# ANNUAL MEETING - JUNE 1972 <br> Conbined Virtuai Population Assessment for ICNAF 

Divisions $2 J, 3 \mathrm{~K}$ and 3 L Cod
A. '1'. Pinhorn and R. Wells

Fisheries Research Board of Canada
Biological Station, St. John's, Newfoundland

## Introduction

A virtual population assessment of $2 J$ cod has been presented by Pinhorn (1971) and has been updated at the present meeting (Res. Doc. 7?/3). In addition, a similar assessment for Divisions $3 K$ and $3 L$ cod is contained in a document to the 1972 Anmual Meeting. The combined assessment for Divisions $2 J-31$ is presented here.

## Materials and methods

The basic data used and the method of treatment of the data to produce the individual virtual population assessment for 2 J , 3 k and 3 L are presented in the relevant documents. In deriving the assessment for 2J-3L combined, numbers of cod eaught at each age (Table 1) were combined for the three divisions and a separate VPA was determined using the combined data. Natural mortality of 0.2 was again used and $\mathrm{E}\left(1-\mathrm{e}^{-\mathrm{Z}}\right)=0.506$ was assumed for the oldest age-groups. Average weight-at-age data were derived from growth curves and length-weight curves for the most recent period available for each division and these were weighted by the average numbers caught in each division for the same period to produce average weight-at-age values for $2 \mathrm{~J}-3 \mathrm{~L}$.

## Results

Fishing mortality
Fishirg mortality estimates ( F ) for ages $3-13$ fluctuated around $0.3-0.4$ during $1961-66$ except for 1965 when $F$ was 0.46 (Table 2). The F in 1968 was 0.56 , the bighest value during the period. F-values for fully recruited age-groups of 1.20 for 1969 and 0.68 for 1970 were estimated from stock sizes at the beginning of each year and the catch in that year as shown below. Cod from this stock complex are fully recruited at 7 years of age with very few 3-year-olds being taken, the $50 \%$ recruitment beines about 5. 4 years.

| Age | $\underline{1969}$ | $\underline{1970}$ |
| :---: | :---: | :---: |
| 4 | 0.05 | $?$ |
| 5 | 0.16 | 0.13 |
| 6 | 1.42 | 0.24 |
| $6+$ | 1.20 | 0.63 |

C 2

Fumbers present in the stock at the beginning of the year ('Wable 3) indicated that the total stock size of fish 4 years old and older decreased from 2200 million in 1961 to 1800 million in 1964 but increased to $2400-$ 2500 million in $1968-69$, due to better recruitment from the year-classes of the early 1960 's. The numbers of fully recruited fish ( $6+$ ) decreased from 643 million in 1961 to 320 million in 1969.

## Yieid per recruit

Yield per recruit calculations incorporating the partial recruitment estimates shown in Table 2 produced an almost flat-topped curve with a point of maximum sustainable yield per recruit at an F -level of about 0.4 and an optimum fishing level according to the definition of the Midterm Assessment Subcommittee Meeting (1972) at a level of 0.28 (Fig. 1). The level of $F$ in fully recruited age-groups during $1961-66$ fluctuated around the level of maximum yield per recruit except for 1965 when it was beyond it, but the $F$ during 1967-70 was estimated to be well beyond the maximum level. Considerable reduction in fishing effort below the recent levels is necessary to even return to the point of maximum sustainable yield and as indicated by the Assessment Subcommittee at its Midterm Meeting (1972) fishing at a point somewhat below the maximum level is more practicable in cases of flat-topped yield curves. Such a reduction would not impair the long-term yield but would result in increased catch per unit of effort.

## Predicted yields in 1973

Probable yields in 1973 for any likely combination of $F$ in 1971-73 are shown in Fig. 2 and 3. These are calculated in a similar manner to those calculated in recent years for Subarea 1 cod (Redbook 1971 , Part I). Recruitment of the 1967 and 1968 year-classes in 1971 and 1972 was estimated from USSR survey data in Division $3 K$ as presented in Konstantinov (1971) and in 1972 Midterm Assessment Subcommittee Report (Res. Doc. $72 / 1$ ). Recruitment from the 1969 year-class in 1973 was assumed to be at the same Ievel as the 1968 year-class in 1972. Since the recruitment pattern (pattern of fishing) in 1969 and 1970, as is shown by the above text table, was different from the average recruitment pattern for $1961-68$, probably because of severe ice conditions in the north and since ice conditions were reported to be more severe than usual in this area in 1971 and 1972 , two sets of calculations were performed; those shown in Fig. 2 using the average recruitment pattern for $1971-73$ and those shown in Fig. 3 using the 1969-70 recruitment pattern for 1971 and 1972 and the average recruitment pattern for 1973.

## References

Pinhorn, A. 'I. 1971. Virtual population assessment of ICNAF Division 2J cod. ICNAF Res. Bull. No. 8: 75-85.

Konstantinov, K. G. 1971. The status of stocks and prospectus of cod fisneries in the Northwest Atlantic. ICd\&F Annual Meeting, Res. Doc. 71/11, 14 p.


Fig. 1. Yield per recruit for 2J-3L cod.


Fig. 2. Estimated yield in 1973 for likely combinations of $F$ in 1971-73 assuming average recruitment pattern in 1971-73.


Fig. 3. Estimated yield in 1973 for likely combination of $F$ in 1971-73 assuming recruitment pattern in 1971 and 1972 to be same as in 1969-70 and average recruitment pattern in 1973.
'Table l. ivumer of cod caught per year and age-group, ICNAF Divisions $2 J-3 L, 1961-70\left(x 10^{-3}\right)$.

| Age | Year |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 |
| 3 | 2,543 | 8,866 | 5,644 | 18,183 | 5,042 | 14,177 | 15,587 | 5,993 | 4,192 | 17,053 |
| 4 | 32,268 | 26,682 | 27,069 | 26,676 | 28,034 | 66,290 | 78,450 | 91,606 | 38,098 | 57,228 |
| 5 | 45,692 | 65,820 | 59,173 | 56,321 | 45,633 | 94,234 | 100,904 | 199,044 | 96,366 | 77,311 |
| E | 58,462 | 59,973 | 115,864 | 58,957 | 65,481 | 63,221 | 97,204 | 144,998 | 153,370 | 93,961 |
| 7 | 45,345 | 48,635 | 57,875 | 98,050 | 62,862 | 59,771 | 55,252 | 80,902 | 100,645 | 78,789 |
| 8 | 34,903 | 28,389 | 28,760 | 49,825 | 67,106 | 30,656 | 38,820 | 37,891 | 49,342 | 26,873 |
| 9 | 29,480 | 20,748 | 15,186 | 20,191 | 33,353 | 24,045 | 17,190 | 22,431 | 18,370 | 9,981 |
| 20 | 22,169 | 18,599 | 11,371 | 11,792 | 14,674 | 8,828 | 16,103 | 7,647 | 11,540 | 3,576 |
| 11 | 12,793 | 10,767 | 8,061 | 8,433 | 6,845 | 4,652 | 5,962 | 5,374 | 6,002 | 1,876 |
| 12 | 12,025 | 9,755 | 4,117 | 6,111 | 3,680 | 2,254 | 3,360 | 3,362 | 4,190 | 1,129 |
| 13 | 9,766 | 8,038 | 3,855 | 4,811 | 3,881 | 1,836 | 2,113 | 1,902 | 2,820 | 478 |
| 14 | 7,398 | 5,954 | 2,872 | 3,869 | 3,672 | 1,194 | 1,523 | 1,302 | 1,479 | 215 |
| 15 | 4,026 | 4,798 | 2,864 | 2,615 | 2,685 | 972 | -683 | -802 | 598 | 210 |
| 15+ | 4,941 | 11,321 | 5,060 | 5,407 | 4,012 | 2,331 | 1,094 | 1,010 | 852 | 349 |
| L'otal | 320,811 | 328,345 | 347,771 | 371,241 | 346,960 | 374,461 | 434,245 | 604,264 | 487,921 | 375,510 |

Table 2. Fishing mortality estimates for ICNAF Divisions 2J-3L, 1961-68.

| Age | Year |  |  |  |  |  |  |  |  | Change in $F$ with age as \% of fully recruited age-groups 1961-68 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | $\overline{\mathrm{F}}$ 1961-68 |  |
| 3 | 0.003 | 0.014 | 0.012 | 0.026 | 0.006 | 0.012 |  |  |  |  |
| 4 | 0.042 | 0.059 | 0.055 | 0.070 | 0.050 | 0.10 | 0.08 | 0.006 0.11 | . 01 | 2 15 |
| 5 | 0.11 | 0.11 | 0.18 | 0.15 | 0.15 | 0.23 | 0.22 | 0.31 | . 18 | 38 |
| 6 | 0.24 | 0.20 | 0.30 | 0.27 | 0.27 | 0.31 | 0.39 | 0.56 | . 32 | 67 |
| 7 | 0.33 | 0.33 | 0.31 | 0.45 | 0.51 | 0.43 | 0.50 | 0.66 | . 44 | 67 100 |
| 8 | 0.35 | 0.35 | 0.33 | 0.48 | 0.64 | 0.50 | 0.56 | 0.78 | . 50 | 100 |
| 9 10 | 0.39 | 0.37 | 0.32 | 0.41 | 0.69 | 0.50 | 0.58 | 0.77 | . 50 | 100 |
| 10 | 0.44 | 0.46 | 0.35 | 0.44 | 0.59 | 0.39 | 0.75 | 0.56 | . 50 | 100 |
| 11 | 0.31 0.42 | 0.39 0.47 | 0.37 | 0.47 | 0.50 | 0.37 | 0.51 | 0.60 | . 44 | 100 |
| 13 | 0.42 0.58 | 0.41 0.56 | 0.25 0.28 | 0.53 0.52 | 0.39 0.77 | 0.30 0.34 | 0.49 | 0.61 | . 43 | 100 |
| 1 | -.50 | 0.56 | 0.20 | 0.52 | 0.77 | 0.34 | 0.50 | 0.59 | . 52 | 100 |
| Avg. ages$4-13$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Avg. ages |  |  |  |  |  |  |  |  |  |  |
| 7-13 | 0.40 | 0.41 | 0.32 | 0.47 | 0.58 | 0.40 | 0.56 | 0.65 |  |  |

Table 3. Number of fish present in the stock at the beginning of the year ( $\mathrm{x} 10^{-6}$ ), ICNAF Divisions 2J-3L, 1961-68.

| Age | Year |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969* |
| 4 | 811 | 482 | 566 | 429 | 630 | 764 | 1,092 | 948 |  |
| 5 | 484 | 666 | 396 | 439 | 347 | 499 | 1, 565 | 833 | 903 |
| 6 | 301 | 360 | 501 | 272 | 309 | 257 | 329 | 369 | 491 |
| 7 | 177 | 192 | 241 | 297 | 171 | 189 | 155 | 183 | 173 |
| 8 | 129 | 104 | 112 | 143 | 155 | 85 | 99 | 76 | 77 |
| 9 10 | 100 68 | 75 | 61 | 66 | 73 | 67 | 42 | 46 | 29 |
| 10 | 68 53 | 55 36 | 42 29 | 36 24 | 36 | 30 | 33 | 20 | 17 |
| 12 | 38 | 32 | 29 20 | 24 | 19 | 16 | 16 | 13 | 9 |
| 13 | 24 | 21 | 17 | 13 | 13 8 | 10 | 9 | 8 | 6 |
| 14 | 25 | 15 | 11 | 11 | 8 | 3 | 4 | 5 | 2 |
| 15 | 13 | 15 | 11 | 7 | 6 | 4 | 2 | 3 | 2 |
| $15+$ | 16 | 26 | 20 | 15 | 11 | 8 | 4 | 2 | 2 |
| Total ages 4-15+ | 2,239 | 2,079 | 2,027 | 1,768 | 1,786 | 1,939 | 2,356 | 2,508 | 2,421 |
| Total ages 7-15+ | 643 | 571 | 564 | 628 | 500 | 419 | 370 | 358 | 320 |

*Estimated from stock at beginning of 1968 and $F$ in 1968.

