$\therefore 11$

ANNUAL MEETING .- JUNE 1969

Status of the Georges Bank Haddock Fishery

by

Richard C. Hennemuth
Bureau of Commercial Fisheries Biological Laboratory Woods Hole

Introduction

This document presents a brief historical review of the $5 Z$ haddock fishery, and the biological studies conducted since 1932. It also summarizes the current (1969) and probable (1969-70) status of stocks based on information available to date.

The data and information presented herein form the biological basis upon which management decisions with regard to this stock may be based.

Long-term trends in landings and effort

It is convenient to consider three periods within the known span of the fishery. The first is the development stage which extends from early 1900^{\prime} s to the early 1930 's. Landings increased from about 15,000 metric tons in 1917 to a peak of about 115, 000 tons in 1929, and then declined rapidly to about 26, 000 tons in 1934 (Table 1, Figure 1). During this period the beam trawl first developed, and rapidly replaced the line fisheries. The latter years saw introduction of the Vigneron-Dahl trawl and vessels using diesel engines and depth sounders. Essentially, the fleet in existence in the early 1930^{\prime} 's was of the same type that has lasted through to current times.

The heavy fishing of the late 1920's apparently caused the stock to decline rapidly, and the low catch per unit effort caused a rapid reduction in fishing effort in early 1930 's.

Unfortunately, the data on landings per unit effort are not reliable for this early period because observations were not being made at the time. Also, the effectiveness of a days fishing changed considerably during the period. Corrections have been made for these changes, but the data as presented should be interpreted in a generally descriptive sense only.

The second period is one of relatively stabilized fishing from the early 1930^{\prime} s to the early 1960° s. Annual landings varied from 35, 000 to 50,000 tons, and effort fluctuated between 5,000 and 8,000 standard days fishing. The war years caused some disruption of fishing, but only of the order of a 20-30 percent reduction in effort. We will later use this period for estimating equilibrium conditions, and a more detailed picture of fluctuations in catch and effort is given in Figure 2.

Biological investigations started in 1932 with the collection of detailed statistics of landings and days fished by area, and of age-length samples from the landings. The same.system has continued to date.

In 1953, a 4-1/2 inch mesh regulation was put into effect by ICNAF for S. A. 5 haddock stocks. The effect of this regulation on yields has not been estimated--it is, in fact, inestimable. It was effective in reducing discards, --which in the average pre-regulation year probably were 10-15 percent of landings--to about $1-5$ percent of landings in post regulation years.

Table 1. --Statistics of catch and effort for Georges Bank haddock.

Year	Landings MT x 10 Fresh	Land/DF MT Rnd, Fresh	$\underset{\times 10^{-3}}{\text { DF }}$	DF Ave/3 $\times 10^{-3}$	No's Fish Landed $\times 10^{-3}$	No's Fish Land/DF
1917	14.1	13.3	1.0			
1918	24.8	17.1	1.4			
1919	39.4	18.1	2. 2	1.5		
1920	40.6	18.9	2.2	1.9		
1921	29.7	16.8	1.8	2. 1		
1922	30.8	12.6	2.4	2. 1		
1923	32.9	9. 5	3.5	2.6		
1924	36.9	12.0	3. 1	3. 0		
1925	41.4	16.6	2.5	3.0		
1926	51.3	21.4	2.4	2.7		
1927	73.9	22.6	3. 3	2. 7		
1928	98.6	17.8	5.5	3.7		
1929	115.5	11.6	10.0	6.3		
1930	95.0	6. 0	15.9	10.4		
1931	59.5	4. 5	13.0	13.0	39,127	3, 020
1932	54.5	6. 0	9.1	12.6	39,481	4, 334
1933	42. 2	5. 0	8.4	10.2	30,894	3,673
1934	25.8	5.3	4.8	7.4	19,335	3,996
1935	41.0	6.4	6.4	6.5	32,303	5, 0.07
1936	43.4	7. 0	6.2	5.8	35,387	5,686
1937	49.4	6.0	8.2	6.9	36,534	4,459
1938	47.8	6.0	7.9	7.4	37,897	4, 813
1939	54.0	6. 7	8.0	8.0	43, 845	5,470
1940	47.9	6.6	7.2	7.7	34,963	4,844
1941	62.9	8.6	7.3	7.5	51, 262	6,997
1942	55.4	9.7	5.7	6.7	45, 262	7,896
1943	46.3	9.5	4.9	6.0	37,429	7,667
1944	49.6	8.8	5.6	5.4	33,149	5, 861
1945	40.5	8.3	4.9	5. 1	26,552	5,428
1946	53.7	7. 4	7.3	5.9	37,373	5,132
1947	54.4	6.6	8.2	6.8	41,795	5,083
1948	48. 3	6.2	7.7	7. 7	41,168	5,337
1949	42. 2	5.9	7. 1	7. 6	33,681	4,717
1950	41.3	7.5	5.5	6.8	42,879	7,816
1951	47. 3	7. 3	6.5	6.4	43,668	6,728
1952	43. 2	7. 3	5. 9	6.0	45,621	7.689
1953	35. 9	5.5	6.5	6.3	32, 004	4,915
1954	46.4	8.0	5.8	6. 1	48,301	8,318
1955	40.8	8. 1	5.0	5, 8	33, 086	6,540
1956	48. 9	7. 2	6.8	5.9	39, 718	5,924
1957	46. 2	5. 9	7.8	6.5	35, 912	4,619
1958	35.5	4. 6	7.8	7.4	27,108	4,298
1959	35. 9	3.8	9.4	8.3	26,737	3,358
1960	41.1	5.4	7. 7	8.3	34, 086	4,493
1961	46.2	6.5	7.2	8.1	36,832	4,898
1962	54.0	6.3	8.6	7.7	40, 143	4, 713
1963	54.8	4.4	12.4	9.4	36,557	2,922
1964	64.1	5. 3	12.1	11.0	44, 260	3,654
1965	149.6	5.6	26.7	17.1	125,784	4,761
1966	121.3	4. 5	26.8	21.9	111,207	4,104
1967*	51.4	3. 7	13.9	22.5	38,358	2, 740
1968*	44.1	2. 9	15.2	18.6	27,911	1,863

During the lirst two periods, the fishery was conducted exclusively by U.S. vessels. The third period, commencing in 1963 , covers the entrance of other colnt ries into the fishery, with resulting rapid build-up of fishing effort. Peak landings of 150,000 metric tons were observed in 1965, and 121, 000 tons were removed in 1966 . A two-fold increase in fishing mortality resulted.

The recrutment of a dather large 1963 your tlass to the fishable stock on the bank in 1965 was a factor inducing the increased fishing effort. By 1967 the adult spawning stock was reduced to the lowest level on record. Production of fish since 1963 has been extremely low; the brood years of 1964 to 1968 are all $1 / 10$ to $1 / 100$ of previous norms. The age composition of landings for this period compared to the average over the second period are presented in Figure 3.

Estimation of Abundance, effort and mortality from commercial fishery statistices
The index of abundance is derived from the landings per day fished of a selected group of about 21 U.S. otter trawkers of $150-300$ gross tons. The selection was based on similarily of characteristics alfecting fishing power (size, horsepower, etc.). Although there have been some deletions and additions to this group since 1!31 (the actual number varied from 16 to 27), the added vessels had the same characteristics as the original group.

Information on fishing time and area of catch was obtained by dockside interview when the vessel landed. Trips we re generally from one to two weeks duration.

The average landings per day fished was obtained for each quarter. Thise in turn were averaged over the ycar. The annual average thus obtained, which represents the index of abundance, was divided into total landings to estimate the total, standardized days fished.

The standard fleet reflected generally the areas and sizes of il sh caught by all U.S. vessels fishing for haddock. In recent years, when fleets of other countries have fished ior haddock, their landings also have been included in the total from which the total standard effort is obtained. This is no problem with regard to Canadian catches, since their vessels use a regulation mesh and comparison of size composition of landings indicaies no siguificant differences from the U.S. landings. The trend in landings per day of Canadian trawlers closcly approximates that of the U.S. (Table 2).

Table 2.--Comparision of relative abundance from U.S. and Canadian fishing fleets

Year	Landings per United States	e 101963 Canada
1963	1. 0	1. 0
1964	1. 2	1. 1
1965	1. 3	1. 1
1066	1. 0	0.0
1967	0. 8	0.9
1968	0.6	0. 7

Unfortunately, there is no data available on the size composition of the large USSR landings in 1966 and 1965. Analysis of rescarch vessel survey data in a later section indicates the proportion of wo-ycar old fish might have been significantly higher, but the provisional treatment in this document does not adjust for any differences that might exist.

Samples of fish in the landings have been obtained for estimating age and length composition throughout the years since 1932. Numbers of fish landed have been estimated in the usual manner by dividing sample weight per fish into total landings (Table 1). The total numbers have been prorated on a quarterly basis over age groups by utilizing age-length keys. Numbers landed per day was obtained by using the aforementioned estimate of total days fished.

Quarterly averages of loge numbers per day over the 1931-61 period are shown in Figure 4. Fish are fully utilized from age 3 onwards. The quarterly fluctuations indicate recruitment aggregations of two and threeyear olds in the August-October period (Quarter 3), and spawning aggregations of older fish during February-April (Quarter 1). Age compositions for more recent years (Figure 4) illustrate quite clearly the effect of heavy fishing and lack of recruitment since 1965.

An estimate of the total annual mortality coefficient, Z, was obtained form age 3 onward each year by utilizing the ratio of catch per day of a given year class from one year to the next. The annual estimates for 1935-63 (Figure 2) range from 0. 4 to 0.9 ; the average value being 0.67 . Previous studies have indicated the natural mortality coefficient, $M=0.2$, so that the fishing mortality coefficient, F, is about 0.5 on the average over this period. The average annual standard effort was 7,000 days.

A preferable technique using virtual populations, i. e. landings and not landings per day, has led to the estimation of Z (and F assuming $\mathrm{M}=0$. 2) for each age group of the 1930-59 year classes. The averages of F and Z values for age 3 onwards were nearly identical to that above. The estimates of F for age 2 range between about 0.1 and 0.4 , indicating the incomplete recruitment at this age. Fishing mortality on age 1 fish is virutally nil.

Previous studies (see 1958 Res. Doc \#92) have shown that the total mortality coefficient increased by a factor of 1.5 in the years 1965-66, so that if natural mortality had not changed, the fishing mortality coefficient would have doubled, as expected, during this period.

Long-term equilibrium yields

One means of determining the status of fisheries is to estimate the locus of points which represent the equilibrium (steady state) relationship between yield and yield per recruit, and fishing mortality. This is accomplished by fitting an appropriate equation to a set of observed points of abundance and fishing mortality.

These data for the Georges Bank haddock fishery are plotted in Figures 5 and 6. Landings per day and days fished are presumed proportional to abundance and fishing mortality, respectively. A running average of effort over three years was used to reduce the effects of the lag time in reaction of available stock abundance to changes in rate of fishing. This probably does not adequately correct for such effects, particularly when the changes are large. Therefore, the points for periods of rapid change (1927-32, 1964-68) have not been utilized in fitting fuctional relationships.

The curved line in Figure 5 represents a fit of the Beverton-Hoit yield-per-recruit function, assuming that 7,000 days produced an F of 0.5. The straight line was fitted to the points for 1933-63. This purports to represent the Schaefer yield function, which assumes recruitment is a linear function of stock size. The corresponding curves of yield-per-recruit and total yield are drawn in Figure 6.

For both functions, the relations strongly suggest that yield is maximized, for the average recruitment experienced in the period of stabilized fishing (1933-63), at a level of effort of about 7, 000 standard days annually. The maximum total yield is, on the average, about 50,000 metric tons. A sustained fishery beyond this level will cause the yield in any terms to decrease, and if recruitment is dependent on stock density, total yield may decrease quite substantially.

We: have chiserved lwo periods during which removals exceeded

 ing effori to lower fevels. In hemma recent years, however, a sustained low recruitmant has ded to tin unprecedented low stock abun-
dance.
Stock-recrusmeni
Kawnledge of ine wat pronesses controlling recruitment is of vital concern. In parbeutar, the effect of spawning stock density (or bionatis) is catical since it is a function of the rate of removal which can, to a large extent, be contwotled.

We: tannul hav anmunsuab in dilinite relalionship between stock and reeruitment. An inties of size of yoar classus produced from 1929 to 196 b wher reruitod io the bshey as two-ysar olds is given in Figure 7. Athounh matividual wor etasesthave fluctuated an: whith as an order of
 very poor recruitnem has bean monerved. Thus the bulk of our observations are over a permon whentoc stock sise has tiot changed drastically.
 hats ben photw winh lac: ndex of your casses resulting therefrom. Stock size in 1931-35 was in very year below the average of 1935-63; about 20 pereent below on the averate. 'the year classes produced were not markedly lowre, but consistandy un bian sicte. During the next 20 years or so, large deviations in shwithy . .od, and between block and recruitment were observed. The linst serice ti 10 years, or so, indicates a marked downward trend in spawnitg stuck, with a reduction in magnitude of fluctuations and size of resultant year classes. The points beyond 1965, when available will show an even lower frend.

Sonterecem studies git stom-rucruitment for other gadoid stocks have indicated a temency for lowered production, particularly at low sotek densities. A spectife study of cod in the luarents sea area has shown a possible sharp drop off at tather lowter spawning stock levels.

It does swem, the efore, hat the eurrently very low abundance of Guorges bunh liaduw. (with very litile prospect for significant recruitment over the next two jedz at least) ouse reduce the probability of good year elass produchoo, periapos drasticaly so.

Rescarel Vessel bur oir
Gromadiant trow suspey: tave bera eobducted on a seasonal basis since July 1963. These suveys ate quite eomprehensive and provide an estimathe of stock abomatace that is intependent of that derived from commercial fishery statiolies, and free from the biascs related thereto.

It is usefuk w present wome priminary results of analysis of this

 predict future recruinhtat (stet dive a Fiesearch Document by Grosslein submitted this year).

 mormality wedfenena di reed irn the year elass eatch curves are also quite similiar. This hisure also indivatu: that haddock are fully available

 - The rate wi rembval wan abmi hne thase greater than periods before and after. The enrve humeded "uge 34" represents foughly the portion of the

 lime, avaliable to ary vituri to the l.S. fishery because they were too small. Thus, the U.S. lisher, disd aol wordexte any great increase in landings per day from the sectubmat o! this year class.

This effect is more clearly illustrated in Figure 11, where the index of abundance of year classes in the commercial landings is plotted against an index of year class abundance derived from the survey data. The survey index was obtained by extrapolating backward to age 1 , the lines fitted to loge numbers per tow at age for the various year classes present from 1963 through 1965.

The linear relationship indicated in Figure $1 l$ will hold only if mortality through age 3 had been constant. The point for the 1963 year class is obviously low and most likely for the reason that mortality on this year class in its third year of life was markedly higher.

Estimation of Quotas

Estimates of the current biomass in terms of weight or numbers, and of recruitment in the next year are required to set quotas which will satisfy the objective of maintaining or increasing the stock of fish.

To obtain estimates of fishable stock, we have employed the relation

$$
C_{i}=N_{i}\left(l-e^{-Z}\right) \frac{F}{F+M, \text { where }}
$$

$C_{i}=$ catch in year i, and,
$N_{i}=$ numbers of fish in population at beginning of year.
Z, F, and M are the standard mortality coefficients.
The relative stability of the fishery during the $1935-63$ period provides a reasonably steady state situation. Using $\mathrm{F}=0.5$ and $\mathrm{M}=0.2$ in the above equation results in an estimate of average numbers in the available population (essentially age $2+$) of 130×10^{6}. Estimates for the individual years presented in Figure 12. The average nymbers landed during this period was 38×10^{6}. A fishing mortality of $-\frac{\mathrm{F}}{2}$ was applied to the two year old fish to allow for incomplete recruitment.

The virtual population method as modified by Gulland (1965 ICES report of the Gadoid committec) to provide for varying fishing rates was also employed to obtain estimated stock size. An average population of $133 \times 10_{6}$ fish was obtained; the yearly estimates are also plotted in Figure 12.

We have also obtained estimates of biomass based on the stratified random sampling of the Albatross IV surveys (Figure 13). Allowing for the fact that the below average 1960 and 1961 year classes (see Figure 7) were recruited to the fishable stock during 1963-64, the estimates of numbers of fish of the order 10^{8} indicate reasonable agreement. This data also illustrates the increase in stock from recruitment of the 1963 year class, and the rapid decline of total stock from 1965 to 1968.

Based on landings of two year olds during the 1935-63 period, the average of numbers in the population at this age is estimated at 49×10^{6}. These data are summarized in the fïrst column of Table 3. Because the maximum harvestable surplus was produced on a sustained basis through this period of years, it seems desirable to set this stock size as the target of management.

Table 3.--Fistimatus of avalahta inpulation numbers and recruitment for Georget: Batik h:adouch.

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Listimates of stuch sizu fis i:168 indicate we have a long way to go. The U.S. index ol ahundanec m, $1: 188--1,863$ hilos per day fished-indicates the population has been reduch to dhout $1 / 3$ of the 1935-63 average of 5,572 kilos. This woulu indicate a mpmation of avalable fish of about 43×10^{6} at the beginning of 1968. An alternativi: calculation is provided by estimating that the 15.2×10^{3} days fisher in 1968 caused a mortality of $\mathrm{F}=1.0$. (this assumes the effort index is proportional to mortality). Again utilizing the equation at the beginning of this section, with $M=0.2$, and the estimated landings of 28×10^{6} fish, the estimated population is 47×10^{6} fish.

Recruitment of the population in 1968, 1964, and 1970 has been estimated in two ways. Frisst, we can infer from Figure 7 that recruitment from year classes produced situte 1963 will be $1 / 10$ (or less) of the average through the 1930-1960 period. The 1069 risearch document by Grosslein indicates the 1967 and 1968 y ear vlasisis: are about the same order of magnitude. This means that roughly $5 \times 10^{1 \%}$ ish of age 2 would be the expected recruitment.

We can be a littue mur morne by utilizing the index of year class abundance derived from the :an diala which was mentioned in a previous section. This data covirs thar 16, ib-196G year alasses, but we should note
 The 1958 and 1954 your viaw: \cdot w.... .in inailar almadance, and somewhat

 81×10^{6} Iish. Usine tha. vilu... whl amylag the year class index computed
 are obtained. The lita wres firth in Table 4. The index given by
 1968 year classes.

Table 4. --Estimated recruitment for 1956-68 year classes on Georges Bank.

Year Class	Survey Index	$\begin{aligned} & \text { Index } \\ & \text { Rel. to } 59 \mathrm{Y} . \mathrm{C} . \end{aligned}$	No's. Pop Age 2×10^{6}
63	5.14	6. 2	502
62	3. 94	1.9	154
58	$3.37)$	1.0	81
59	3.26)	1.0	
56	3.09	0.8	65
57	2.53	0.5	40
64	2. 49	0.4	32
$60)$	2.34	0.4	32
61)	1. 67	0.2	16
65	-0.47	0.02	2
67		0.01	I
68		0.2	16

With known removals of at least 28 million fish in 1968 and an estimated recruitment of 16×10^{6} two years ald (1966 year class), the population of age $2+$ fish beginning in 1969 is of the order of 30×10^{6} fish. We expect landings of about 10×10^{6} fish in 1969. Providing this is the case, and that recruitment from the 1967 year class is as poor as indicated, the population at beginning 1970 will be about 18 million fish. These estimates are set forth in Table 3.

Finally, in 1970, the expected recruitment from the 1968 year class in 16×10^{6} fish, and if the population is not to be further reduced, landings will have to be less than 13×10^{6} fish, or with an average weight per fish of about 1 kilogram, 13,000 metric tons.

 fleet for Georges Bank haddocit, L:14-68.

Figure 2.--Landings per day (L/D, Metric tons x 10^{3}), total days effort (D, days $\times 10^{3}$), and total mortality coefficient ($Z, 3-7$ year old fish) for Georges Bank haddock, 1933-1963.

Figure 3.--Avreage of h. .. .
.... . .inded pur day fished by
 1931-61.

Figure 4.--Age composition of U.S. haddocks landings from Georges Bank, 1964-68.

Figure 5.--Relation between landings per day fished by U.S. fleet and 3-year cumulative average effort ior Georges Bank haddock, 1919-68.

Figure 6.--Relation between total landings and 3-year running average of effort for Georges Bank haddock, 1919-68.

Figure 7. - Annual average number of 2 -year old haddock landed per day fished by U.S. fleet from Georges Bank, 1931-68.

Figure 8. --Stock-recruitment relation for Georges Bank haddock (1931-61 year classes).

ABUNDANCE-LOG (NUMBERS PER UNIT EFFORT)

Figure 9.--Log numbers of haddock caught per unit of effort by U.S. commercial fleet and Albatross IV surveys. The points represent seasonal observations of age group abundance.

Figure 10. --Abundance of haddock on Georges Bank as measured by
Albatross IV groundfish surveys.

Figure 11. --Relation of year class abundance index of haddock on Georges Bank derived from catch curves based on Albatross IV dat a to numbers landed per day fished by U.S. fleet.

Figure 12. --Estimates of commercially available population of haddock on Georges Bank.

D 7

Figure 13. --Estimated population size of haddock on Georges Bank based on research vessel surveys by year and season ($\mathrm{S}=$ summer, $\mathrm{F}=$ fall, $\mathrm{W}=$ winter).

