Annual landings by trawlers comprised from 57\% to

$\frac{\text { Serial No. } 2709}{(\text { B.g.7) }}$

(also $\frac{\text { ICNAF Res. Doc. } 72 / 18}{\text { ICNAF SAC No. 72/17) }}$
ANNLAL MEETTNG - JUNE 1972
The fishery on the southern Gulf of St. Lawrence cod stock, 1960-70

by

R.G. Helliday

Fisheries Research Board of Canada
Biological Station, St. Andrews, N.B

INTRODUCTION

The southern Gulf of St. Lawrence cod population is migratory, spending the summer months in the Magdalen Shallaws region (ICNAF Div. 4T) and overwintering in deep water off Cape Breton island (ICNAF Div. 4 Vn and eastern Div, 4T). In the 1940's landings from this stock ranged from $30,000-50,000$ metric tons. The stock was fished solely by Canada mainly by hand-line and long-line gear. In the early 1950 's landings increased rapidly, reaching 110,000 metric tons in 1955 , due to Landings subsequently declined to about 60,000 metric tons in 1965 due to declines in foreign otter trawi and canadian ifne landings. The dynamics of this stock during the 1949-65 period have recently been studied by paloheimo and Kohler (1968). They described major changes in size and age composition of the population, growth, and recruftment during this period. The present document describes events in the fishery during the
$1960-70$ period and considers their tmplications

LANDINGS

Landings from the southern Gulf of St. Lawrence cod stock were obtained from ICNAF Statistical Bulletins for the years 1960-69, and from unpublished landings statistics on file at ICNAF Headquarters for 1970. ATl Div. 4 T landings and those from Div. $4 V n$ for the months January to April inclusive were
referred to this stock.

Landings in 1960-62 averaged 66,000 metric tons. In 1963 they increased to 70,000 tons, and then declined to 41,000 tons by 1967 . slight increases occurred in 1968 and 1969 and a substantial increase in 1970 to 64,000 metric tons (Table 1). Canada's share increased from 61% of landings in 1960 to 96% in 1969, dropping to 73% in 1970. The remainder was shared among France and Spain and to a lesser extent by
Portugal.

By far the largest part of Canadian landings came from the summer fishery in Div. $4 T$, whereas most foreign landings came from the winter fishery in Div. $4 V n$ and eastern Div. 4 T .

Annual landings by trawlers comprised from 57\% to
77% of total landings, while seiners landed from 1% to 5% of the
total (Table 2). Long-line and hand-line landings declined in total (Table 2). Long-line and hand-line landings declined in importance from 1960 to 7968 (38% to 9% of landings) but
increased in 1969-70. Gillnet landings increased from 1968 (< 1\% to 28\% of landings) but declined in 1969-70. All to gillnet, line, and seine landings were made by Canada.

LENGTH AND AGE COMPOSITION OF LANDINGS AND NUMBERS LANDED

Methods

In weighting the landings by commercial samples six categories of landings were considered, otter trawl landings in the periods January-April, May-August, and September-December, seine, line, and gillnet, landings. Sampling coverage was good only for otter-trawi landings in the latter two periods, it was considered more Shallows summer trawl fishery (Table 3) Breton fishery separately despite poor sampling coverage Danish and Scottish seine landings were treited coverage. samples were avallable and combined with otter-trawl landings when there were no seine samples. Seine landings differed sifghtly from trawl caught fish, being smaller and younger (Fig. 1). However, seine landings formed such a small part of the total that the error introduced by combining seine with be combined with smawlit Gillnet and line landings could not be combined with trawl landings when sampling was inadequate differed markedly from those of trawl caught fish and fro each other (Fig. 1). When there were no length frequency samples from line or gilinet landings in a particular year chose of the preceding and subsequent years were combined (and some 1971 samples were applied in this way to the immediately preceding years). When age samples were inadequate or missing for a landings category, the most appropriate ages from within the same year were applied to the length-frequency.

Results

Annual mean lengths of total landings ranged from $52.0-56.3 \mathrm{~cm}$ (Table 4), $85-95 \%$ of the fish lying in the range
$40-70 \mathrm{~cm}$. Modal length of landings was 46 cm or 49 cm in all $40-70 \mathrm{~cm}$. Modal length of landings was 46 cm or 49 cm in all years except 1960 (Fig. 2).

Mean ages of landings ranged from 5.8-7.0 years. Aodal age group was normally age 5 or age 6 , but on occasion age 4 or age 7 were the most abundant in landings (Fig. 3).

Variations in length and age composition of landings are attributable to variations in the importance of different gears, and to substantial differences in growth rate, during the neriod.

[^0]
DISCARDS

Information on discards of small cod at sea in the 1960-70 period is missing or incomplete for all sectors of the ishery. It can reasonabiy be assumed fero. Reported discards in the Div. 4Vn trawl fishery by Spain, France, and Portugal were low (frequently 0-2\%) (e.g. ICNAF, 1968-70). Canadian iscards from Div. 4 Vn must also have been low as landings from this fishery normally contained small ungraded and ungutted cod. As these sízes were apparently acceptable to the processor it is unlikely that large numbers were discarded. not give an accurate measure of discard rates due to substantial biases in collection methods. This is also true of canadian Div. 4 T data subsequent to 1964. However, in the 1960-64 period fairly accurate measures of discards were obtained for the Div. 4T otter-trawl fishery by intensive sea and shore sampling of commercial catches and landings (Palohefmo and ohler, 1968). Discards decilned from 10.5% by numbers in 1960 to 1.6\% in 1964. There is no reason to believe that discards subsequently increased much above that low value.

Estimated total discards from the Div. $4 T$ otter-trawl ishery declined from almost one million fish in 1960 to 25,000 1n 1964. They were mainly fish of $35-45 \mathrm{~cm}$ length, and of 3 and 4 years old (Table 6).

Thus, as far as can be judged from inadequate data, wastage due to discarding small fish at seais not an important factor in analysis of this fishery in the 1960's.

CATCH-PER-UN:T-EFFORT

There is no avallable measure of gillnet nor longline and hand-ifne effort in the 1960-70 period, and the Danish and cottish seine fishery is probably too small and too localized to accurately reflect abundance changes of the entire cod stock. Among ofter trawiers the mest consistent data series are ports. These vessels of class vesseis fishing from New brunswick hagdalen Shallows fishery in the late 1940's and the fleet composition remained virtually unchanged until the early 1960^{\prime} when vessels were progressively retired from the fishery or iverted to the developing snow crab fishery in the area. Comparable vessels of $25-50$ gross tons fishing from quebec ports have malntained airly level of effort in the summer fishery in recent years. Fairly reliable catch-per-unit-effort data are avallable for both groups of vessels for the six years 1962-65, oth series, the correlation coefficient beino 0.71 (with a robability, $P=0,12$ of so high a value occurring by chance) The ratio of gloucester class vessel catch-per-effort to that of Quebec 26-50 grass ton vessels was 0.93. A composite catch-pereffort series was obtained by adjusting Quebec values by 0.93 , veraging these with Gloucester values in the years when both were available, using adjusted Quebec values alone for 1969-70, and Gloucester values alone for other years (Fig. 4).

Taking catch-per-effort as a measure of stock abundance indicates that cod became more abundant from 1950 to 1962 , declined in abundance until 1966 , then increased again to the highest value for the period in 1970

Although landings from the winter Cape Breton fishery ere moderately high between 1960 and 1970, no country exploited the fishery in a consistent manner throughout the period. Catch-per-effort data series for different countries showed different trends indicating that cod abundance was not the prime actor affecting catch-per-effort in some series. A combined catch-per-effort series was obtained by adjusting the effort of Spanish otter-trawl fleet. International catches were divided by the sum of the adjusted national efforts to arrive at overal catch-per-effort values (Fig. 4, Table 7). However, these
alues were not correlated with the corresponding catch-per-
effort values for piv. 4T. Among national fleets, the catch-per-
effort values of Spanish otter trawlers, despite large
of divations in effort among years, were most similar to those Spanish values with The correlation coefficient of Div. 4 Vn 0.60 , with values for the previous summer it was 0 g 5 ummer was the mean of the previous and following summer values it was 0.68 All correlations were significant at the 5% level.

MORTALITY

Number of cod caught per trip at each age in the May-December Div. 4T otter-trawl fishery were derived from the (Table 8), and survival rates betweight caught per trip data year class calculated (Table 9). Ages greater than 10 years have been omitted from the calculations of Table g because they are poorly represented in the catches, and those younger than 7 years have been omftted to remove the effects of partial recruitment on the means.

Survival rates of 7-10 year-olds (Table 10) showed considerable fluctuation without apparent trends, the ll-yea average being 0.52, equivalent to an instantaneous total mortality rate (2) of 0.65 . The catch curve of mean numbers at age over the period, fitted from ages 7 to 13 , gave an estimate
of $Z=0.70$.

Independent estimates of mortality rates were derived from numbers landed at age (Table 5) by Pope's cohort analysis technique (Pope, MS 1971). An assumed value of natural mortallty (M) of 0.20 was used. (Paloheimo and Kohler (1968) derive a value of $M=0.19$ from 1949-65 data.) For year classes which had passed through the fishery a starting value of fishing mortality (F) of 0.50 was assumed. For year classes still averaging previously fishery starting F values were obtained by

This calculation gave more consistent results than that based on catch-per-unit-effort-results which can be In the $1960-65$ period full recruitment of year classes to the fishery occurred at about age 7, and mortality of cod 7-10 year old was greater than that of ages 11-14. (The results of 1961 are anomalous in this regard.) The decrease in F of $7-10$ year fairly constant landings while increased mortality in $1963-65$ colncided with continuing high landings and declining abundance. The decline in F for 7-10 year olds in $1966-69$ corresponded with the decline in otter trawl and line landings and increasi abundance. In this $1966-68$ period F on $11-14$ year olds increased
becoming substantially greater than that on $7-10$ year olds reflecting the increasing importance of the gillnet fishery on rarge cod. Also in the $1966-68$ period cod became fully fully recruited at age sishery at a younger age being almost at this time (see bejow). From the mortality reased growth rate the following changes in age at recruitment to the trawl fishe were discerned.

Age	Percentage recruited		
	T960-6	1963-6	1966-68
3	0	2	3
4	10	14	52
5	38	44	97
6	73	80	100
7	100	100	100

In summary, F of $7-10$ year olds increased to 0.50 in 1963-65 from 0.40 in 1960-62, then declined to 0.31 in 1966-68. F of ages 11-14 year olds increased substantially in recent years to 0.57 . The average F for $7-14$ year olds 0.45 obtained from, which is in reasonable agreement to the 0.45 obtained from catch-per-unit-effort analysis.

THE RELATIONSHIP OF MORTALITY TO EFFORT
atisfactory relationship between mortality and effort fr 949-65 data and concluded that year-to-year variations in the catchability coefficient, q, or in M, were greater than in their ${ }^{\text {in }} Z$ due to changes in fishing effort. However weighting total landings by age compositions obtained from Div. 4T summer otter-trawl fishery only. Total effort was calculated by dividing total catch of all age groups by catch-per-unit-effort of Canadian Div. 4 T otter trawlers of 26-50 gross tons. Relative abundance of particular age groups in successive years was obtained by multiplying total numbers caught per unit effort by the proportion of these age groups in the respective catches. This method does not take account fleets, and areas, and assumes that the relative catchability, of different age groups is constant between and within different parts of the fishery. Garrod (1967), in his analysi of the Arcto-Norwegian cod stock, found that modified methods of catch-per-effort analysis which took account of these and other factors, were successfut in describing the relationship of mortality to effort, whereas earlier attempts had been less than satisfactory.

Estimated total annual effort was calculated for the 1960-70 Deriod by the method of Paloheimo and Kohler. There was no correlation between these values and the mean F for 7-14 year olds obtained by cohort analysis. However, as has had an obvious effect in increasing mortality on the oldes
age groups. Thus, in recalculating total effort, gillnet landings were discounted, and these values related to the mean for ages 7-10 (Table 10). Most of the mortality of these age groups was generated by trawl and line fisheries, These effort and mortality data were significantly correlated $(r=0.69$, d.f. $=7, P=0.05)$. The intercept of the
regression, 0.06 , suggests that the value of Mused in the

The success of this minor modification in analysis in demonstrating a relationship between effort and mortality ncourages the view that more rigorous analysis would be successful in accurately describing this relationship.

POPULATION NUMBERS

Population numbers by age group in each year were also derived using Pope's technique of cohort analysis Table 11).

Abundance of 3-14 year olds declined from 433 million in 1960 to 199 million in 1966 then increased to 313 million by 968. These data are in good agreement with abundance by weigh numbers in 1960-61 ch-per-effort data. The partially recruited to the fishery. As these became more fully ecruited, weight caught per trip increased, but subsequently decreased with the entry of poor year classes. The entry of better year classes in 1967 and 1968 reversed the trend of decreasing abundance by weight

The year classes of 1958-63 were all of comparable trength varying from $45-65 \mathrm{mili}$ ion fish at age 3 . The precedtng three-year classes (at least). i.e. those of 1955-57 were more than twice as strong. The 1964 and 1965 year classes ay also prove to be about twice as strong as those of the prededing six years

GROWTH

In the above discussion increased growth rate in the post-1965 period has been brought forward in explaining severa aspects of the data. Figure 6 , showing substantial changes in man length at age between 1960 and 1970, is presented to upport these arguments

REFERENCES

GARROD. D.J. 1967. Population dynamics of the J. Fo-Norwegian cod. J. Fish. Res. Bd. Canada 24: 145-190.

ICNAF, 1968-70. Summary of statistics on discards (whole fish returned to the sea), $1966-68$ ICMAF Redbook 1968-70 Part 111: 29-36;

PALOHEIMO, J.E. and KDHLER, A.C. 1968. Analysis of the southern Gulf of St. Lawrence cod population.
J. Fish. Res. Bd. Canada, 25 : $555-578$.
.... J.G. HS 1971. An investigation of the accuracy of virtual populationanalysis.
ICrAF Res. Doc. $1971 / 115$ (sers ICMAF Res. Doc. 1971/116 (Serial No. 2606).

table 2. icnaf div. 4T-Vin cod landings (metric tons round) by gear, 1960-70.
(percentage of annual Landings in parentheses.)

Year	Otter and pair	$\begin{gathered} \text { Dantsh and scottish } \begin{array}{c} \text { seines } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Long - and hand } \\ \hline 1 \text { hines } \end{gathered}$	6fllnet	Total
1960	41,019 (62)	229 (<1)	25,171 (38)	4 (<1)	66,423
1961	42,808 (65)	716 (1)	21,888 (33)	171 (<1)	65,583
1962	43,526 (65)	1,475 (2)	20,517 (31)	1,146 (2)	66,664
1963	50,862 (72)	1,621 (2)	15,323 (22)	2,396 (3)	70,202
1964	45,325 (75)	1,985 (3)	10.237 (17)	3.000 (5)	60,547
1965	48,373 (77)	2,673 (4)	8,410 (13)	3,571 (6)	63,027
1966	36,684 (67)	2,391 (4)	6,362 (12)	9,414 (17)	54,851
1967	23.982 (58)	2,212 (5)	5,178 (13)	9,942 (24)	41.314
1968	28,217 (61)	982 (2)	4,419 (9)	12,933 (28)	46,551
1969	27,075 (57)	1,204 (3)	9,655 (20)	9,578 (20)	47,512
1970*	43,009 (67)	1,721 (3)	9,937 (15)	9,789 (15)	64,456

TABLE 9．DIV． $4 T-V_{N}$ COD．SURVIVAL RATES FROM DIV． $4 T$ OTTER TRAWL CATCH AND EFFORT DATA

Years	AGES						$\begin{gathered} \text { Mean } \\ \text { (ages } 7-10 \text {) } \end{gathered}$	$58-13 / \Sigma 7-12$
	4－5	5－6	6－7	7－8	8－9	9－10		
1960－61	3.06	1.25	0.85	0.49	0.33	0.55	0.46	0.49
1961－62	4.80	1.65	0.63	0.39	0.35	0.46	0.40	0.36
1962－63	1.73	1.10	0.65	0.80	0.60	0.49	0.63	0.73
1963－64	2.48	1.01	0.62	0.51	0.56	0.59	0.55	0.53
1964－65	3.33	0.81	0.67	0.60	0.52	0.50	0.54	0.56
1965－66	0.86	0.44	0.29	0.44	0.25	0.28	0.32	0.30
1966－67	1.12	0.69	0.74	0.54	0.25	0.29	0.36	0.41
1967－68	1.22	0.60	0.51	0.52	0.57	0.66	0.58	0.55
1968－69	1.20	0.48	0.61	0.66	0.78	1.23	0.89	0.76
1969－70	2.14	0.76	0.55	0.34	0.57	0.78	0.56	0.48
Mean	－	－	－	0.53	0.48	0.58	0.53	0.52
							（ $\mathrm{Z}=0.64$ ）	（ $\mathrm{z}=0.66$ ）

table 10．div．4T－VN cod．Instantaneous fishing mortality（ $\dot{\text { f }) ~ b y ~ a g e ~ g r o u p ~ a n d ~ y e a r ~ d e r i v e d ~ b y ~ p o p e ' s ~ c o h o r t ~ a n a l y s i s ~}$

	둥ำ．	$\stackrel{\square}{\square}$		\％
		－		\pm
	〇〇 No	\bigcirc		\pm
		9		\％
$\stackrel{\infty}{\circ}$		$\stackrel{\sim}{\sim}$		$\stackrel{\infty}{\square}$
$\stackrel{\text { ® }}{\text {－}}$	万ぇ	$\stackrel{\infty}{\sim}$	＋	¢
\％		n．		\ddagger
－		8	$\%_{6}$	$\stackrel{\square}{\square}$
$\stackrel{\stackrel{\text { ® }}{\sim}}{\sim}$		$\stackrel{\square}{\square}$	\％	\％
$\stackrel{\oplus}{\circ}$		\square	\bar{m}	$\stackrel{\infty}{\infty}$
$\stackrel{\text { ®̈ }}{\stackrel{\circ}{\circ}}$	○	$\stackrel{\square}{\square}$	9	\cdots
$\stackrel{\square}{-}$		¢	$\stackrel{\sim}{\sim}$	\sim
$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$		J	$\stackrel{\text { m }}{\text { ¢ }}$	$\bar{\square}$
\％		\cdots		$\cdots \frac{\pi}{i}$

TABLE 6. DISCARDS OF COD FROM THE DIV. $4 T$ OTTER-TRAVL FISHERY, ISG0-64, AS TOTAL NUMLERS PER AGE GROUP $\times 10^{-3}$.

	A g e							
	Year	1	2	3	4	5	6	7
1960	-	12	212	620	101	2	1	Total
1961	7	44	115	323	154	18	-	648
1962	-	4	223	292	197	14	1	731
1963	-	11	122	277	51	31	7	499
1964	-	2	200	98	18	3	4	325

TABLE 7. DIV. 4 T- \mathbf{Y}^{\prime} N COD, CATCH-PER-UNIT EFFORT, 1960-70

Year	Div. $4 T$	Div. 4Vn metric tons/hour	
	Metric tons/trip Gloucester class equivalents	Spanish otter trawlers	All countries Spanish 0.T. equivalents
1960	8.1	1.37	1.58
1961	9.5	1.73	1.64
1962	10.9	1.97	1.92
1963	10.5	2.96	2.55
1964	9.2	2.83	2.63
1965	8.8	1.65	2.46
1966	6.4	1.08	2.30
1967	7.0	1.56	1.76
1968	9.1	1.23	2.37
1969	12.2	2.33	2.49
1970	12.8	2.13	2.07

TABLE 11. DIV, $4 T-V_{N}$ COD. POPULATION NUMBERS ($\times 10^{-3}$) BY AGE GROUP, 1960-70, DERIVED BY POPE'S COHORT ANALYSIS

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968
3	134,963	48,907	61,785	45,084	64,983	51,924	63.405	119,469	131,256
4	143,111	110,431	40.042	50,571	36,681	53.113	2	6	97.180
5	70,667	113,580	87,424	31,227	39.483	29,154	38,505	28,078	34,996
6	47,602	49,729	80,395	61,726	21.629	26.238	18,306	21,853	
7	19,983	27,649	32,141	48,730	36,040	12,403	13,074	10,911	13,742
8	6,224	9,896	15,115	19,194	26,557	18,614	6,100	7.607	6,182
9	2,751	3,525	5,694	8.493	9.933	13,363	7,527	3.353	4,658
10	4,460	1,533	2,183	3.323	4,141	4,730	5,933	4,116	2.376
11	1,330	2,012	797	1.254	1,830	2,365	2,203	3,147	2,446
12	880	738	977	514	672	1,184	1,028	1,019	1,761
13	468	468	256	639	297	416	587	519	8
14	152	314	213	176	431	150	205	262	270
Totals									
4-14 incl.	297,628	319,875	265,237	225,847	177,694	161,730	135,560	131,421	182,108
$3-14$ incl.	432,591	368,782	327,022	270,931	242,677	213,654	198,965	250,890	313,364

fig. 1. Comporisons of Length and Age Compositions of Cod Londings by Gear Div $4 T+4 V N$

FIG. 2 Length Composition of Cod Landings, 1960-'70 Div $4 \mathrm{~T}-4 \mathrm{~V} \mathrm{~m}$

Age Composition of Cod Landings, $1960-70$ Div $4 \mathrm{~T}-\mathbf{4 V} \mathrm{V}$

Div $4 \mathrm{~T}-\mathrm{Vn}$ coo
Cotch per Unit Effort, 1960-'70

- 22 -

FIG. 6
div, $4 T-Y^{\prime}$ coin mean lehgit at age in annual LANDINGS FOR AGES 4-9, 19C0-70.

FIG. 5
DIV. $4 \mathrm{~T}-\mathrm{V}$ N COD. THE REGRESSION OF FISHING MORTALITY, F, OF 7-10 YEAR OLDS ON FISHING EFFOPT.

[^0]: Number landed increased from 38 million fish in 1960 to 49 million in 1963, decifined to 26 million in 1967, then rose
 again to 40 milion in 1970 (Table 5).

