# THE NORTHWEST ATLANTIC FISHERIES 

Research Document No. 57

## ANNUAL MEETING - JUNE 1965

Fishing Activity, Effort and Intensity in Subarea 1. 1252-1963.<br>by Sv. Aa. Horsted<br>(Grønlands Fiskeriundersøgelser, Charlottenlund, Denmark)

Although the definitions of fishing effort and fishing intensity are quite clear it is nearly always impossible to give fishing effort and fishing intensity in accurate figures. Actually most of the figures given as fishing effort are not really fishing effort as defined but fishing activity. In this paper it is tried to give figures for fishing activity, effort and intensity in the cod fisheries in Subarea 1 (West Greenland).

It has of course been necessary to introduce a lot of assumptions and theories of which some may not hold water. The most essential of these assumptions is that
... the catchability of cod to the various gears varies throughout the year (no doubt about that). In order to get a comparison between months or seasons of this changing catchability it is, however, supposed that the catchability of cod does not vary very much in the Portuguese dory fishery, and this is by no means an unambiguous supposition. The arguments for this theory are the facts that dories are fishing with two gears (hand line and long line), that dories are spread over a wide area round their mother vessel, and the fact that the catch per dory hour does not vary as much as the catch per hour trawled. It is, however, only a rather short season that dories are fishing (iray - September), and it is thus impossible to compare dories with other vessels in the rest of the year. This gives raise to new assumptions.

When starting this work the author set out to get effort and intensity per month and division as such figures were needed when dealing with the great West Greenland tagging material. Such detailed figures, however, may not be of great interest to other ICNAF people, and the paper would be too heavy if the whole precedure of estimating and calculating the effort should be dealt with here. The tables in this paper are therefore given only as summaries of more detailed tables used by the author.

Consideration of space and time also forbids the author to go into details with all the assumptions and arguments. It may nevertheless be of interest to somebody to know the various steps and some of the arguments in the procedure. These steps are accordingly given here and it is hoped that they will show how reliable or rather unreliable the final figures are.

1. Only commercial sized cod are regarded.
2. All figures are based on catches given by weight (in estimating mortal.ity it ought to be by number) and differences in length compositions of catch between gears or years are not regarded.
3. The catches given as division 1 NK aro allocated to divisions from several points of view (e.g. number of Faroese motor boats in the various districts of Greenland. Within countries proportional to known allocated catches).
4. The fishing power of a Portuguese dory is regarded constant. (Mean fishing power of various fleets shown in Table l).
5. The fishing power of Portuguese trawlers seems to be unchanged in the period looked at (according to "List of Vessels"). A "mean Portuguese trawler', is chosen as the standard fishing power. Time unit is one hour trawled.
6. Catch per dory hour is compared (per month) to catch per Portuguese trawlex. Ihe proportion between these catches varies between months. August is here chosen as the standard month because...

The relation "catch per dory hour/catch per hour trawled" is rather constant between divisions and areas (one hour trawled $=19.66$ dory hours).

August is the only month in which all gears are operating to greater extent.

Cod are scattered over the grounds so that the density of cod within a division (and within borders of distribution) is rather uniform from area to area.
It is reasonable to believe that cod in August have the same catchability from division to division since phenomenons as spawning, escape from cold water etc. do not occur.
7. Following 4, 5 and 6 the effort unit is defined as "the effort developed by a Portuguese mean trawler (1273 BRT, 1059 HP) in one effective trawling hour in August". The effort unit is hereinafter abbreviated to PTHA.
8. Following the basic assumption that catchability of cod does not vary very much in the dory fishery and that in August one trawling hour equals 19.66 dory hours it is possible to estimate the relative catchability of cod to Portuguese trawlers in other months where dories are fishing. This gives the relations shown in Table 2.
The work started when the 1960 figures were the last figures available. The tables have now been supplemented with figures from 1961-63. This gives figures slight different from the previous figures, but because of the heavy work involved in the procedure and because of the desirability of uniform procedure from year to year the figures from the period 1954-60 have been maintained
9. The Portuguese catch per hour trawled is compared to the catch per unit time of other fleets (Table 3). For the period 1955-60 a Spanish trawler had an effect of $60.4 \%$ of a Portuguese trawler (the figure for 1954 seems to be unreliable). For this period it was not possible to set reliublo figures for othex nations than Gpain. In the poriod 1961.-63
also German and U.K. fleets have been compared to Portuguese flect. The means for Spain and U.K. are means weighted according to catch and fishing time. For Germany only those months have been regarded in which Germany has at least lo days of fishing and portugal at least loo hours trawled.

From Tables 2 and 3 and from several arguments not given here the conversion factors given in Table 4 are estimated.
lo. The effort based on conversion factors in Table 4 is raised to total effort (per month and division) by means of the corresponding catches. In many cases, however, it is not possible to use this procedure, and in such cases other ways of estimating effort have been used. Effort figures, catch and catch per effort are given in Table 7.
11. When fishery in a certain area is intensive and modern speedy vessels with clectronic equipment are used and when gears can be used under nearly all bottom conditions then one can reasonably say, that fishery will take placevover (ali) where fish occur with some abundance - and only there. The cod fishery at West Greenland seems to be such a fishery and we therefore assume, that the distribution of commercial sized cod can be estimated from the distribution of the fishing activity. A picture of the distribution of the fishery is obtained by plotting recaptures of tagged cod (assuming that within divisions tagged cod are evenly distributed amongst the ood not tagged). All recaptures caught in the years 1955-58 have been used together with German and Portuguese recaptures from 1963 (Figs. 1 and 2).
Some of the months show nearly the same picture and can be put together in longer periods. These periods are 1) January-April, 2) May, 3) June, 4) July-September and 5) October-December. Within each period cod seems to occur in certain depth intervals. Areas in these intervals are shown on Figs. 1 and 2. The ir areas are measured by a planimeter (Table 5).
12. The scope of work mentioned in this paper was to estimate the relative possibility of a tagged cod to be caught in a certain area (division) at a certain time (month).
Assuming that tagged cod are evenly mixed with the stock of the division and assuming that tagged cod behave as untagged cod the relative possibility of a tagged cod to be caught can be measured by the fishing mortality coefficient (F), which is proportional to the overall fishing intensity ( $(\tilde{f})$. $\tilde{f}$ is defined as the weighted mean effort per unit area, weighting factor being the density of cod in each area unit. It is, however, very difficult to get adequate figures for $\tilde{f}$ in this way. If fishing effort is distributed at random within the areas given in Table 5 we can, however, say that the possibilj.ty of a certain (tagged) cod to be caught is independant of the number of other cod present. Under this assumption the chance of this cod to be caught is
proportional to effort per unit area. This possibility of being caught is calculated per month and division. The summarized figures are given in Table 8.

## THE FISHING ACTIVITY AND CATCH.

The fishing activity is recorded in various ways by various countries. Some of these records regard only the time spent fishing (fishing gear operating). It is a matter of fact, however, that the whole fishing procedure also consists of a searching for fish. To include this searching the author has chosen "days on grounds" as the unit for fishing activity. Days on grounds include also days of bad weather, and as weather conditions vary between months and years the figures may not be compared without remembering this source of error. When looking at the figures for fishing activity as given in Table 6 one should also bear in mind the changing fishing power as given in Table 1.

Although giving fishing activity Table 6 may very well give the most reliable picture of the variation in effort and fishing intensity. At any rate the figures in Table 6 are those of primary interest to people economically involver $\hat{i}$ n fishery. The figures give (as previous figures) no ideas of variation in the mean size of fish, but to judge from various research reports it is a general feeling that the mean size of cod in landings has been decreasing in the last years.

The Portuguese dory vessels have a rather steady activity. Liners have an increase of activity in the years 1961-63 of about $40 \%$ of the 1954 level, while trawlers' activity in 1963 is about $2 \frac{1}{2}$ times that of 1954.

## THE FISHING EFFORT

The fishing effort is given in Table 7. Gears are combined according to conversion factors given in Table 4. The single figures may be inaccurate and suspicious, but as the procedure of estimating the figures do not vary very much between years the figures may nevertheless show the changes in fishing effort. Catch per unit effort should likewise show changes in the density of cod (measured by weight of catchable fish, not by number).

Total fishing effort in West Greenland waters was rather steady in the period 1952-57. In the period 1957-63 the effort has been about doubled. This has given a considerable higher total catch but also a general fall in catch per effort.

## FISHING INTENSITY

Table 8 gives index of relative possibility of a certain (a tagged) cod to be captured in a division. The overall fishing intensity as defined also given in Table 8 is calculated from figures of Tables 7 and 5. The intensity ought to be based on monthly figures, but time has not permitted this. The

## - 5 -

yearly mean area of each division is then calculated as a weighted mean, weighting factors beeing the catch in each month. The overall fishing intensity figures must therefore be taken with all possible reservations, but even so the figures seem to indicate that the intensity has been about doubled in the last five years.

W'uble 1. Fishing power and mean "days on Ground" of vessels over 50 gross tons fishing in Subarea 1.

| Year |  | OTTEER TRAWLERS | LINERS | PORTUGUESE DORY VESSELS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1953/54 | Number | 205 | 89 | 40 |  |
| 1956 | of | 170 | 113 | 49 |  |
| 1.959 | vessels | 219 | 108 | 47 |  |
| 1962 |  | 226 | 94 | 35 |  |
| 195:/1.1 | Mean | 875 | 185 | 693 |  |
| 19 : | tonnage | 926 | 178 | 765 |  |
| 195 | (gross tons) | 940 | 190 | 872 |  |
| $196 \%$ |  | 1037 | 236 | 870 |  |
| $1993 / 54$ | Mean | 1061 | 19.8 | 51 |  |
| 186 | HP (trawjers) | 11.12 | 19.4 | 55 |  |
| 1959 | crew (Jiners) | 1.224 | 20.2 | 61 |  |
| 1962 | dories | 1321 | 22.4 | 64 |  |
| 1953 | Mean | 30 | 96 | 73 |  |
| 1956 | days | 38 | 85 | 54 |  |
| 1959 | on | 40 | 154 | 72 |  |
| 1962 | ground | 60 | 156 | 102 |  |

Table 2. Catch per hour trawled in per cent of catch per dory hour (Porlugucte cod fishery, Subarea 1).

| Month | 5 | 6 | 7 | 8 | 9 | $7+8+9$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Period |  |  |  |  |  |  |
| $1954-60$ | 3613 | 4305 | 2172 | 1966 | 1930 | 2015 |
| $1954-63$ | 3613 | 4305 | 2165 | 1899 | 2003 | 1973 |

Table 3. Cod Subarea 1. Different nations' catch per time unit as recorded in per cent of Portuguese trawlers' catch per hour as recorded. $W=$ relative weight of the relations.

Table 4. Convesion factors used to transform effort as recorded to standard effott (PTrA)

cont/
$\stackrel{-1}{0}$
cont/ Table 4.

| 1 D |  |  | 12 |  | $1 F$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2-5 | 6 | otieer | 2-6 | other | 2-6 | other |
| $\begin{aligned} & 2.00 \\ & 2.00 \end{aligned}$ | 3.57 3.57 | 1.00 | 2.80 | 1.00 | 2.00 | 1.00 |
| 1 | 2.46 | 0.59 | 1.93 | 0.69 | 1.38 | 0.69 |
| 2.00 | 3.57 | 1.00 | 2.80 | 1.00 | 2.00 | 1.00 |
| - | - | - | - | - | - | - |
| 26 | 26 | 13 | 26 | 13 | 26 | 13 |
| - | - | - | - | - | - | - |
| 2.00 | 3.57 | 1.00 | 2.80 | 1.00 | 2.00 | 1.00 |
| 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 | 0.051 |

Table: 5 Size of the offshore area occupied by the West Greenland cod Stock at different times of the year. Unit is square nautical mile. Figures in brackets are supposed to be minimum.

Table 6 Offshore fisheries, Subarea l. Fishing activity expressed as "Days on Ground" or "loco Doryhours". Figures in proportional catch. Greenlandersi catch not included. Liners and dories have only very small quantities of fish other than cod.

| Gear | Year | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Days O.G. | $\begin{gathered} 6080 \\ (4601) \end{gathered}$ | $\begin{gathered} 5325 \\ (4656) \end{gathered}$ | $\begin{gathered} 6376 \\ (5896) \end{gathered}$ | $\begin{gathered} 7614 \\ (6707) \end{gathered}$ | $\begin{gathered} 9781 \\ (8469) \end{gathered}$ | $\begin{gathered} 8864 \\ (8014) \end{gathered}$ | $\begin{gathered} 8286 \\ (7534) \end{gathered}$ | $\begin{gathered} 12618 \\ (12137) \end{gathered}$ | $\begin{gathered} 14165 \\ (13629) \end{gathered}$ | $\begin{gathered} 15519 \\ (13949) \end{gathered}$ |
| OT | tons cod tons total | 160890 173575 | 131265 161570 | 183343 | 139810 | $\begin{aligned} & 172683 \\ & 191784 \end{aligned}$ | 109508 142561 | 100813 | $\begin{aligned} & 171316 \\ & 235582 \end{aligned}$ | $\begin{aligned} & 247186 \\ & 317945 \end{aligned}$ | $\begin{aligned} & 244056 \\ & 306128 \end{aligned}$ |
|  | tons cod/day tons total/day | 26.5 28.5 | 24.7 30.3 | 28.8 30.5 | 18.4 19.6 | 17.7 19.6 | 12.4 16.1 | 12.2 17.7 | 13.6 18.7 | 17.5 22.4 | 15.7 19.7 |
| LL <br> HL | Days o.G. | $\begin{gathered} 8539 \\ (4706) \end{gathered}$ | $\begin{aligned} & 12898 \\ & (2585) \end{aligned}$ | $\begin{gathered} 9592 \\ (5283) \end{gathered}$ | $\begin{gathered} 5147 \\ (2263) \end{gathered}$ | $\begin{gathered} 9707 \\ (3859) \end{gathered}$ | $\begin{aligned} & 16679 \\ & (4761) \end{aligned}$ | $\begin{aligned} & 11691 \\ & (4747) \end{aligned}$ | $\begin{aligned} & 16087 \\ & (7176) \end{aligned}$ | $\begin{aligned} & 14625 \\ & (8508) \end{aligned}$ | $\begin{aligned} & 12728 \\ & (5808) \end{aligned}$ |
|  | tons cod | 55623 | 56448 | 53161 | 29930 | 52558 | 47590 | 56064 | 74422 | 87399 | 76843 |
|  | tons cod/day | 6.5 | $4 \cdot 4$ | 5.6 | 5.8 | 5.4 | 2.9 | 4.8 | 4.6 | 6.0 | 6.0 |
| DV | Days O.G | 2912 | 3249 | 2633 | 3215 | 4257 | 3395 | 3017 | 3461 | 3553 | 3700 |
|  | 1000 Doryhours | 1040 | 961 | 993 | 1144 | 1486 | 1236 | 1344 | 1329 | 1339 | 1359 |
|  | tons cod | 70664 | 60818 | 68713 | 74702 | 69078 | 49867 | 58936 | 65688 | 80693 | 61603 |
|  | tons cod/day | 24.3 | 18.7 | 26.1 | 23.2 | 16.2 | 14.7 | 19.5 | 19.0 | 22.7 | 16.7 |
|  | kg cod/hour | 67.9 | 63.3 | 69.2 | 65.3 | 46.5 | 40.3 | 43.8 | 49.4 | 60.3 | $45 \cdot 3$ |
| Total Days O.G. |  | 17531 | 21472 | 15968 | 15976 | 23745 | 28938 | 22994 | 32166 | 32343 | 31947 |

unit.

| 4 |
| :--- |
| $H$ |
| 0 |
| 0 |
| 4 |
| 41 |
| 0 |
| 0 |
| $H$ |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

.

/cont
Fable// continued.

| $\begin{array}{r} \text { tons } \\ \text { landed } \end{array}$ | 1-D |  | $\begin{aligned} & \text { tons } \\ & \text { landed } \end{aligned}$ | 1-5 |  | $\begin{aligned} & \text { tons } \\ & \text { landed } \end{aligned}$ | 1-F |  | tons ${ }^{\text {Total }}$ Subarea 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PTEA | tons/PTHA |  | PTHA | tons/Pmeat |  | DTHA | tons/pmers | landed | PTHA | tons/PTHA |
| 102267. | 75015 | 1.363 | 5338 | 3620 | 1.475 | 36681 | 37028 | 0.991 | 254508 | 195805 | 1.35I |
| 55060 | 46495 | 1.399 | 3128 | 2523 | 1.193 | 25103 | 23096 | 1.130 | 189069 | 135345 | 1.397 |
| 121587 | 73211 | 1.661 | 4018 | 3128 | 1.285 | 15354 | 15386 | 0.998 | 287177 | 195550 | 1.469 |
| 124310 | 71477 | 1.739 | 12502 | 8358 | 1.496 | 5989 | 4508 | 1.329 | 248531 | 164731 | 1.509 |
| 154445 | 82549 | 1.990 | 15634 | 8549 | 1.923 | 8435 | 2250 | 3.749 | 305217 | 156528 | 1.833 |
| 83596 | 72232 | 1.159 | 38770 | 31415 | 1.234 | 18026 | 10715 | 1.682 | 244442 | 194185 | 1.259 |
| 104847 | 111918 | 0.937 | 30541 | 23223 | 1.375 | 30421 | 29027 | 1.048 | 294319 | 277707 | 1.060 |
| 58119 | 88060 | 0.660 | 24958 | 31135 | 0.802 | 19121 | 14729 | 1.298 | 206965 | 243864 | 0.849 |
| 63854 | 73601 | 0.868 | 28343 | 37845 | 0.749 | 23126 | 22727 | 1.018 | 215813 | 250387 | 0.852 |
| 99919 | 108941 | 0.917 | 29216 | 43409 | 0.673 | 27979 | 50332 | 0.556 | 311426 | 370765 | 0.840 |
| 100371 | 100348 | 1.000 | 39136 | 53167 | 0.736 | 34490 | 39199 | 0.880 | 415278 | 376537 | 1.103 |
| 113410 | 120185 | 0.944 | 61464 | 63998 | 0.960 | 31.103 | 36396 | 0.855 | 382502 | 387334 | 0.988 |

Table 8. Relative possibility of a certain cod to be caught calculated per month and division as PTHA per square


'Eig.l. Distributi on of cod fisheries and cod in Wesit Greenland offshore waters. Each spot indicates a recaptured tagged cod.


FIg.T. Distrioution of. Goumpsitude ana coa In west
Greenland offshore waters. Each spot indicates
a recaptured tagced cid.

