariance for both large and scrod showed significant adjusted mean differences among samples, or trips (Table 4). The among sample mean square for this pooled analysis was greater than that among the five samples used in the analysis of subsample variation. This probably occurred because the five special samples came from a more restricted time and area than the general samples.

The samples used in the pooled analysis above were known to consist of fish from several carts for each trip. However, the data were not recorded separately for each cart (subsample). An approximate F test was used to take subsample variation into account. The mean square for the differences in regression coefficients and adjusted means among samples were divided by the corresponding mean square for differences among subsamples taken from Table 3 (see Table 4). The difference among adjusted means was still significant; however, the difference among regression coefficients was not significant. In the following sections of this paper the term Approximate F Test, refers to the ratio of the mean square for differences among strata to the corresponding mean square for either among sample (from Table 4) or among subsample (from Table 3) differences, whichever is appropriate. 1/

Comparison Among Strata

Size Categories

To determine whether separate length-weight equations should be used for scrod and large haddock, covariance analyses were computed for 16 trips from which both size categories were sampled. The pooled analysis is presented in Table 5, and significant differences were found both for adjusted means and regression coefficients. Only subsample variation need be accounted for in this analysis as both the large and scrod samples were from the same boat. The subsample variation was taken into consideration by using the Approximate F Test described earlier and using the mean square among subsamples taken from Table 3. The highly significant differences in adjusted means remained, but the difference among regression coefficients was not judged significant in this test (Table 5).

1/ -- The use of this approximate test was suggested by Richard C. Hennemuth, Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts.

- 4 -

The adjusted means were calculated and compared for each of these pairs of regression equations. In all cases the adjusted mean was greater for large than for scrod haddock (Table 6). The observed differences are to be expected if the fish were sorted prinarily on the basis of heavy appearance, i.e., the short, plump fish would be considered large whereas the longer, slender individuals would be classed as scrod.

Years

An analysis of covariance among years was computed within each month, area, and size category classification containing two or more years. For example, comparisons between 1931 and 1952 were made for the Western Georges Bank area in the months January, June, and July. A single regression equation was used for each year, combining several samples where required. The several analyses were then pooled and significant differences were found; however, these did not hold up when the differences among samples were taken into consideration in the Approximate F Test (Table 7). As the years tested contained time differentials from 1 to 22 years, both short and long term changes appear non-significant.

Areas

Comparisons were made between samples from eastern and western Georges Bank (both regions in ICNAF Division 5 Z) within year, month, and size category strata in the same manner as described above. No significant differences were found when the Approximate F Test using sample to sample differences was applied (Table 8).

The same procedure was followed to test differences between samples from Browns Bank (ICNAF Division 4X) and the Western Banks of Nova Scotia (ICNAF Division 4 W). No significant differences were found between these areas (Table 9). However, comparisons were only possible between the samples for each size category.

A further series of covariance analyses were made between samples from Georges Bank and those for the Nova Scotian area within year and month and size category strata. The pooled analysis for large haddock showed a significant difference in adjusted means in the Approximate F Test (Table 10). Although the adjusted means were significantly different for scrod haddock in the original test, this was not true for the Approximate F Test. However, the degrees of freedom in the latter case (3,5) were very small.

- 5 -

F 5

Months

Te iuvestigate the variation between months, all samples of large haddock from Georges Bank were utilized for each month as yearly and area differences had been shown to be non-significant. Only for this size category and area strata were there enough data for a meaningful comparison. These monthly regressions were tested by covariance analyses and significant differences were found among adjusted means (Table 11). The adjusted monthly means of the loge weights were then computed and compared using the multiple range test of Duncan (1955) with Kramer's (1956, 1957) adjustment for unequal sized samples and Finney's (1946) approximation for the variance term. There were no seaschal trends evident (Table 12), e.g., non-significant groupings such as January and July existed while the adjusted means for January and February were different. The lack of a seasonal trend is contrary to the conclusion of Clark and Dietsch (1959).

Conclusions

Several conclusions were evident from these analyses:

- 1. Subsample differences were significant.
- 2. Large differences existed among samples (trips) within strata,
- 3. The sorting of fish into scrod and large categories produced significantly offset regression lines,
- 4. Year to year changes were not significant,
- 5. Samples within Georges Bank and the Nova Scotian regions were homogenous,
- 6. Differences were found between the Georges Bank and the N_0 va Scotian region,
- 7. Seasonal trends were not present.

Equations and standard errors for scrod and large haddock from Georges Bank and for the Nova Scotian area are set forth in Table 13. There was a loss of precision in three of the four total equations over using the separate equations for each trip sampled. The highest of these ratios of respective mean squares was 1.43 (Table 14). However, it would be impractical to try and obtain a regression equation for each trip landed and for past data, this, of course, is impossible. There is no apparent statistical justification for using finer breakdowns into year or area strata, and samples for each month are not available. Such differences that may actually be present between these categories were obscured by the large variation among samples.

- 6 -

- 6 -

The differences found in the length-weight regressions between Georges Bank and the areas off Nova Scotia considered in this paper agree with other evidence on the separation of these stocks of haddock. Grosslein (1962) reported that tag returns is dicated a small degree of movement between these two regions. Hennemuth et al. (in press) found growth rates of haddock collected from southern and central Nova Scotia to be similar to each other, but differing from those on Georges Bank.

In view of the large sampling error, the use of lengthweight regressions to compute the numbers of fish in the catch is inefficient. Since for this purpose what is needed is the average weight per fish of the given length frequency samples, a better procedure would be to obtain the total weight of all fish measured and divide by the number of fish to calculate the average weight of each sample.

Literature Cited

Clark, John R., and Eli L. Dietsch.

1959. Length-weight tables for northwest Atlantic haddock.

ICNAF Sampling Yearbook (2): 25 - 37.

Duncan, David B.

1955. Multiple range and multiple F tests. Biometrics, 11 (1): 1 - 42.

Finney, D. J.

1946. Standard errors of yields adjusted for regression on an independent measurement. Biometrics, 2 (3):53-55.

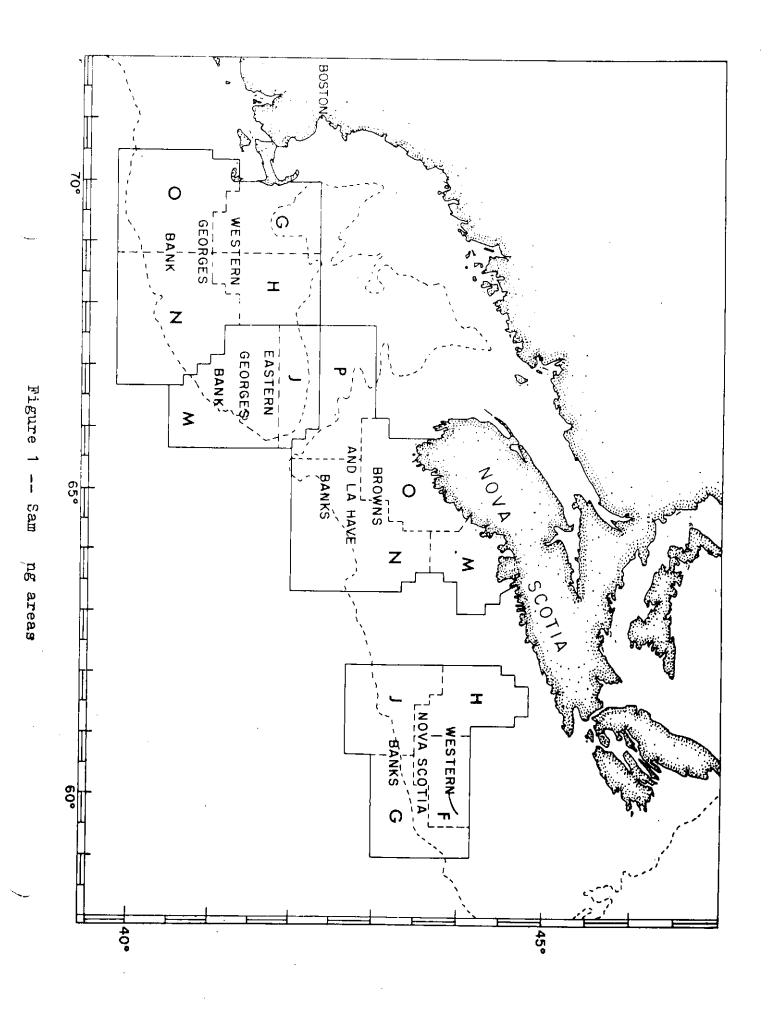
Grosslein, M.D.

1962. Haddock stocks in the ICNAF Convention Area. ICNAF Redbook 1962, part 3: 124-131.

Hennemuth, R.C., M. D. Grosslein, and F.D. McCracken.

1964. Abundance, age composition of landings, and total mortality of haddock caught off southern Nova Scotia, 1956-1961. ICNAF Research Bull. In press.

Kramer, Clyde Young.


1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics, 12 (3): 307 - 310.

1957. Extension of multiple range tests to group correlated adjusted means. Ibid. 13 (1): 13-18.

Snedecor, George W.

1956. Statistical methods, 5th ed., Iowa State College Press. Ames, Iowa, XIII + 534 pp.

۔ مرب

- 7 -

Large Market Category										
Area	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Sept.	Dec.
Western	1931	1	3	-	_	-	2	3	-	_
Georges Bank	1932	2	-	-	-		5	1	-	-
	1933	-	-	1	-	-	-	-	-	-
Eastern	1931	-	5	-	-	-	4	-	3	-
Georges Bank	1932	1	-	-	1	-	-	1	-	
	1941	=	-		-	-	-	-	-	2
	1942	-	-	3	5	-	-	-	• _	-
Browns	1931	. –	-	-	-	1	-	-	-	·
Bank and	1932	-	-	-	1	-	-	-	-	-
La Have	1933	-	-	2	-	-	-	-	-	-
	1942	-	-	2	1	-	-	-	-	-
	1955	-	-	1	1	-	-	-	-	-
Western	1931	-	-	-	-	-	-	1	-	2
Bank of Nova	1941	-	-	-	-	-	-	-	_	1
Scotia	1942	_	-	-	1	-	_	-	-	_

Table 1. Number of trips sampled for haddock length-weight study

Table	1.	(cont'o	l)
-------	----	---------	----

,

Scrod Market Category										
Area	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Sept.	Dec
Western Georges	1931	1	1		_	_	1	1	<u> </u>	1
Bank	1932	2	-	-	-	-	1	1	-	-
	1942	-	-	1	-	-	-	-	-	-
Eastern	1931	-	-	-	-	-	-	-	3	1
Georges Bank	1932	1	-	_	-	-	-	1	-	-
	1941	-	-	-	-	-	-	-	-	1
	1942	-	-	3		-	-	-	-	
Browns Bank	1942	-	-	1	-	-	-	-	-	-
and La Have	1955	-	-	1	1	-	-	-	-	**
Western Bank of	1931	-	-	-	-	-	-	-	-	1
Nova Scotia	1942	-	-	1	-	-	-	-	-	-

-

,

,

Eastern Georges Bank	Western Georges Bank	Region
uu MguMguuuugu	GHNO GHNO N N N N N N N N N N N N N N N N N N	Letter Area
193 2 1931 1942 1942 1942	1931 1932 1931 1933 1933 1932 1932 1931	Year
Jan. Feb. March April	Jan. Feb. June June	Month
Large	Large	Category
35 196 118 104 105 200 200	1194 1194 1194 1195 1199 1199 1199 1199	No.
0. 384 0. 629 0. 999 0. 987 1. 127 0. 586 0. 586 1. 228 1. 228 1. 627	0.697 1.246 0.687 0.684 1.246 0.684 1.347 0.684 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.685 0.685 0.685 0.546	1/ Ex ²
$\begin{array}{c} 1. \ 193\\ 1. \ 720\\ 2. \ 659\\ 3. \ 117\\ 1. \ 534\\ 1. \ 534\\ 5. \ 184\\ 4. \ 537\end{array}$	$\begin{array}{r} \textbf{1.996}\\ \textbf{3.458}\\ \textbf{3.458}\\ \textbf{3.458}\\ \textbf{3.734}\\ \textbf{3.734}\\ \textbf{3.734}\\ \textbf{2.374}\\ \textbf{3.50}\\ \textbf{2.374}\\ \textbf{1.981}\\ \textbf{1.981}\\ \textbf{1.557}\\ \textbf{2.974}\\ \end{array}$	2/ £ xy
4.013 5.167 13.119 34.459 8.052 9.622 4.402 4.349 6.907 10.513 16.148	$\begin{array}{c} 13.877\\ 10.288\\ 6.273\\ 5.773\\ 14.5288\\ 7.5288\\ 14.722\\ 5.676\\ 5.664\\ 5.519\\ 5.152\\ 38.129\end{array}$	3/ Ey ²
$\begin{array}{c} 0.3124\\ 0.4623\\ 1.0427\\ 2.7144\\ 0.8889\\ 1.0027\\ 0.3866\\ 0.4732\\ 0.6764\\ 1.2120\\ 1.9917 \end{array}$	$\begin{array}{c} 0.5518\\ 0.6943\\ 0.6943\\ 0.4675\\ 0.4675\\ 1.2523\\ 1.2523\\ 1.2876\\ 0.2425\\ 0.2425\\ 0.2252\\ 0.2252\\ 0.4710\\ 0.8875\\ 0.8875\\ 0.2738\\ 1.6198 \end{array}$	4/ SS
$\begin{array}{c} 0. \ 0.095\\ 0. \ 0.063\\ 0. \ 0.054\\ 0. \ 0.099\\ 0. \ 0.098\\ 0. \ 0.098\\ 0. \ 0.098\\ 0. \ 0.098\\ 0. \ 0.099\\ 0. \ 0.098\\ 0. \ 0.098\\ 0. \ 0.098\\ 0. \ 0.098\\ 0. \ 0.051\\ 0.051\\ 0. \ 0.051\\$	$\begin{array}{c} 0. \ 0058\\ 0. \ 0046\\ 0. \ 0046\\ 0. \ 0066\\ 0. \ 0066\\ 0. \ 0066\\ 0. \ 0065\\ 0. \ 0064\\ 0. \ 0052\\ 0. \ 0041\\ 0. \ 0041\\ 0. \ 0041\\ 0. \ 0073\\ 0. \ 0049\\ 0. \ 0068\\ 0. \$	5/ MS
 3.012 7.735 7.735 7.694 7.694 7.694 694 694 644 761 881 789 	$\begin{array}{r} \textbf{2.744}\\ \textbf{2.744}\\$	0 '
-11.1822 -9.7012 -9.5960 -10.0953 -9.5582 -9.8919 -9.4315 -10.2625 -10.2625 -10.4613 -10.0730	$\begin{array}{r} -10, 2213 \\ -10, 6201 \\ -9. 8851 \\ -9. 92533 \\ -9. 92533 \\ -9. 7826 \\ -9. 7826 \\ -9. 7826 \\ -9. 7826 \\ -9. 8133 \\ -10. 1101 \\ -9. 8133 \\ -10. 1101 \\ -9. 8224 \\ -8. 8224 \\ -9. 8704 \\ -9. 7420 \end{array}$	α

Table 2. Regression statistics for trips sampled for haddock length-weight measurements.

~~~

,

F 11

- 10 -

| Western<br>Bank of<br>Nova<br>Scotia                     | Browns<br>Bank and<br>La Have                                                                         | Eastern<br>Georges<br>Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Region                     |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| HJ<br>FGHJ<br>F                                          | P<br>N<br>MNOP<br>MNOP<br>MNOP                                                                        | XXYYYYYYXXXX<br>X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 2.<br>Letter<br>Area |
| 1942<br>1931<br>1931<br>1931<br>1941                     | 1933<br>1942<br>1955<br>1955<br>1942<br>1942<br>1955<br>1931                                          | 1931<br>1932<br>1932<br>1931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Continued)<br>Year I      |
| March<br>July<br>Dec.                                    | Mar.<br>April<br>May                                                                                  | June<br>July<br>Sept.<br>Dec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed)<br>Month               |
| Large                                                    | Large                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Category                   |
| 50<br>193<br>107<br>50                                   | 152<br>50<br>50<br>71<br>79<br>79<br>79                                                               | $150 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 $ | No.                        |
| 0.828<br>2.461<br>0.971<br>0.541<br>0.496                | 0.472<br>1.194<br>0.542<br>0.381<br>0.804<br>1.895                                                    | 1. 611<br>0. 616<br>1. 398<br>1. 398<br>1. 138<br>1. 138<br>1. 138<br>1. 138<br>1. 138<br>1. 138<br>1. 138<br>1. 1447<br>0. 543<br>0. 543<br>0. 543<br>0. 543<br>0. 543<br>0. 543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۲x <sup>2</sup>            |
| 2.499<br>7.091<br>3.001<br>1.555<br>1.509                | 1.451<br>3.300<br>1.555<br>1.178<br>1.178<br>1.608<br>1.379<br>1.379<br>1.399                         | 4.634<br>1.810<br>3.777<br>2.394<br>4.142<br>3.171<br>3.119<br>1.472<br>2.324<br>1.472<br>1.472<br>1.600<br>0.909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / 2/                       |
| 7.912<br>21.691<br>9.874<br>5.147<br>4.911               | 4.853<br>9.999<br>3.986<br>5.181<br>4.413<br>4.688                                                    | 14.6076.11311.7931.17931.17931.17931.17931.17931.17931.17931.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.1811.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۲. 2 <sup>3</sup> /        |
| 0.3659<br>1.2574<br>0.6064<br>0.6767<br>0.3230           | <b>0.</b> 3928<br>0. 3169<br>0. 3381<br>0. 7803<br>0. 5116<br>1. 3186<br>1. 3186                      | $\begin{array}{c} 1.\ 2722\\ 0.\ 7921\\ 1.\ 5880\\ 0.\ 5505\\ 1.\ 3226\\ 1.\ 4002\\ 0.\ 9188\\ 0.\ 4484\\ 0.\ 5347\\ 0.\ 5347\\ 0.\ 2907\\ 0.\ 2907\\ 0.\ 1719 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/<br>SS                   |
| 0.0076<br>0.0066<br>0.0058<br>0.0058<br>0.0087<br>0.0087 | 0.0079<br>0.0058<br>0.0066<br>0.0070<br>0.0142<br>0.00142<br>0.0074<br>0.0074<br>0.0071<br>0.0171     | 0.0086<br>0.0081<br>0.0081<br>0.0075<br>0.0069<br>0.0069<br>0.0069<br>0.0069<br>0.0069<br>0.0069<br>0.0069<br>0.0052<br>0.0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIS                        |
| 3.019<br>2.881<br>3.089<br>2.874<br>3.041                | 3.073<br>2.764<br>2.872<br>3.096<br>2.736<br>2.914<br>2.931<br>2.408<br>2.778                         | $\begin{array}{r} 2.877\\ 2.877\\ 2.940\\ 2.786\\ 2.786\\ 2.786\\ 2.786\\ 2.791\\ 2.572\\ 2.572\\ 2.497\\ 2.806\\ 2.671\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | σ.                         |
| -10.9492<br>-10.3617<br>-8.7696<br>-10.3440<br>-10.9945  | -11.0742<br>-9.9195<br>-10.2904<br>-11.2335<br>-9.7603<br>-10.5049<br>-10.6855<br>-8.4605<br>-10.0248 | -10.4294<br>-10.6818<br>-9.7184<br>-10.3246<br>-10.3246<br>-10.0233<br>-10.0233<br>-10.0379<br>-9.1186<br>-9.1186<br>-9.1186<br>-9.1099<br>-9.1186<br>-9.1099<br>-9.5562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g                          |

- 11 -

F 12

| Browns<br>Bank and<br>La Fave  | Eastern<br>Georges<br>Bank                                                                                                                                         | Western<br>Georges<br>Bank                                                                                           | Region                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------|
| N<br>MNOP<br>MNOP              | XXらららら XXらら                                                                                                                                                        | GHNO<br>GHNO<br>GHNO<br>GHNO<br>GHNO                                                                                 | Table 2<br>Letter<br>Area |
| 1942<br>1955                   | 1932<br>1942<br>1932<br>1931<br>1931                                                                                                                               | 1931<br>1932<br>1932<br>1931<br>1942<br>1942<br>1931<br>1932<br>1931                                                 | (Continued)<br>Year M     |
| Mar.<br>April                  | Jan.<br>Mar.<br>July<br>Sept.<br>Dec.                                                                                                                              | Jan.<br>Feb.<br>March<br>June<br>July<br>Dec.                                                                        | nued)<br>Month            |
| Scrod                          | Scrod                                                                                                                                                              | Scrod                                                                                                                | Category                  |
| 50<br>27<br>48                 | 91<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                             | 161<br>32<br>50<br>25<br>27<br>112                                                                                   | 7 No.                     |
| 0,142<br>0,128<br>0,205        | $\begin{array}{c} 0.261\\ 0.684\\ 0.203\\ 0.153\\ 0.210\\ 0.608\\ 0.115\\ 0.115\\ 0.115\\ 0.116\\ 0.161\end{array}$                                                | 0.074,<br>0.485<br>0.158<br>0.158<br>0.125<br>0.125<br>0.200<br>0.200<br>0.230<br>0.827                              | 2 <sup>1/</sup><br>2×2    |
| 0.368<br>0.371<br>0.522        | $\begin{array}{c} 0.703\\ 2.142\\ 0.587\\ 0.322\\ 0.458\\ 1.602\\ 0.371\\ 0.651\\ 0.299\\ 0.466\end{array}$                                                        | $\begin{array}{c} 0.214\\ 1.330\\ 0.218\\ 0.408\\ 0.508\\ 0.591\\ 0.591\\ 0.453\\ 0.453\\ 2.176\end{array}$          | 2/<br>2xy                 |
| 1.111<br>1.220<br>2.003        | $\begin{array}{c} 2 & 485\\ 0 & 248\\ 2 & 091\\ 0 & 973\\ 1 & 291\\ 1 & 363\\ 1 & 314\\ 2 & 828\\ 0 & 986\\ 1 & 542\\ \end{array}$                                 | 0.783<br>4.535<br>0.729<br>1.200<br>1.686<br>0.780<br>2.114<br>1.223<br>1.960<br>6.968                               | 2<br>کy <sup>2</sup>      |
| 0.1570<br>0.1389<br>0.6737     | 0.5903<br>0.2183<br>0.3916<br>0.2932<br>1.1398<br>0.1197<br>1.1310<br>0.2198<br>0.1918                                                                             | 0.1630<br>0.8865<br>0.1341<br>0.1466<br>0.2718<br>0.2718<br>0.1920<br>0.3676<br>0.3676<br>0.2004<br>0.4207<br>1.2435 | 4/<br>SS                  |
| 0,0033<br>0,0056<br>0.0146     | $\begin{array}{c} 0. \ 0066\\ 0. \ 0045\\ 0. \ 0082\\ 0. \ 0062\\ 0. \ 0042\\ 0. \ 0073\\ 0. \ 0073\\ 0. \ 0073\\ 0. \ 0053\\ 0. \ 0063\\ 0. \ 0040\\ \end{array}$ | 0.0065<br>0.0056<br>0.0038<br>0.0049<br>0.0057<br>0.0057<br>0.0083<br>0.0077<br>0.0083<br>0.0077<br>0.0063           | 5 /<br>MIS                |
| 2.592<br>2.910<br>2.545        | 2.696<br>2.812<br>2.812<br>2.098<br>2.178<br>2.636<br>2.636<br>2.636<br>2.636<br>2.636<br>2.636<br>2.636<br>2.636<br>2.636                                         | 2. 893<br>2. 743<br>2. 743<br>2. 785<br>2. 168<br>2. 954<br>2. 954<br>2. 631                                         | σ,                        |
| -9.2951<br>-10.5087<br>-9.0916 | -9.6016<br>-8.3442<br>-10.4287<br>-7.3778<br>-7.5628<br>-9.3955<br>-11.5416<br>-9.2656<br>-9.1832<br>-10.4463                                                      | -10.4952<br>-9.8541<br>-9.7263<br>-9.1968<br>-10.0147<br>-7.6498<br>-10.6612<br>-9.1482<br>-9.1482                   | o<br>L                    |

.

|    | * Letters                                | 5/MS = SS/(N-2)      | $3/ \Sigma y^{2} =$<br>$4/SS = \Sigma$                                                      |                       | $1/\Sigma x^2$                               | Western<br>Banks of<br>Nova Scotia | Region                 |             |
|----|------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|------------------------------------|------------------------|-------------|
|    | corresp                                  | <sup>3S/</sup> (N-2) | $= \Sigma Y^{2}$ $\Sigma y^{2} - (\Sigma$                                                   | 11                    | 11                                           | a<br>F                             | Letter<br>Area         | Table 2.    |
|    | ond to ar                                |                      | $y^{2} = \Sigma Y^{2} - (\Sigma Y)^{2} / N$ $\Sigma y^{2} - (\Sigma xy)^{2} / \Sigma x^{2}$ | (ΣX)                  | $\Sigma x^2$ -( $\Sigma x$ ) <sup>2</sup> /N | 1942<br>1931                       | Year                   | (Continued) |
|    | Letters correspond to areas in Figure 1. |                      | ×2 /N                                                                                       | Σ XY-( Σ X) ( Σ Y)/N1 | /N                                           | Mar.<br>Dec.                       | Month                  | nued)       |
|    | gure 1.                                  |                      |                                                                                             | <b>}</b> ⊶1           |                                              |                                    | Month Category No.     |             |
|    |                                          |                      |                                                                                             |                       |                                              | 51<br>170                          | y No.                  |             |
|    |                                          |                      |                                                                                             |                       |                                              | 0.472<br>0.829                     | 1/<br>E x <sup>2</sup> |             |
|    |                                          |                      |                                                                                             |                       |                                              | $1.314 \\ 2.236$                   | / 2 /<br>2 xy          |             |
|    | ·                                        |                      |                                                                                             |                       |                                              | 3.912<br>6.984                     | 3/<br>£y <sup>2</sup>  |             |
|    |                                          |                      |                                                                                             |                       |                                              | 0.2548<br>0.9547                   | 4/<br>SS               |             |
| ·. |                                          |                      |                                                                                             |                       |                                              | 0.0052<br>0.0057                   | 5 MIS                  |             |
|    |                                          |                      |                                                                                             |                       |                                              | 2.784<br>2.697                     | _<br>ط                 |             |
|    |                                          |                      |                                                                                             |                       |                                              | -10.0660<br>-9.6800                | യ                      |             |
|    |                                          |                      |                                                                                             | ,                     |                                              | . i                                |                        |             |

- 13-

.

| Source of variation            | $\mathbf{DF}$ | SS    | MS     | $\mathbf{F}$ |
|--------------------------------|---------------|-------|--------|--------------|
| Total                          | 848           | 6.908 | 0.0081 |              |
| Among samples                  | 8             | 0.052 | 0.0065 | <b>41 NS</b> |
| Among subsamples               | 58            | 0.707 |        |              |
| Regression coefficients        | 29            | 0.236 | 0.0081 | 1.02 NS      |
| Adjusted means                 | 29            | 0.471 | 0.0162 | 2.05 **(1    |
| Within subsamples              | 782           | 6.149 | 0,0079 |              |
| (2) Common subsample variation | 811           | 6.385 | 0.0079 |              |

# Table 3. --Pooled analysis of covariance for subsample and sample variation for five selected trips.

(1) \* = significant at 5% level

**\*\*** = significant at 1% level

(2) For testing adjusted means among subsamples

- 14 -

# Table 4. -- Pooled analysis of covariance among samples.

.

.

|                         | Large H                                              | addock                         |                |              |
|-------------------------|------------------------------------------------------|--------------------------------|----------------|--------------|
| ource of variation      | DF                                                   | SS                             | MS             | $\mathbf{F}$ |
| Total                   | 47 08                                                | 35.497                         | . 0075         | <u> </u>     |
| Common                  | 4679                                                 | 33.696                         | .0072          |              |
| Within                  | 4650                                                 | 33.384                         | .0072          |              |
| Between regression      |                                                      |                                |                |              |
| coefficients            | 29                                                   | 0.312                          | 0.0108         | 1.50 N       |
| Between adjusted means  | 29                                                   | 1.801                          | 0.0624         | 8.67 *       |
| Among samples           | 58                                                   | 2.113                          | 0.0364         |              |
|                         | Approxim                                             | ate test                       |                |              |
| Adjusted means Samples  | 5 0.0624 (df =                                       | = 29)<br>F = 3.85 *            | • <del>•</del> |              |
| Subsamples              | $\overline{0.0162}$ (df =                            | = 3,05 <del>*</del><br>= 29)   | · T            |              |
|                         | Scrod H                                              | Iaddock                        |                |              |
| Total                   | 615                                                  | 4.688                          | 0.0076         |              |
| Common                  | 610                                                  | 4,422                          | 0.0072         |              |
| Within                  | 605                                                  | 4.319                          | 0.0071         |              |
| Between regression      |                                                      |                                | 0.0011         |              |
| coefficients            | 5                                                    | 0.103                          | 0.0206         | 2.90 *       |
| Between adjusted means  | 5                                                    | 0.266                          | 0.0532         | 7.39 *       |
|                         | Approxin                                             | nate test                      |                |              |
|                         | Samples                                              | .0206 (df = 5)                 |                |              |
| Regression coefficients | Subsamples                                           | $\frac{1000}{.0081}$ (df = 29) | F = 2.54 NS    |              |
|                         | <b>-</b> - <b>-</b> - <b>-</b> - <b>-</b> - <b>-</b> |                                |                |              |
| Adjusted means          | Samples                                              | .0532 (df = 5)                 |                |              |
| regulated medila        | •                                                    | .0162 (df = 29)                | F = 3.28 *     |              |

.

|                               | · · · · · · · · · · · · · · · · · · ·                                                                   | JV                                                   |                                                      |
|-------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| DF                            | SS                                                                                                      | MS                                                   | F                                                    |
| 2573                          | 20.439                                                                                                  | 0,0079                                               |                                                      |
| 2557                          | 18.146                                                                                                  | 0.0071                                               |                                                      |
| 2541                          | 17.915                                                                                                  | 0.0070                                               |                                                      |
| on<br>16                      | 0,231                                                                                                   | 0.0144                                               | 2.06.**                                              |
| means 16                      | 2.293                                                                                                   | 0.1433                                               | 20.18 **                                             |
| Approxin                      | nate test                                                                                               |                                                      |                                                      |
|                               |                                                                                                         | r = 1.60 No                                          |                                                      |
| Size categorie:<br>Subsamples | $s \frac{0.1433}{0.0162}$ (df = 1<br>0.0162 (df = 2                                                     | 6)<br>F = 8.84 **<br>9)                              |                                                      |
|                               | 2573<br>2557<br>2541<br>on 16<br>means 16<br>Approxin<br>Size categorie<br>Subsamples<br>Size categorie | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Table 5. -- Pooled analysis of covariance between size categories.

Table 6.--Adjusted mean weights (natural logarithms) for samples of large and scrod haddock.

| Pair<br>Number | Adjusted means<br>for scrod haddock | Adjusted means<br>for large haddock |  |
|----------------|-------------------------------------|-------------------------------------|--|
| 1              | 0.7597                              | 0,8117                              |  |
| 2              | 1.2221                              | 1.2468                              |  |
| 3              | 0.8359                              | 0,8384                              |  |
| 4              | 0.9788                              | 1,0587                              |  |
| 5              | 0.7378                              | 0.7705                              |  |
| 6              | 1.0240                              | 1,0844                              |  |
| 7              | 0.9438                              | 0.9742                              |  |
| 8              | 0.7952                              | 0,8334                              |  |
| 9              | 0.9705                              | 1,0232                              |  |
| 10             | 1.1261                              | 1.1383                              |  |
| 11             | 1.1171                              | 1,1332                              |  |
| 12             | 0,9996                              | 1,0552                              |  |
| 13             | 0.9983                              | 1.1713                              |  |
| 14             | 0.9674                              | 1.0661                              |  |
| 15             | 0.6228                              | 0,6554                              |  |
| 16             | 1.0369                              | 1.1104                              |  |

G 3

- - -

.

.

| Table 7 Pooled analysis of covariance between years for identical months and areas. |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

| -                              |                      | Haddock                              |             |          |
|--------------------------------|----------------------|--------------------------------------|-------------|----------|
| Source of variation            | DF                   | SS                                   | MS          | F        |
| Total                          | 2992                 | 23,928                               | 0.0080      |          |
|                                | 2984                 | 23.241                               | 0.0078      |          |
|                                | 2976                 | 23.061                               | 0.0077      |          |
| Between regression             |                      |                                      |             |          |
| coefficients                   | 8                    | 0.180                                | 0.0225      | 2.92 **  |
| Between adjusted means         | 8                    | 0.687                                | 0,0859      | 11.01 ** |
|                                | Approxi              | mate test                            |             |          |
| <b>Regression coefficients</b> | Years (<br>Samples ( | $\frac{0.0225}{0.0108} (df = 8) F$   | = 2.08 NS   |          |
| Adjusted means                 | Years (<br>Samples ( | $\frac{0.0859}{0.0624} (df = 8) H$   | 7 = 1.38 NS |          |
| • • •                          | Scrod                | l Haddock                            |             |          |
| Total                          | 600                  | 3.521                                | 0.0059      |          |
| Common                         | 595                  | 3.431                                | 0,0058      |          |
| Within                         | 590                  | 3.362                                | 0.0057      |          |
| Between regression             |                      |                                      | 0.0001      |          |
| coefficients                   | 5                    | 0.069                                | 0.0138      | 2.42 *   |
| Between adjusted means         | 5                    | 0.090                                | 0.0180      | 3.10 **  |
|                                | Approxi              | mate test                            |             |          |
| Regression coefficients        |                      | $\frac{0138}{0206} (df = 5) F = ($   | í1 NS       |          |
| Adjusted means                 |                      | 0.0180 (df = 5)<br>0.0532 (df = 5) F | =<1 NS      |          |

•

.

.

.

|                                                                | Large I                                                 | Haddock                                                          |                            |                     |
|----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|----------------------------|---------------------|
| ource of variation                                             | $\mathbf{DF}$                                           | SS                                                               | MS                         | F                   |
| Total                                                          | 2541                                                    | 19.647                                                           | 0.0077                     |                     |
| Common                                                         | 2537                                                    | 19.224                                                           | 0.0076                     |                     |
| Within                                                         | 2533                                                    | 19.207                                                           | 0.0076                     |                     |
| Between regressio                                              | n                                                       |                                                                  |                            |                     |
| coefficients                                                   | 4                                                       | 0.017                                                            | 0,0042                     | <1 NS               |
| Between adjusted r                                             | neans 4                                                 | 0.423                                                            | 0,1058                     | 13.92 **            |
|                                                                | Approxima                                               | ate te st                                                        |                            |                     |
|                                                                | Areas 0.105                                             | S(df - A)                                                        |                            |                     |
| Adjusted means                                                 | Samples $0.062$                                         |                                                                  | L.70 NS                    |                     |
| Adjusted means                                                 | Samples $0.062$                                         |                                                                  | 1.70 NS                    |                     |
| Adjusted means                                                 | Samples $0.062$                                         | $\frac{1}{4}$ (df = 29) $\mathbf{F} = 1$<br>Haddock              |                            |                     |
|                                                                | Samples 0.062<br>Scrod F                                | F <sup>-= 1</sup><br>Haddock<br>5, 125                           | 0.0071                     |                     |
| Total                                                          | Samples 0.062<br>Scrod F<br>725                         | F <sup>-</sup> = 1<br>Haddock<br>5.125<br>4.679                  | 0.0071<br>0.0065           |                     |
| Total<br>Common<br>Within<br>Between regressio                 | Samples 0.062<br>Scrod F<br>725<br>721<br>717           | F <sup>-= 1</sup><br>Haddock<br>5, 125                           | 0.0071                     |                     |
| Total<br>Common<br>Within<br>Between regressio<br>coefficients | Samples 0.062<br>Scrod F<br>725<br>721<br>717<br>n<br>4 | F <sup>-</sup> = 1<br>Haddock<br>5.125<br>4.679                  | 0.0071<br>0.0065<br>0.0065 | 1.31 NS             |
| Total<br>Common<br>Within<br>Between regressio                 | Samples 0.062<br>Scrod F<br>725<br>721<br>717<br>n<br>4 | F <sup>2</sup> 4 (df = 29)<br>Haddock<br>5.125<br>4.679<br>4.645 | 0.0071<br>0.0065           | 1.31 NS<br>17.15 ** |

| Table 8Pooled analysis of covariance between eastern and western Georges Bank         for identical months and years. |
|-----------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------|

Adjusted meansAreas 0.1115 (df = 4)<br/>Samples 0.0532 (df = 5)F = 2.10 NS

|                         | Larg                                | e Haddock                      |         |         |
|-------------------------|-------------------------------------|--------------------------------|---------|---------|
| Source of variation     | DF                                  | SS                             | MS      | F       |
| Total                   | 149                                 | 1,108                          | .0074   |         |
| Common                  | 148                                 | 0.972                          | .0066   |         |
| Within                  | 147                                 | 0.945                          | .0064   |         |
| Between regression      |                                     |                                |         |         |
| coefficients            | 1                                   | 0.027                          | 0.0270  | 4.22 *  |
| Between adjusted mea    | ans 1                               | 0.136                          | 0.1360  | 20.61   |
|                         | Appro                               | oximate test                   |         |         |
| Regression coefficients | Areas <u>0.027</u><br>Samples 0.008 | — <u>h</u> '≍                  | 3.33 NS |         |
| Adjusted means          | Areas <u>0.136</u><br>Samples 0.062 | $\frac{10}{24} (df = 1) F = 2$ | .18 NS  |         |
|                         | Scro                                | d Haddock                      |         |         |
| Total                   | 99                                  | 0.606                          | 0.0061  |         |
| Common                  | 98                                  | 0.526                          | 0,0054  |         |
| Within                  | 97                                  | 0.526                          | 0.0054  |         |
| Between regression      |                                     |                                |         |         |
| coefficients            | 1                                   | 0.000                          | 0.0000  | <1 NS   |
| Between adjusted me     | ans 1                               | 0,080                          | 0.0800  | 14.81 * |
|                         | Appro                               | oximate test                   |         |         |
| Adjusted means          | Areas <u>0.080</u><br>Samples 0.053 |                                | 1.50 NS |         |

Table 9. --Analysis of covariance between Browns Bank and LaHave and the Western Bank of Nova Scotia

Samples 0.0532 (df = 29)

|                      | Large                                 | Haddock                         |                    |              |
|----------------------|---------------------------------------|---------------------------------|--------------------|--------------|
| Sources of variation | DF                                    | SS                              | MS                 | $\mathbf{F}$ |
| Total                | 1219                                  | 9.276                           | 0.0076             |              |
| Common               | 1215                                  | 8.266                           | 0.0068             |              |
| Within               | 1211                                  | 8.229                           | 0.0068             |              |
| Between regression   |                                       |                                 |                    |              |
| coefficients         | 4                                     | 0.037                           | 0.0092             | 1.35 NS      |
| Between adjusted m   | eans 4                                | 1.010                           | 0.2525             | 37.13 **     |
|                      | Approx                                | kimate test                     |                    |              |
| Adjusted means       | Areas $0.25$<br>Samples $0.06$        | 25 (df = 4) F =<br>24 (df = 29) | 4.05**             |              |
|                      | Scrod                                 | Haddock                         |                    |              |
| Total                | 577                                   | 4.785                           | 0,0083             |              |
| Common               | 574                                   | 4.069                           | 0.0071             |              |
| Within               | 571                                   | 3.996                           | 0.0070             |              |
| Between regression   |                                       |                                 |                    |              |
| coefficients         | 3                                     | 0.073                           | 0.0243             | 3.47 *       |
| Between adjusted m   | eans 3                                | 0.716                           | 0.2386             | 33.60 **     |
|                      | Appro                                 | ximate test                     |                    |              |
| Regression coeffici  | ent Areas <u>0.02</u><br>Samples 0.02 | ·                               | . 18 <sub>NS</sub> |              |
| Adjusted means       | Areas <u>0.23</u><br>Samples 0.05     |                                 | 49 NS              |              |

# Table 10. -- Pooled analyses of covariance between Georges Bank and the Western Bank of Nova Scotia for identical months and years.

| Source of variation | DF      | SS     | MS     | $\mathbf{F}$ |
|---------------------|---------|--------|--------|--------------|
| Total               | 4957    | 50,996 | 0.0103 | <u> </u>     |
| Common              | 4950    | 38.230 | 0.0103 |              |
| Within              | 4943    | 38,090 | 0.0077 |              |
| Between regressio   | n       |        | 010011 |              |
| coefficients        | 7       | 0.140  | 0,0200 | 2.60 *       |
| Between adjusted r  | neans 7 | 12,766 | 1.8237 | 236.84 **    |

# Table 11. -- Analysis of covariance between months for large haddock from Georges Bank.

Approximate test

Regression coefficient Months 0.0200 (df = 7)Samples 0.0108 (df = 29) F = 1.85 NS

Adjusted means Months 1.8237 (df = 7)Samples 0.0624 (df = 29) F = 29.22 \*\*

# Table 12. - Duncan multiple range test between months for large haddock from Georges Bank (Underlined values are homogenous groups).

| Months                                         | Jan.   | July   | March          | Feb.   | Sept.  | June   | April  | Dec.   |
|------------------------------------------------|--------|--------|----------------|--------|--------|--------|--------|--------|
| Adjusted<br>means                              | 1.4893 | 1.4154 | 1.2744         | 1.2149 | 1.2053 | 1.1572 | 1.1336 | 1.0874 |
| Individual<br>comparise<br>of adjuste<br>means |        |        | <del>_</del> , |        |        |        |        |        |

| Description                            | Equation                  | Stand. error of<br>Ŷ at the mean<br>of X | Stand. error of<br>Y at the mean<br>of X |
|----------------------------------------|---------------------------|------------------------------------------|------------------------------------------|
| Large haddock from<br>Georges Bank     | Ŷ=-10.0580+2.8053X        | <u>+</u> 0.0014                          | <u>+</u> 0.1015                          |
| Scrod haddock from<br>Georges Bank     | Ŷ=-9.2184+2.5864X         | <u>+</u> 0.0027                          | <u>+</u> 0.0949                          |
| Large haddock from<br>Nova Scotia area | Ŷ=-10.6191+2.9389X        | <u>+</u> 0.0027                          | <u>+</u> 0. 0943                         |
| Scrod haddock from<br>Nova Scotia area | Ŷ=-9.4570+2.6362 <b>X</b> | <u>+</u> 0.0043                          | <u>+</u> 0.0255                          |

Table 13. -- Regression statistics for haddock length-weight estimating equations.

Table 14. --Loss of precision in using total regression equations.

| Category                      | Within mean square<br>for all trips samples | Mean square<br>for the total<br>regression | Ratio:<br><u>total</u><br>samples | Number of<br>. samples |
|-------------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------|------------------------|
| Georges Bank<br>large haddock | 0.0072                                      | 0.0103                                     | 1.43                              | 43                     |
| Georges Bank<br>scrod haddock | 0.0070                                      | 0.0090                                     | 1.28                              | 20                     |
| Nova Scotia<br>large haddock  | 0.0080                                      | 0.0089                                     | 1.11                              | 14                     |
| Nova Scotia<br>scrod haddock  | 0.0065                                      | 0.0065                                     | 1.00                              | 5                      |

- \_-