
(also $\frac{\text { ICNAF Res.Doc. } 72 / 14}{\text { ICNAF SAC No. } 72 / 13}$
(also ICNAF SAC No. $72 / 13$
$\frac{\text { Serial No. } 2698}{(\mathrm{~B} . \mathrm{g.7})}$

ANNUAL MEETING - JUNE 1972
Assessment ct American wathict sitioki
in ICNAF Divisions $3 L$ and $3 n$
ㅋ. K. Pitt
Fisheries Research Board of Car
Biological Station, St. John's, ew" w:iland

Introduction

The main fishery for American plaice (Bippoglossoides platessoides) in ICNAF Subarea 3 occurs in Divisions 3 L and $3 \mathbb{N}$ and began in the late 1940 ' s with the introduction of the otter trawler. The fishery has remained mainly Poland have gradualiy increased their share of the catch since 1965 so tha by 1968 they were taking about 50% of the tottal Fig. 1). In recent year plaice have become the major species sought by the Newfoundland otter traw er fleet.

In preparing the assessment of Grand Bank plaice, certain difficulties were encountered because of the frequent inadequacy of the sampling of the commercial flishery for age determinations. The orily age-length keys and the St, John's Biological Station. Sometimes research data were used then comercial data were lacking or inadequate. Another drawback was the
ack of information on discards which probably resulted in an underestimation of the numbers caught at the iower ages included in the commercial landings. In this respect no information was available on catches of plaice by draggers fishing cod primarily for salting; obviously there must have been a fair amount of discardis in these operations. However, in spite of these drawbecks, the best availsile data have been utilized in this assessment which gives an indication of the status of the plaice fishery on the Grand Bank.

Materials and methods

Calcuiation of numbers caught

Prior to 1970 the USSR and most other European countries reported their flatifish landings merely as "unspecified flounder". At the 1971 innual Meeting of ICNAF, however, the USSR presented a breakdown of their 1970 ifounder landings indicating that in 3 , plaice represented ebout 47 approximate proportions in prev: years in the latter division.

In a preliminary assessment for the 1971 Annua Meeting (Pitt, 1971), the proportion of plaice in the unspecified flounder landings by urnpean countries from iiv was estimated from the proportion that plaice
was of the total Canadian landings of plaice, yellowtail and witch, however for the present assessment the revised landings basen on the USSR 1970 The difference between these and those originally eatimated by the Canailan reakdown is !ndi.ated in Fis: 2. Division 3L landings wert pr. rarily by Canada.

Culculation of effort and catch per unit effort

The caiculation of fishing effort was based on the nominal catch per unit effort of plaice by Canada (N) stern trawlers (501-900 tons)
(Fig. 3). since the decline of the haddock fisnery in the early 1960's nost of Canada (N) effort in $3 L$ and $3 N$ between 75 and 200 metres has been confined to plaice, yellowtail and cod. In calculating the catch per hour for Canada. (N) from which total effort was estimated, all tows containing plafce in sufficient numbers to be recorded as a commercial catch on the more than 50% of the catch were also calculated (Fig. 3).

eparation of stocks

Plaice from Divisions ii and 3 were treated as separate stocks. Tagging indsated that on the srand Bank, l.laice ere relatively sedentary parta of the int minima. migrations noted between the northem slope just north of $46^{\circ} \mathrm{N}(3 \mathrm{~L})$ were recovired as far south as $1,5^{\circ} 30^{\circ} \mathrm{N}(3 \mathrm{~N})$. Simi larly of the plaice tagged at $45^{\circ} \mathrm{N}$, jnly a minor number were recaptured north of $46^{\circ} \mathrm{N}$ (3L).

Another reason for separating Grand Bank plaice int. two main stocks was the Jifference in the growtn patterti Fig. 4). Plaice from also fewer of the older age groups vere caught in 3 N .

Plaice in 38 are confined to a relatively small area along the southeast and eastern slopes of the Grand Bank since the 75 and 200 metre contours are relatively close in this area. In 3L, on the other hand, se slope is very gradual from 75 to 200 metres; hence the overall ara s much greater.

Although 3L and 3 N were dealt with separately, there is a strong possibility that 3 i. depends on 34 for recruitment probably at the pelagic larval level. Vertebral numbers (Pitt, 1963) indicated nc significant ifferen e between north and south bank areas. Preliminary resilts fro
 o significant genetic differences between the two Naf ivisions. Since the adults apparently migrate very intile, intermixing of the reas probably vecurs iuring the larval period.

Separation of males and females

From the beginning, the necesisity of separating males and femases appeared evident since each produced parameters thet were quite different. rowth curves ($\mathrm{Fig}, 4$) Indicated that the males were smaller at corresponding ges from ebout age 7 or 8 . Females generally live longer than the meles very few 20 -year-old maies were encountered wherees females up to age 30 were sometimes encountered (Fig, 5 and 6). The 50% maturity point of males is et age 7 (about 25 cm) in 3 L and age 5 (about 27 cm) in 3 N , wherea for females it is 14 years (43 cm) and 12 years (50 cm) in 3 L and 3 N respectively (Pitt, 1966). The conmercial lensth frequencies indicated values of F at younger age groups than for the females but the explanation for this is not forthcoming at present. Some commereitil and research figures are shown to illustrate this (Fig. 7).

Calculation of Plahing mortaily

The method developed by Fry (1949,1957) and modified by Guiland (1965) and Jones (1961, 1968) was used to estimate fishing mortality (F) for each age of the year-classes included in the catches of 1955-68 for 3L and 1956-68 for 31 s . The methods or calculation are described in detail by Schumacker (1970) and his procedure was used bere. The method reaui
an estimation of natural mortality (M) and an estimate of (E) for the an estimation of

The best estimates of natural mortallty were 0.25 for males and 0.20 for females (Pitt, 1972). In the assessment presented at the 1972 Meeting values of 0.25 and 0.15 for males and females respectively were used.

A few trial values of F for some of the older age groups suggested an F of 0.45 giving an E of 0.64 for males and 0.69 for females. These gave values of $\mathrm{E}\left(1-\mathrm{e}^{-2}\right)$ of 0.324 and 0.331 for males and females respectively.

Because of the absence of male plaice beyond age 14 in the 1970 conmercial catches, estimates of F for 1968 for fuliy recruited males in 3L (Table 1) were derived from calculated stock size at the beginning of F for 1969 and 1970 for the fully recruited age groups (Table 5).

Calculation of yield per recruit

Yield per recruit curves using the partial recruitrient values of Tables 1 to 4 were calculated for the wales and females for both areas on the basis of 500,000 recruits each of males and females at age 3. The yield curves were then combined to give an average yield per recruit .

Yield per recruit at various values of F for fully recruited age groups for males, females and combined male and female are presented Fig. 8) for both divisions as well as the average yield curve for

The optimal fishing levels were calculated in the method suggested by Gulland (1972).

Estimation of atock size

Stock size was calculated for age 10 and over from 3L and for age 8 and over from 3 N . Males and females were calculated separatej ize (Tables 6 and 7) size (Tables 6 and 7).

Results

Fishing mortaitity and yield per recruit curves

Cenerally speaking, estimates of F at corresponding ages were higher for the males than for the females. This can perhaps be attributed to the greater vulnerability of males at smaller sizes and earlier age than the females.

The regression of the average value of F for all age groups an or those fully recruited on the annual fishing effort (Fig. 10 and 11)

was used ta fish plaice and also since plaice probably do not have marked seasonal distributional patterns, it was felt that the calculation of effort was probably a good measure of fishing intensity. The values of calcuiated for the early years appear to be too aigh in proportion to the level of fishing effort. It is also possible that effort was underestimated in those early years. The other possiole reason why the regression line did not pass through the origin is the possibility that
M was too low. However M would have to be increased drastically to produce an appreciable lowering in the velues of F. Standard errors of the estimates were all about 0.04 .

The estimates of F for 1969 and 1970 from stock size and catches for fully recruited age groups compared with those estimates from the fitted lines of Fig. 10 and 11 are shown in Table 5 . For all estimates except the 1969 3N males the F's from the fitted line were higher than the calculated values; the disparity between the two being grester in $3 L$.

A comparison with the values presented at the 1971 ICNAF Annual Meeting (Pitt, 1971) (Table 5) indicates that the new assessment generally gave lower estimates of F. Some of this can be attributed to the increase
in the value of M for females from 0.15 to 0.20 . The tables of F preented at the 1971 Annual Meeting erroneously contained some initial val of F ealculated from the assumed value of $E\left(1-e^{-2}\right)$. These were eliminated in the revised tables. The inclusion of the 1970 data and the revised numbers landed in $3 N$, as previously mentionec, albo tended to reduce the mean values of F.

Catch per unit effort
Except for a silght rise in 1963-65 the catch per hour of Canada (N) trawlers in 3 L has declined steadily since 1958 from about 1200 kg per hour to 450 kg in 1970 and 430 kg in 1971 (total plaice, Fig. 3). The inght increase in $1963-65$ sam probably be attrivuted to the

Up to 1962 the main effort in 3 was for haddock. At this time the effort for plaice was relatively low; however, some large catches were made on the virgin stock at the southern part of the bank. With the reduction in the haddocir stocks, effort was diverted to plaice and the leet began fishing previously unfished concentrations along the easter lope. It was probably this diversion of effort and the introduction of the more efficient stern trawlers that resulted in the incresse in cetch
per hour in the mid $-1960^{\prime} \mathrm{g}$. However, from the peak of about 950 kg (total plaice) in 1964 the catch per hour nas declined very rapidily to about 340 KE in 1970 and 381 kg in 1971 (Fig. 3)

Stock size (Tables 6 and 7)

For 3L the stock size calculations indicate that the total stock ize remained relatively stable until 1966, when an apparent rapid increas occurred in 1967 and 1968. However, since the most recent years and the younger age groups produce the most unreliable estimates of P from virtuad population analyses this may not be real. The size of the fully recruited tock 15 years and up in 3L has however, been reduced by more than a half. In $3 N$ there appears to have been a gradual incresse in the total stock size since 1956-62 and then a more rapld increase in the total stock to a at the same level until 1964 when it appeared to increase. This period corresponds to an increase in the catch per unit effort as just noted which was attributed to a diversion of the effort to previously unexploited areas. If only a portion of the stock was being fished prior to 1964-65, the stock size calculated represented a portion of the stock only. In 3L, on the other hend, the whole area has been fished fairly evenly since the start of the fishery.

Discussion

Division 3L

Even with the big disparity between the estimated velues of F for the fully recruited males and females in $1968,0.92$ and 0.50 respectively, the position on the yield curve ranges from 80 to 85% of the maximum yield (Fig. 9). The optimum F in 3L occurs at 0.50 which is about 80% of the maximum yield. In 1968 total landings were abnut 37 thousand tons. rates of 0.89 to 1.0 for males and 0.67 to 0.55 for the females (Table 5) thus apparently welil beyond the "optimum yield". For 1970 with 40 thousand tons landed the ranges of F were apparently 0.65 tc 0.9 . for males and 0.48 to 0.05 for females again above the optimal level, but less than 90% of the maximum.

The catch per hour by Canada (N) trawlers (Fig. 3), which accounts for $90-95 \%$ of the catch has declined drasticaily especialiy since 1967 . The 1971 landings by Canada (N) in 3L were down slightly to about 34.5 declining only slightly from 450 k in 1970 to 431 kg per hour in 1971

It is suggested that the landings of plaice from 3L should not exceed 40 thousand tons and possibly should be even lower at 35 thous and
tons. This is close to the 1967 level ($F=0.55$ for males and 0.46 for tons. This is close to the 1967 level ($F=0.55$ for
females) with total landings at 37.5 thousand tons.

Division 3N

For $3 N$ the 1967 and 1968 estimates of males and females were in he 0.46 to 0.52 range (Table5) with landings of 25 and 21 thousand tons. optimal value (0.40) (Fig. 9). The probable values of Fin 1969 when 15 thousand tons were landed ware males 0.44 and females 0.37 or close to the optimum F. In 1970 with 20 thousand tons landed probable F levels were 0.50 to 0.59 for maies and 0.48 to 0.57 for females, again beyond the optimal level. The catch per hour by Canada (N) has declined very rapidiy since
1964 and slipped to 280 kg in 1972 (Fig. 3) with Canada (N) which normaily takes more than 50% of the catch, landing 8 thousand tons.

A total landing of not more than 20 thousand tons is suggested at the most and even 15 thousand tons may be more realistic

General

Minimal fluctuation in year-class strength apparently occurs with probably no complete failure as reported in some species. This is on the plus side and helps preserve a stable stock provided fishing pressure is not too grest. However, because of the slow rate of growth of this pecies, the restoration of the fishable bfomass is relatively slow. Furthermore, it is not known what effects a arastic reduction in the portant in the case of a stock like 3 N which probably depends recruitment from the more northerly 3L stock.

References

Fry, F.E.J. 1949. Statistics of lake trout fishery. Biometrics 5, 2
1957. Assessments of mortalities by use of virtual populations MS Meeting ICNAf 'ICES/FAO. Lisbon 1957.

Guiland, J. A. 1965. Estimates of mortality rates. Annex to Arcti Fisheries Working Group Report. ICES, C.M. 1965(3) (mimeo.).
1972. Scientific advice on catch levels. Document to ICNAF Mid-Year Assessment Meeting.

Jones, R. 1961. The assessment of long-term effects of change in gear selectivity and flishing effort. Mar. Res. No. 2, 1-19.
1968. Appenaix to the Report of the North-Western Working Group. ICES, C.M. 1968(20) (mimeo.).

Pitt, T. K. 1963. Vertebral numbers of American plaice, Bippoglossoides 1159-1181.
1966. Sexual maturity and spawning of the American plaice, Hippoglossoides platessoides (Fabricius) from Newfoundiand and Grand Bank areas. J. Fish. Res. Bd. Canada 23: 651-672.
1969. Migrations of American plaice on the Grand Bank and in St. Mary's Bey 1954, 1959 and 1961. J. Fish. Res. Bd. Canada 26: 1301-1319.
1971. Assessment of American plaice stocks in 3L and 3 N . Res. Doc. 71/211.
1972. Estimates of natural nortality coefficients of American plaice. Inter. Conm.
2699 , Res, Doc. $72 / 15$.

Schumacher, A. 1970. Bestimung der fischereilichen Sterblichkeit beim Kabelysubestand vor Westgrönland. Ber. Deutschen Wiss. Komm. Meeres forsch. 21(1-4): 248-259.

Fig. 1. A. Landings of American plaice in ICNAF Division 3L.
B. Landings of American plaice in ICkaf Division 3N.

Fig. 2. Comparisons of the revised landings in $3 N$ based on USER 1970 breakdown. Dotted line represents landings based on Canada (N) breakdown.

Fig. 3. Plaice landinge per hour by Canada (N) Pleet in Canada (N) stern trawler units

Fig. 4. A. Growth curves of male Americen plaice from ICNAF Divisions $3 L$ and 3 N . B. Growth curves of female American plaice from ICNAF Divisions 3 L and 3 N .

Fig. 6. Numbers of male and female plaice caught in ICNAF

Fig. 7. Length frequencies of 1970 commercial and research plaice. commercial data by quarter with 2nd quarter research data for comparison. 3 N 2nd quarter commercial and research data only are available (males solid lines, females broken lines)

Fig. 8. Yield per recruit with partial recruitment as shown in Tables 1 to 4 from ICNAF Divisions $3 L$ and 3 .

Fig. 9. Yield curves showing percentage of maximum yield for the combined male and renate calculations (Fig. 8) for 34 and $3 N$ with arrows above the curve indicating calcuiated F values for males and belo for females. Optimal fishing level indicated at the bases.

$$
-13-
$$

Fig．10．Regression of mean annual fishing mortality on fishing effort for ICNAF Division 3L．Open circles are for fully recruited age groups and solid circles for all age groups．
$1955-67$ for males．

∞

Fig．11．Regression of mean annual fishing mortality on fishing effort for ICNAF Division 3 N ．Open circies are for fully recruited females，1956－68 for males．

	$\cdots \infty$		
－8009	－00000～00	$\stackrel{\sim}{-}$	$\stackrel{\text {＊}}{\sim}$
$\stackrel{\circ}{-}$	－0．000000	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$
－	$.00^{\circ} 0^{\circ 0} 0^{\circ}$	$\stackrel{\text { \＃}}{\stackrel{\sim}{0}}$	$\stackrel{-7}{\square}$
迺	Mr 000000000	$\stackrel{\sim}{0}$	$\stackrel{\text { O}}{\substack{0}}$
苛	－00000000	－	$\stackrel{\text { Y }}{\substack{\text { P }}}$
\％	－웅ㅇㅇㅇ․0．0．	$\stackrel{\text { N}}{\substack{0}}$	$\stackrel{-}{-7}$
N0\％	－ㅇ․0．000000	$\stackrel{\infty}{\sim}$	$\stackrel{-1}{0}$
－	－0．00000000．	$\stackrel{\sim}{n}$	$\stackrel{\sim}{\sim}$
8	 	$\stackrel{\#}{*}$	べへ
$\stackrel{\text { or }}{\underset{\sim}{2}}$	－0．0000000．0	$\stackrel{-}{7}$	$\stackrel{\bigcirc}{0}$
	 －0．000000000	$\stackrel{\text { ？}}{\substack{1 \\ 0}}$	$\stackrel{\sim}{\sim}$
$\begin{aligned} & \text { Nà } \\ & \text { N } \end{aligned}$	－0．0．0．0．000．	$\stackrel{\text { ® }}{\substack{0 \\ 0}}$	$\stackrel{\bigcirc}{-1}$
$\stackrel{\sim}{\circ}$	$00^{\circ 0000000}$	$\stackrel{\square}{\circ}$	$\xrightarrow{\sim}$
$\stackrel{\sim}{\sim}$	－0．0000000．	$\stackrel{0}{\circ}$	$\stackrel{\sim}{0}$
			1

- 15 -

${\underset{\text { Age }}{ } y_{\text {ear }}}^{2}$	55	1956	1957	1958	1959	1960	196	1962	1963	1964	1965	1966	1967	1968	
8	0.001	0.001	0.002	0.002	0.002	0.002							0.006		${ }^{2}$
10	${ }^{0.002}$	-	${ }^{0.001}$	${ }^{0.005}$	${ }_{0}^{0.004}$	-0.004	${ }_{0}^{0.016}$	${ }^{0.002}$	${ }^{0.004}$	${ }_{0}^{0.016}$	${ }^{0} 0.010$	0.004	0.006 0.020	${ }^{0.0028}$	5 10
${ }_{12}^{11}$	- 0	${ }^{0.016}$	${ }^{0.012}$	${ }^{0.022}$	${ }^{0.010}$	${ }^{0.032}$	${ }^{0.026}$	${ }^{0.016}$	0.018	0.07	0.030	0.020	0.07	0.04	28
13	0.05	0.05	${ }_{0} 0.06$	${ }^{0.026}$	${ }^{0.08}$	-	-	${ }^{0} 0.036$	0.05	-	-	-	0.10	-0.21	${ }_{50}^{34}$
14	0.08	0.04	0.018	0.16	0.08	0.13	0.14	0.12	0.15	0.12	0.16	${ }_{0.17}$	${ }_{0}$	${ }_{0}^{0.12}$	${ }_{68}$
1.15	0.05 0.13	-	0.09	${ }^{0.088}$	${ }_{0} 0.13$	0.12	0.12	0.20	0.12	0.12	0.20	${ }^{0.28}$	0.33	0.25	100
17	0.11	0.15	0.11	0.22	0.14	${ }_{0}^{0.126}$	${ }_{0}^{0.19}$	${ }_{0}^{0.21}$	-	(-	-	-	-. 49	100
18	0.12	0.24	0.27	0.25	0.33	0.13	0.35	0.43	0.20	0.20	0.32	0.30	0.69	0.69	100
${ }_{20}^{19}$	0.13	O.16		-	0.34 0.38	(0.26	0.21 0.41	0.37 0.39	035	0.27 0.35	0.18 0.76	O.37 0.20	0.47 0.38	0.34 0.72	100 100
${ }_{\text {Average }}^{8-20}$	0.07	. 09	0.11	0.1	0.13	0.13	0.14	0.15	0.24	0.15	0.18	0.16	0.25	0.28	
${ }_{\substack{\text { Aversee } \\ 15-20}}^{\text {cole }}$	0.14	0.19	0.25	0.25	0.27	0.23	0.26	0.30	0.27	0.27	0.35	0.30	0.47	0.50	
$\underset{\substack{\text { fighing } \\ \text { effort }}}{\text { end }}$	7.3	8.4	8.6	10.2	17.5	18.4	13.8	16.2	28.0	26.0	28.0	23.5	51.6	63.2	
Thousande of ho															

