ANNUAL MEETING - JUNE 1972

Report of the ICES/ICNAF Joint Working Party on North Atlantic Salmon Dublin, 21-24 March 1972

CONTENTS

Page
A. INTRODUCTION 1
B. WEST GREENLAND FISHERY 1

1. Statistics and Composition of the Fishery 2
2. Origin and Destination of Salmon at West Greenland 4
(a) Recaptures of Pish at West Greenland Tagged in Home Waters 4
(b) Recaptures of Fish Tagged at West Greenland and in the Labrador Sea 5
(c) Other Studies 6
3. Assessments of the Effects of the West Greenland Fishery 7
C. NORWEGIAN SEA FISHERY 9
4. Statistics and Compositi n of the Fishery 9
5. Origin and Destination of Salmon in the Norwegian Sea 10
6. Assessments of the Effects of the Norwegian Sea Fishery 11
D. HOME-WATERS CATCHES 13
E. FUTURE RESEARCH 16
7. International Tagging Experiment at West Greenland 16
8. Other Research 17
F. FUTURE MEETING 17
G. TABLES 1 - 11 18
H. APPENDICES 29
9. Resolution adopted at the ICNAF Meeting in 1970 concerning Regulation of Selmon Fishing 29
10. Resolution adopted at NEAPC Meeting in 1970 concerning Regulation of Salmon Fishing 30
11. Second Report of the Planning Group for the
International Tagging Experiment at West Greenland in 1972 32
12. List of Working Papers 45
(ii)

D 3

Report of the ICES/ICNAF Joint Working Party on North Atlantic Salmon

March 1972

A. INTRODUCTION

1. The Working Party met in the Department of Agriculture and Fisheries,

Dublin on 21 st - 24th March 1972. The following were present.

A.W. May	Canada
C.P. Ruggles	Canada
0. Christensen	Denmark
Sv. A. Horsted	Denmark
J. Mbiler Jensen	Denmark
I.R.H. Allan	England and Wales
A. Swain	England and Wales
P. Davaine	France
R. Vibert	France
F. Thurow	Federal Republic of Germany
T. Gudjonsson	Iceland
Miss E. Twomey	Irish Republic
A.E.J. Went a	Irish Republic
K.U. Vickers	Northern Ireland
L. Rosseland	Norway
W.R. Munro	Scotland
B.B. Parrish (Chairman)	Scotland
K.A. Pyefinch (Rapporteur)	Scotland
R.Hennemuth	USA
J. Mbller Christensen	ICES
a Present for part of the meeting only	

Aplogies for absence were received from G.J. Ridgway (USA) and A. Bogdanov (USSR). A representative from Iceland attended for the first time.
2. The Working Party received the latest information available on the West

Greenland and Norwegian Sea salmon fisheries, made further assessments of the effects of these fisheries on total and home-waters catches and cunsidered in detail the plans proposed by the Tagging Planning Group for the International tagcing programme at West Greenland in 1972.

B. WEST GREENLAND FISHERY

3. At its annual meeting in 1970 , ICNAF adopted a resolution setting out a number of regulatory measures for the salmon fishery in its Convention area during 1971. This resolution is set out in Appendix 1. These measures, which came into force on 1 January 1971, included a limitation of the aggregate
tonnage of the fishing vessels employed or the catch taken by each contracting Government to the 1969 level and the prohibition of the use of any monofilament nets not acquired before 1 st July 1970. The events in the West Greenland fishery in 1971, dealt with below, are considered in the light of these measures. 1. Statistics and Composition of the Fishery
4. The salmon catches at West Greenland in the years 1960-71 (the data for

1971 are provisional) are shown in Table 1. In 1971, as in the previous year, it was not possible to separate the catch by Greenland vessels into its drift-net and gill-net components.
5. The total catch in 1971, according to present information, was 2615
metric tons, which is a substantial increase over the catch for 1970 (2146 metric tons) and is the highest catch yet recorded at West Greenland. Though this catch cannot be completely separated into drift-net and gill-net components, the former was, almost certainly, the larger. On the basis of the catches made by research vessels, the size and age composition of the salmon stock exploited were very similar to those in previous years. The stock consisted almost entirely of one-sea-winter fish which had migrated to sea as two- or three-years-old smolts. The remainder consisted of fish older than one-sea-winter. The sex ratio (3.1 females: 1 male) was also similar to that in previous years. 6. As in previous years, the total catah shown in Table 1 includes a small catch (less than 10 metric tons) taken at Angmagssalik on the east coast of Greenland. The distribution of the fishery in 1971 is shown in Fig. 1. This indicates that the drift-net fishery extended all along the west coast, from the Disko area in the north to the vicinity of Julianehib in the south and that gillnetting was carried out at a number of places along this length of coast. 7. The table below shows the number of vessels (excluding Greenland-registered vessels) which have taken part in the West Greenland drift-net fishery frow its inception in 1965.

Year	Number of Vessels				
	Denmark	Paroo	Norway	Sweden	Total
1965	0	1	1	0	2
1966	0	1	1	0	2
1967	4	4	3	0	11
1968	10	2	4	1	17
1969	15	6	11	2	34
1970	13	7	10	1	31
1971	11	3	8	0	22

8. This shows that the number of non-Greenlandic vessels participating in the drift-net fishery in 1971 was fewer than in 1970 (assuming that no Swedish vessels fished at West Greenland in 1971), yet the total catch taken by them was approximately 350 metric tons greater. This must mean either that the abundance and/or availability of salmon in the offshore area was substantially greater in 1971, giving rise to higher average catch rates per vessel, and/or that the total effective fishing effort was higher despite the fewer vessels, due to an increase in their fishing power and efficiency. Although insufficient data are available for the changes in fishing power and efficiency to be determined accurately it is known that in recent years improved, more efficient drift-net gear has been adopted progressively by the fishing fleet. Changes in the gear wnich may have contributed to the greater efficiency are:-
(a) The use of monofilament nets, which comparative fishing experiments have shown to give higher catch rates than the polyfilament nets used previously. Monofilament nets were first used by a few vessels in 1969 and their use increased rapidly thereaf'ter and, in 4971 , most of the drift nets used were monofilament.
(b) The introduction, by some vessels, of a floating, unbunyed drift-net head line instead of the normal buoyed one. Limited comparative fishing experiments have shown that nets rigged in this new way gave higher catch rates.
(c) A progressive adoption of the most efficient drift-net mesh size.
(d) An increase in the number of nets shot per day by some vessels, through the use of monofilament nets during daylight.
9. Although the combined effects of these factors cannot be estimated accurately the available data suggest that between 1968 and 1971 they, together with a general increase in crew 'skill and experience', resulted in at least a doubling of the average fishing power and efficiency combined of the individual fishing operation and that, therefore, in 1971 the total effective fishing effort by the drift-net fleet was not lower than in 1970 . Thus it seems likely that the increase in drift-net catch in 1971 was not primarily due to greater stock abundance, as the average catch per vessel would suggest.
10. These data indicate clearly the limitations of the vessel tonnage regulation introduced in 1971 as a method of stabilising effective fishing effort in a fishery in which major technological and other developments aflecting fishing power and efficiency were taking place. Nevertheless the measures introduced did prevent the entry of additional tonnage into the fishery.
11. Ori\&in and Destination of Salmon at West Greenland
(a) Recaptures of Fish at West Greenland Tagged in Home Waters
12. Recaptures during $1963-71$ of salmon tagged in home waters either as natural (wild) or hatchery-reared smolts and as kelts are shown in Tables 2, 3 and 4 • These tables include new data and revisions of data presented in earlier reports of the Working Party.
13. The latest data show that, in 1971 as in previous years, fish tagged in the main salmon-producing countries were recaptured at West Greenland. The Working Party draws attention to the recoveries at West Greenland of salmon tagged as wild smolts in the extreme south-west of France in 1969 and 1970 . Additional tags were reported from Norway bringing the total for that country to eleven recaptures from the West Greenland area. Salmon occurring in West Greenland are, therefore, now known to originate on the European side from about latitude $63^{\circ} \mathrm{N}$ to about $44^{\circ} \mathrm{N}$, which is almost the southern limit of the species. Attention
is also drawn to the high number and recapture rate, in 1971 , from hatcheryreared smolts tagged in the USA in 1970. Seven of these tagged fish, together with one from Canada, were taken in the small east coast catch mentioned in para. 6, which indicates that salmon from North American rivers had migrated far up the east coast of Greenland.
14. Some fish tagged as kelts in hame waters have been recaptured at West Greenland, usually in the autum following release and, in particular, there was a substantial increase in the number of Canadian tagged kelts recaptured in 1970 and 1971 .
15. The Working Party agreed, as at its previous meetings, that it was not possible to obtain reliable estimates of the proportions of the salmon stock at West Greenland originating from individual countries from the tag recapture data. However, the latter continue to indicate that the major part of the West Greenland salmon stock is derived from rivers in Canada, Great Britain and Ireland. (b) Recaptures of Fish Tagged at West Greenland and in the Labrador Sea
16. In 1970 and 1971 , British, Canadian and Danish scientists conducted further tagging experiments at West Greenland. Seven local recaptures were made from 1 to about 30 days after release. Of the fish tagged in 1970 , four recaptures were made in home waters (Canada 2, Ireland 1 and Scotland 1). During the 1971 experiment a hatchery-reared fish tagged in the USA in May 1970 was recaptured in Diskofjord and released after re-tagging.
17. Additional tagging was conducted in 1970 and 1971 by Canadian scientists in the Labrador Sea and a total of 86 fish was tagged in the area. Eleven recaptures have been reported; 6 in the northeast of Newfoundland and 5 in Chaleur Bay on the borders of the Canadian provinces of Quebec and New Brunswick. 17. Table 5 gives details of the recaptures of fish tagged at West Greenland and in the Labrador Sea from 1965 to 1971 inclusive. This shows that 38 recaptures have been reported in home waters, 27 of which were of salmon tagged in the West Greenland area. Of the latter, 12 were recaptured in North America
(Canada) and 15 in Europe (Great Britain, Ireland and Spain). Attention is drawn to the recapture in the River Ason in Spain, which is near the southern limit of the species on the eastern side of the Atlantic.
(c) Other Studies
18. Investigations were continued in 1970 and 1971 on biochemical characters and parasite fauna (as biological tags) in relation to the study of the origin and mixing of salmon at West Greenland.
19. Canadian investigations of blood serum protein in association with parasite studies have provided promising results. Blood samples of 204 Atlantio salmon taken in the Labrador Sea and the West Greenland areas in the autumn of 1970 were analysed by Canadian scientists, using methods described in previous reports. Forty-nine per cent of the fish were identified as North American in origin and fifty-one per cent as European, a result similar to the proportionate returns of salmon tagged at West Greenland and recaptured in hoee waters (para. 17). Further work is in progress to check these results.
20. Research on transferrin polymorphism which wes carried out in England, had indicated that a certain proportion of the salmon can be distinguished as to the continent of origin. An analysis of 984 blood samples collected in the West Greenland area in 1970 showed that $18(2 \%)$ could be specifically identified as fish from the UK, $159(16 \%$) as fish from North America though the remaining 807(82\%) could not be allocated between the two populations. Further research on these latter fish is in progress. With the co-operation of a Danish commercial fishing vessel, 1,830 blood samples were collected in the West Greenland area in 1971 and these are now being anal ysed. Work on various biochemical aspects of this problea is also currently being undertaken in other countries.
21. Work on parasites as biological tags was continued in 1970 and 1974 . The Canadian results indicate that the abundance of the parasite Anisakis simplex in North American salmon at West Greenland and in home waters is consistently lower than for European salmon, whereas the parasite Eubothrium crassum is more
prevalent in West Greenland and in North American than in European salmon. 22. Other methods for the separation of stocks are being investigated. Of these, the use of scale characteristics, which has proved so successful in the case of Pacific salmon, appears to be promising. Work in this field is in progress in a number of countries but the results are not yet sufficiently advanced for the full value of this method to be assessed.

3. Assessments of the Effects of the West Greenland Salmon Fishery

23. Previous assessments by the Working Party of the effects of the West Greenland fishery on home-waters stocks and catches of two- or more sea-winter salmon have been based on estimates of the changes in total weight (i.e. the resultant of natural mortality and growth) which would have occurred in the salmon comprising the West Greenland catch had they not been caught there and, if surviving, had returned to home-waters in North America or Europe (ICES, Coop. Res. Rep., Nos. 8, 12,24). The lowses to the combined North American and European home-waters stocks for a West Greenland catch of around 2,000 metric tons, as in 1969 and 1970, was estimated in this way to lie in the range 1,1002,700 metric tons, and to the home-waters catches of between 650-1,600 metric tons (using upper and lower values of instantaneous natural mortality rate of 0.02 and 0.1 per month respectively). The same general levels of estimated losses were obtained frcm the simulation of home water catches of two- or more sea-winter salmon in Canade and the UK returning from West Greenland, assuming they had all been present in the fished area there (for details see ICNAF Comm. Doc. 71/14 and ICNAF Res. Doc. 71/72). It is evident from the West Greenland catch data in Table 1 that the losses to the home-waters stocks and catches resulting from the West Greenland fishery in 1971, estimated by the same method as in previous years, was probably somewhat greater thin the above estimates for 1969 and 1970.
24. In the absence of accurate measures of the relative contributions of salmon from different countries to the West Greenland stock it is not possible to
estimate reliably the losses on an individual country basis. However, the information available from tag recaptures (paras. 14 and 17) and biochemical studies (para. 19) suggests that, in recent years, the stock at West Greenland was composed of salmon from North America (almost entirely Canada) and Europe (mainly Great Britain and Ireland) in roughly equal proportions, suggesting tentatively that the hone-waters losses are also roughly equally divided between them.
25. The results of detailed studies of the recaptures at West Greenland of salmon tagged as smolts in Canadian rivers show that individual rivers make markedly different contributions to the exploited stock at West Greenland. They indicate that only a small proportion of the natural smolt production in rivers running into the Bay of Fundy contributes to the West Greenland stock but, for other Canadian rivers where smolts have been tagged, especially in the Gulf of St. Lawrence, the contribution has been subatantial. This means that Canadian home-water losses also differ markedly between river stocks. On the basis of available tag recapture data and taking into account the differences in stock size, these losses may be greatest for the stocks in the rivers running into the Gulf of St. Lawrence, of which the Miramichi is the largest.
26. The above assessments of home-waters losses refer to the direct, immediate effects on the population of salmon which, if not caught and if surviving, will return to home waters in subsequent years. They take no account of the possible effect of a reduction in spawning stock size, resulting from the exploitation at West Greenland, on future smolt production in home waters. 27. Data from the Miramichi River stock in Canada show that there has been a steady decline in the abundance of two- or more sea-winter salmon entering the river since 1960 and of grilse since 1965 , resulting in a marked reduction in the egg production potential of the spawning stock to a level in 1969-71 at which smolt production is probably severely reduced. Although this decline began amongst year-classes produced before the West Greenland fishery reached a high level and was therefore mainly due to other causes it is possible that the West Greenland fishery has contributed to the decline in the most recent years.

C. NORWEGIAN SRA FISHERY

28. At its annual meeting in 1970 , NEAPC adopted a resolution setting out a mumber of regulatory measures for the salmon fishery in its Convention area during 1971. This resolution is set out in Appendix 2. These measures, which came into force on 1 st January 1971, included a closed season (1st July to 5 th May), closed areas ((i) east of Longitude $22^{\circ} \mathrm{E}$ and, (ii) between Latitudes 63° and $68^{\circ} \mathrm{N}$ east of the Greenwich meridian), a minimum size for salmon caught ($60 \mathrm{cm}$.) and a minimum hook size (gape not less than 19mm.). These measures have affected the catches in 1971 to such an extent that, in several respects, they are n o longer comparable with the catches of previous years. 1. Statistics and Composition of the Fishery
29. Data on the catches taken and the number of vessels operating in the Norwegian Sea fishery in the years 1965-1970 and provisional statistics for 1971 are given in Table 6. These show that the rapid growth of the long-line fishery since 1965 was halted in 1971 as a consequence of the new regulatins. In fact, the fishing effort was lower and the catch only amounted to about half that in 1970.
30. Information on the catch-per-unit-effort in the long-line fishery in 4968-1971 is given in Table 7. Judged from information on the fishery in 1969 and 1970 abundance and/or availability of salmon in the exploited area seems to rise gradually from February until April and decline during the remaining part of the season. The Danish catch-per-unit-effort data for May-June was approximately the same in 1969, 1970 and 1971. It should, however, be noticed that observations in 1970 and 1974 show a marked decline of abundance and/or availability of salmon during June. As the fishery in 1974 was extended over a longer period in June, the catch-per-unit-effort data for this month are not strictly comparable with those for previous years.
31. Owing to the establishment of closed areas in 4971, the long-line fishery was restricted to north of Latitude $68^{\circ} \mathrm{N}$ and west of Longitude $22^{\circ} \mathrm{E}$ from the

Norwegian fishery limit to a distance of 360 nautical miles from the coast (Fig. 2). The main fishing was concentrated within 100 miles from the coast. No commercial salmon fishing was conducted in the vicinity of the Faroe Islands in 1971.
32. In previous reports, it has been pointed out that about 90% of the exploited stock in the Norwegian long-line fishery in the period February to mid-May had already spent two or more winters in the sea but that, after mid-May one-seawinter fish formed an increasing proportion of the catch. As the fishing season in 1971 was restricted to May-June it wes to be expected that, in comparison with previous years, one-sea-winter fish would form a greater proportion of the total catch. This was supported by Danish catch data which showed that about 15-20\% of the catch (15% of the landings) consisted of tris sea age group, compared with 10% in 1970. Prohibition of f1shing in the closed areas, where the catches of former years were especially dominated by older salmon, probably also contributed to this increase. It would, however, probably have been greater but for the minimum fish and hook size regulations. The former resulted in some discarding of fish below 60 cm . in length.
33. As in previous years, the condition factors of the two-sea-winter salmon caught in the long-line fishery varied widely but were, on average, low compared with salmon of the same sea age caught at various localities in Norwegian coastal waters. However, the difference between the condition factors of the salmon in the two fisheries in 1971 (10-15\%) was less than in previous years (20-30\%).

2. Origin and Destination of Salmon in the Norwegian Sea

34. Information on recaptures in the Norwegian Sea fishery of salmon tagged as smolts in home waters is given in Tables 2 and 3 and, for tagging experiments in the Norwegian Sea, in Table 8. Data for 1971 indicate that, as in previous years, the great majority of salmon fished in the Norwegian Sea originated from and returned to Norwegian rivers, though some recaptures were recorded from rivers in the USSR.
35. During the spring in 1969, 1970 and 1974, Paroese and Scottish scientists undertook tagging experiments off the Faroes. A total of 666 salmon was tagged and 29 recaptures, shown in Table 9, have been reported, 15 in Scotland, 5 in Norway, 5 in Ireland, 2 at West Greenland and 1 each in Fngland and the USSR. Most of the recaptures were made in the year of tagging. of those recovered in home waters, 19 were grilse and 7 were two-sea-winter salnon (the sea age of the recapture in the USSR is not known). The two West Greenland recaptures are of particular interest as they suggest that the Faroes may be on one of the routes taken by European salmon on their way to Greenland.

3. Assessment of the Eifects of the Norwegian Sea Fishery

36. In 1970, data on the age composition of long-line samples showed that, as in previous years, about 90% of the exploited stock in the Norwegian Sea consisted of fish which had spent two or more years in the sea and that therefore the effects of this fishery on home-waters stocks and catches would be confined mostly to two- or more sea-winter salmon. Comparable data for 1971 showed that with the implementation of the seasonal and area closures, the proportion of these salmon in the long-line catch decreased somewhat, averaging appraximately 80%.
37. The assessment of the effects of the Norwegian Sea fishery on total salmon
yield (Norwegian Sea plus home waters) was approached, as in previous years, using data on the increase in weight of the fish from the period of peak fishing in the Norwegian Sea to the period of peak fishing in Norwegian coastal waters and on the proportion of fish present in the fished area which, if not caught there, would subsequently be caught in the home-waters fisheries. Although accurate measures of this proportion are not available it is possible to estimate a limiting value for it, above which the presence of the long-line fishery would lead to a decrease in the total catch from the population of two-sea-winter salmon. For 1970 , it was estimated to lie in the range $77-83 \%$ and for 1971 , when the peak of the fishery in the open sea occurred later than in 1970 (due to the closure at the beginning of the season), it was approximately 90%. The
available data suggest that the average exploitation rate of two-sea-winter salmon in the river systems to which these salmon, if surviving, would return, was below these levels (estimates from a simulation model indicated that it lay between $50-80 \%$) and that therefore the Norwegian Sea fishery in both 1970 and 1971 resulted in a larger catch of two-sea-winter salmon than would have been taken in its absence. It should, however, be pointed out that the overall average 'quality' of the catch taken in the offshore fishery in both years was lower than that taken in home waters.
38. In the last published report of the Working Party (ICES Coop. Res. Rep., No. 24,1971 , a provisional assessment was made of the losses to the two-sea-winter salmon stock in home waters resulting from the long-line fishing in the Norwegian Sea. On the basis that the loss due to natural mortality between the time the salmon are exploited in the open sea and their return to home waters is about the same as the increase due to growth, it was estimated that the losses to the home-waters salmon stocks to which two-sea-winter salmon in the Norwegian Sea return would be roughly the same as (but not greater than) the Norwegian Sea catch. It follows, therefore, that in 1969 and 1970, the estimated loss to the homematers stocks was around $800-1,000$ metric tons. The corresponding estimates of losses to the home-water catches in these years were probably within the range 400-800 metric tons.
39. Since, as shown in Table 6, following the implementation of the closed season and area regulations in the Norwegian Sea, the long-line catch in 1971 was substantially smaller than in 1969 and 1970 , the estimated losses to the home-waters stocks and catches were correspondingly smaller. The catch of two-sea-winter salmon by the long-line fishing in 1971 was about 400 metric tons so the estimated loss to the home-water stocks of these fish was appr oximately of this magnitude and the loss to the home-water catch was within the range 200-300 metric tons. As in previous years, most of this loss would occur in the Norwegian home-waters fishery.
40. It must be emphasised that, as for the West Greenland fishery, these assessments loises concern only the immediate direct effects of the long-line fishery; they take no account of any possible longer term effects from possible decreases in smolt production and salmon recruitment, resulting from a fishinginduced reduction in spawning stock. At present, too little is known of the relation between spawning stock size, smolt production and recruitment of grilse and salmon to the Norwegian stock for these offects to be estimated.

D. HOME-THATERS CATCHES

41. Catch statistics for the home-water fisheries are given in Table 10 and catch-per-unit-effort data are given (in greater detail than in previous years) in Table 11. Information on changes in catches in individual countries ia summarised below.
42. England and Wales The overall picture presented by the salmon and grilse catches for 1971 is that of a reduction from the 1970 level; due mainly to reduced net catches, the rod catches having remained steady at the low level experienced over the past four seasons compared to the previous six seasons. The total catch for 1971 by all methods was, however, still above the average for the period 1960-70. The major component in the overall catches has again been the catch made by the commercial net fishery in the northeast coastal area. Apart from this, the remainder of the net catch for England and Wales has remained steady over the period 1960 to 1971 . Severe reductions in the rod catches of the early-running two-sea-winter fish have continued in many rivers, but not in all. A factor in this decline may be the incidence of salmon disease (UDN). The counts of early-running two-sea-winter salmon in the River Coquet (Northumberland) have shown an overall decline since 1968 (but a slight increase in 1971) and have formed a decreasing proporti,n of the total years' runs of salmon and grilse in that river. The data from the River Axe (Devon), where a count is also made, show a decline in two-sea-winter fish over the last three years.
43. France Though the catch cannot be given precisely, there are indications that the total catch of salmon and grilse has decreased in recent years, mainly due to a decrease in the salmon, particularly in the River Adour. 44. Iceland The catch of salmon and grilse combined in 1971 (205 metric tons) was the highest yet recorded. Since 1960, annual catches have generally shown an upward trend, coinciding with a great increase in smolt rearing during that period.
44. Ireland The total catch (salmon plus grilse) in 1971 was similar to that of previous years. However, there was a sharp decline in the salmon catch compared with 1970 , which was the first year in which a breakdown was available into salmon and grilse. Some long-term statisti cs are available for a number of the major river systems and from these it is evident that the decline in early-run fish, which was first noted in 1967, was much more marked in 1970 and 1971 . There was a slight decrease in the grilse catch in 1971 but it was still well above the average for the decade in the major salmon rivers where a breakdown in statistics is available.
45. Northern Ireland The commercial catch of salmon plus grilse in 1971 (including 50% of the Foyle total) was 191 metric tons. This is a decrease of 36% from the previous year's catch and represents 58% of the average for the period 1967-70.
46. Norway Provisional figures for the salmon plus grilse catch in 1971 (1,185 metric tons) indicate that this was similar to the 1970 catch but that the catches in both years were below those of all previous years since the early nineteen fifties. On a weight basis, the 1971 catch consisted of about 36% grilse and 64% salmon. Compared with 1970 , the proportion of grilse had increased slightly.
47. Scotland Provisional figures for the total Scottish catch (salmon plus grilse) for 1971 indicate that this was less than in 1970. The salmon catch was substantially lower than in any year since 1952 and only about 65% of the

1952-70 average. The grilse catch was similar to that in 1970 and, as in recent years it was well above the long-term (1952-70) average.
49. Canada The total home-water (salmon plus grilse) catch decreased by 260 metric tons in 1971 frm the 1970 level. The Labrador portion of the catch increased by 180 metric tons, but there was a decrease of 440 metric tons in the other areas represented within the Canadian total catch. Landings from certain regions have shown major decreases, namely Quebec (57% of 1970 catch) and the Maritimes (48% of the 1970 catch). It will be noted that, since 1970 , it has been possible to obtain more precise data on catch-per-unit-effort for the major Atlantic salmon fisheries in the Maritime provinces of Canada (Table 11). The Working Party noted the serious decline in the Maritime and Quebec commercial and angling catches for 1971 . The reduced runs of large salmon in the Miramichi and the resulting loss in potential egg deposition has prompted the Canadian government to impose severe restrictions on the commercial and sport fishery for this river in 1972. Spawning escapement has been below that believed necessary for adequate seeding of the rivers since 1969 and the autumn portion of the Miramichi run, including both salmon and grilse, has virtually disappeared. 50. The total catch (salmon plus grilse) in 1971, was lower than in 1970 in all the main salmon producing countries except Norway, where it was about the same and Iceland where it was slightly higher.
51. Separate statistics for salmon and grilse catches have generally only been available for recent years but the salmon catches for some European countries, for the years 1969-71, shown below, show a substantial decline in these years.

Country	Salmon Catch (metric tons)		
	1969	$\frac{1970}{}$	1971
England and Wales	264	313	298
Ireland	260	268	175
Norway	801	816	747
Scotland	987	802	664
	2312	2199	1884

Further, in some countries (e.g. Ireland, Scotland) the decrease in the salmon catch has been most marked in the early spring runs. The Canadian salmon catch was also lower in 1970 than in 1969 (Table 10), but data for 1971 are not yet available.
52. It should be noted that the grilse catches for the European countries listed above also decreased overall, in the years 1969-71, as shown below.

Country	Grilse		Catch
	$\underline{1969}$	$\frac{1970}{}$	1971
England and Wales	113	214	127
Ireland	1470	1519	1460
Norway	582	355	438
Scotland	954	622	646
	3119	2710	2671

Between 1969 and 1970, however, the Canadian grilse catch increased substantially.

E. FUTURE RESEARCH

1. International Tagging Experiment at West Greenland

53. The Working Party considered the Second Report of the Planning Group for the International Tageing Experiment at West Greenland in 1972 (Appendix 3). It approved the proposed plans and budget for the experiment, and the arrangements proposed for its administration. They also approved the draft of the Guide Book and standard forms for research vessels and observers, participating in the experiment.
54. The Working Party examined and approved a draft publicity pamphlet for the experiment and agreed that suitable allocations of copies of it should be supplied for distribution in Greenland and in those European and North American countries with. an interest in the West Greenland fishery. It was also agreed that individual countries could purchase additional copies of the pamphlet, provided that they informed the ICES Secretariat about their requirements before the printing order was despatched. The Working Party also stressed the importance of additional publicity within countries through especially the press,
radio and television.
55. The Working Party endorsed arrangements drawn up by the Planning Group, for handling and preliminary analysis of data from the Tagging Experiment. These were set out in the First Report of the Planning Group whi ch formed an appendix to the report of the Joint Working Party in 1971, and may be summarised as follows:- Canada will be responsible for handing the research vessel catch and effort data, Denmark the tag return and the commercial fishery data and the United Kingdom the examination of all scale collections. It was also agreed that the ICES Hydrographer should be consulted about the analysis of hydrographic data collected during the tagging experiment.
56. It was agreed that if possible a film record of the experiment should be prepared and countries participating in the experiment were asked to examine this possibility.
57. Other Research
58. The Working Party drew attention to the importance of continuing studies on salmon stocks in home waters, in particular, to investigations of the exploitatiun rate in home waters, of the relationship between grilse and salmon and of the relationship between stock and recruitment and to the analysis of tag recaptures on a river system basis.

F. FUTURE MEETING

58. The Working Party recommended that they should next meet in Copenhagen, for five days, during the week beginning 26 March 1973.

Table 1 Catches at Vest Greenland, 1960-71, in metric tons and round fresh weight. (Based on data available at 31 March 1972).

Year	Norway	Drift Net		Denmark	Gill Net and Drift Net	Total
		Faroes	Sweden			
1960	0	0	0	0	60	60
1961	0	0	0	0	127	127
1962	0	0	0	0	244	244
1963	0	0	0	0	466	466
1864	0	0	0	0	1539	1539
1965		36	0	0	825	861
1966	32	87	0	0	1251	1370
1967	78	155	0	85	1283	1601
1968	138	134	4	272	579	1127
1969	250	215	30	355	1360(385)	2210
	270	259	8	358	1244	2146
$1971{ }^{\text {b }}$	340	255	0	645	1375	2615

a - Figures not available, but catch is known to be less than Faroes
b - Frovisional
c - Including 7 metric tons caught on long-line by one of two Greenland vessels in the northern Labrador Sea early in 1970.
d - Up to 1968, gill net only, after 1968 gill net and drift net. The figures in brackets for the 1969 catch are an estimate of the minimum drift net catch. in Test Greenland and in other areas, including home-waters, up to Harch 1972. Figures in brackets are returns per thousand tagged.

Number of hatchery-reared smolts tagged in the years 1963-1971 and recaptured in iiest Greenland and in other areas, including home-waters, up to March 1972. Figures in brackets are returns per thousand tagged.

Country	Year of Number Mancing Tafed		Mest Greenland	Recaptures					Grand	
			Norwegian		A17 0th	her Are				
				$\begin{aligned} & \text { Sea and } \\ & \text { Faroes } \end{aligned}$	Grilse		2lmon	Total		
Canada	1963	-7,332		4 (0.5)	0	133	32	(4.4)	165	169
	1964	46,659	$9(0.2)$	0	101	. 85	(1.8)	186	195	
	1965	45,988	67 (1.5)	0	379	224	(4.9)	603	670	
	;966	70,875	70 (1.0)	0	238	299	(4.2)	537	607	
	1967	112,288	66 (0.6)	0	275	-226	(2.0)	501	567	
	1988	113,360	167 (1.5)	0	296	267	(2.4)	563	730	
	1969	137,832	247 (1.8)	0	365	217.	(1.6)	582	829	
	1970	184,962	122 (0.7)	0	288	21.	(1.6)	288	410	
	1971	205,809	(0.7)	-	- ${ }^{-}$			28	4	
Scotland	1963	6,750	0	0	3	3	(0.4)	6	6	
	1964	3,000	0	0	7	7	(2.3)	14	14	
	1965	3,000	0	0	19	0		19	19	
	1966	8,000	1 (0.1)	0	13	5	(0.6)	18	19	
	1967	4,451	0	0	1	0		1	1	
	1968	5,335	0	0	4	1	(0.2)	5	5	
	1969	3,694	0	0	1	0		1	1	
	1970	7,836	6 (0.8)	0	33	-		33	39	
	1971	5,247	(0.8)	-	3	-		3)	
1 land and Wales	1963	1,970	1 (0.5)	0	0	0		0	1	
	1964	0	0	0	0	0		0	0	
	1965	0	0	0	0	0		0	0	
	1966	9,668	0	0	0	1	(0.1)	1	1	
	1967	18,522	0	0	0	1	(0.1)	1	i	
	1968	28, $2 \in 6$	$4(0.1)$	0	4	5	(0.2)	9	13	
	1969	7,420	1 (0.1)	0	4	-		4	5	
	1970	4,493	2 (0.4)	0	0	-		-	2	
	1971	11,521	-	-	-	-		-	-	
Norway	1963	10,999	0	1	88	95	(8.6)	183	184	
	1964	9,182	0	1	135		(9.5)	222	223	
	1965	\&,071	0	13	79		(4.1)	104	117	
	1966	13,812	0	29	403		(10.5)	548	593*	
	1967	18,393	2 (0.1)	56	229		(5.0)	320	404*	
	1968	12,983	0	43	171		(7.9)	274	337*	
	1969	16,967	5 (0.3)	34	141		(3.6)	702	248*	
	1970	18,673	1 (0.5)	1	160	-		160	164*	
	1971	16,771	-		-	-			164	
Iceland	1966	8,367	1 (0.1)	1 (0.1)	66	14	(1.7)	80	82	
	1967	10,061	0	0	24	6	(0.6)	30	30	
	1968	9,985	0	0	45	0		45	45	
	1969	7,586	0	0	246	10		256	256	
	1970	10,014	0	0	1	-			1	
	1971	11,087	-	-	-	-		-	-	
Ireland	1966	15,000	0	0	0	0		0	0	
	1967	5,000	1 (0.2)	0	1	0		1	2	
	1968	222	0	0	1	0		1	1.	
	i969	7,194	2 (0.3)	0	21	1		22	24	
	1970	3,787	0	1	11	0		11	12	
	1971	2,381	-	-	-	-		-	-	
Sweden	1966	11,181	7 (0.6)	1	690	193	(17.2)	883	891	
	1967	4,999	1 (0.2)	4	364	62	(12.4)	426	431	
	1968	4,798	1 (0.2)	1	586	37		623	625	
	1969	7,381	0	0	514	9		523	523	
	1970	6,000	0	0	268	-		268	268	
	1971	4,997	-	-	-	-		-	-	
USȦ	1966	82,250	39 (0.4)	0	69	168	(2.0)	237	276	
	1967	80,717	1 (0.1)	0	12	10	(0.1)	22	23	
	1968	73,730	7 (0.1)	0	9	12	(0.2)	24	28 173	
	1969	73,418 48,190	$64(0.8)$ 329	0	32 57	77	(1.0)	109	173 386	
	1970	48,190	329 (6.8)	0	57	-		-	386	
	1971	29,905	-	-	-	-		-	-	

```
- Tajle 3 (Contirued)

* Including some fish from unknown localities.

Table 4 Number of kelts tagged in the winters 1962/63-1971/72 and recaptured in Greeniand and in other areas, including home-waters, up to the end of 1970 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country & Winter of & Number & & Recaptures & \\
\hline & Tagging & Tagged & Greenland & Other Areas & Total \\
\hline Canada \({ }^{\text {a }}\) & 1962-63 & 653 & 2 & 65 & 67 \\
\hline & 1963-64 & 1,518 & 0 & 91 & 91 \\
\hline & 1964-65 & 1,995 & 1 & 141 & 142 \\
\hline & 1965-66 & 7.169 & 0 & 653 & 653 \\
\hline & 1966-67 & 7,510 & 1 & 688 & 689 \\
\hline & 1967-68 & 3,710 & 2 & 395 & 397 \\
\hline & 1968-69 & 3,707 & 4 & 163 & 167 \\
\hline & 1969-70 & 4,539 & 10 & 208 & 218 \\
\hline & 1970-71 & 5,412 & 16 & 333 & 349 \\
\hline & 1971-72 & 5,012 & - & - & - \\
\hline England & 1962-63 & 159 & 1 & 12 & 13 \\
\hline and Wales & 1963-64 & 185 & 2 & 10 & 12 \\
\hline (River Axe & 1964-65 & 184 & 1 & 11 & 12 \\
\hline only) & 1965-66 & 109 & 1 & 7 & 8 \\
\hline & 1966-67 & \(178{ }^{\text {b }}\) & 1 & 11 & 12 \\
\hline & 1967-68 & 188 & 2 & 6 & 8 \\
\hline & 1968-69 & 81 & 0 & 3 & 3 \\
\hline & 1969-70 & 113 & 0 & 12 & 12 \\
\hline & 1970-71 & 7 & 0 & 0 & 0 \\
\hline Faroes & 1970-71 & 24 & 0 & 0 & 0 \\
\hline Iceland & 1962-63 & 114 & - & 14 & 14 \\
\hline & 1963-64 & 167 & - & 9 & 9 \\
\hline & 1964-65 & 154 & - & 5 & 5 \\
\hline & 1965-66 & 357 & - & 15 & 15 \\
\hline & 1966-67 & 745 & - & 75 & 75 \\
\hline & 1967-68 & 441 & - & 17 & 17 \\
\hline & 1968-69 & 369 & \(\bar{\square}\) & 19 & 19 \\
\hline & 1969-70 & 314 & 0 & 21 & 21 \\
\hline & 1970-71 & 785 & 0 & 105 & 105 \\
\hline Ireland & 1962-63 & 2,264 & 2 & 31 & 33 \\
\hline & 1963-64 & 2,351 & 2 & 70 & 72 \\
\hline & 1964-65 & 2,695 & 2 & 34 & 36 \\
\hline & 1965-66 & 2,972 & 1 & 40 & 41 \\
\hline & 1966-67 & 3,175 & 0 & 77 & 77 \\
\hline & 1967-68 & 1,034 & 0 & 24 & 24 \\
\hline & 1968-69 & 498 & 0 & 10 & 10 \\
\hline & 1969-70 & 1,088 & 0 & 28 & 28 \\
\hline & 1970-71 & 477 & 0 & 36 & 36 \\
\hline Scotland & 1962-63 & 413 & 1 & 2 & 3 \\
\hline & 1963-64 & 134 & 0 & 2 & 2 \\
\hline & 1964-65 & 233 & 0 & 6 & 6 \\
\hline & 1965-66 & 1,376 & 4 & 19 & 23 \\
\hline & 1966-67 & 901 & 3 & 18 & 21 \\
\hline & 1967-68 & 117 & 0 & \(3{ }^{\text {c }}\) & 3 \\
\hline & 1968-69 & 152 & 0 & \(7^{\text {d }}\) & 1 \\
\hline & 1969-70 & 153 & 0 & 1 & 1 \\
\hline USA & 1962-63 & 151 & 1 & 13 & 14 \\
\hline & 1963-64 & 123 & 1 & 10 & 11 \\
\hline & 1964-65 & 160 & 0 & 23 & 23 \\
\hline & 1965-66 & 146 & 2 & 16 & 18 \\
\hline & 1966-67 & 578 & 5 & 75 & 80 \\
\hline & 1967-68 & 340 & 5 & 56 & 61 \\
\hline & 1968-69 & 218 & 1 & 16 & 17 \\
\hline & 1969-70 & 315 & 0 & 8 & 8 \\
\hline & 1970-71 & 400 & 1 & 8 & 9 \\
\hline & 1971-72 & 240 & - & - & - \\
\hline USSR & 1968-69 & 566 & 0 & 10 & 10 \\
\hline & 1969-70 & 1,147 & 0 & 0 & 0 \\
\hline
\end{tabular}
a Ascending adults tagged during any year are included in the totals targed for the corresponding winter (1.e. those tagged in 1962 are included under 1962-63,

E 11 those tagged in 1963 under 1963-64 etc.), but recaptures of these adults in

\section*{Table 4 (Continued)}
b In addition, 180 kelts were tagged by the Dee and Clyde Biver Authority in 1965-66 and 291 kelts in 1966-67. No recaptures were reported from the first experiment and two (from 'Other Areas') from the second.
c Includes 1 recapture at Faroes
d Recaptured at Faroes

Table 5 Recaptures (to March 1972) of fish tagged at West Greenland
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Number & \multicolumn{2}{|l|}{Local Recaptures} & \multicolumn{2}{|r|}{Distant Recaptures} \\
\hline Tagred & Tagged & Number & Days Absence & Humber & Location \\
\hline 1965 & 223 & 3 & 1, 3, 26 & 1 & Canada (SW Newfoundland) \\
\hline 1966 & 729 & 28 & \[
\begin{aligned}
& 1-8(24) \\
& 10-50(4)
\end{aligned}
\] & 4 & \begin{tabular}{l}
Canada (Miramichi - 1) \\
Scotland (River Tweed - 2) \\
(River Spey - 1)
\end{tabular} \\
\hline 1967 & 375 & 6 & \[
\begin{aligned}
& 1-2(3) \\
& \text { not known (3) }
\end{aligned}
\] & 4 & ```
Canada (Labrador - 1)
Ireland (River Slaney - 1)
    (River Barrow - 1)
Scotland (River Tay - 1)
``` \\
\hline 1968 & 47 & 4 & \[
\begin{aligned}
& 1-3(3) \\
& 1 \text { month (1) }
\end{aligned}
\] & 1 & Canada (Labrador) \\
\hline 1969 & 444 & \[
{ }^{14} 3^{b}
\] & \[
\begin{aligned}
& 4-35 \text { days } \\
& 340-398 \text { days }
\end{aligned}
\] & 13 & Canada (Labrador - 1)
(NE Newfoundland \(-4^{a}\))
(Kiramichi - 1)
Bagland (Taw \& Torridge Estuary-1)
(River Wye - 1)
Ireland (Waterville - 1)
(River Slaney - 1)
Scotland (near Montrose - 1)
Spain (River Ason -1)
Wales (River Teify - 1) \\
\hline 1970 & \(27^{\text {c }}\) & 0 & - & 3 & \[
\begin{gathered}
\text { Canada (Chaleur Bay - 1) } \\
\text { (River St. Jean - 1) } \\
\text { (Escuminac - 1) }
\end{gathered}
\] \\
\hline & 224 & 3 & 4-22 days & 4 & \[
\begin{aligned}
& \text { Canada (Labrador - 1) } \\
& \text { (Nova Scotia - 1) } \\
& \text { Ireland (Dunmore-East - 1) } \\
& \text { Scotland (Solway Firth - 1) }
\end{aligned}
\] \\
\hline 1971 & \(59^{\text {c }}\) & 0 & - & 8 & Canada (NE Newfoundland - 6) (Chaleur Bay - 2) \\
\hline & 226 & 4 & 1-ca30 & & \(\cdots\) \\
\hline
\end{tabular}
a One recaptured in year of tagging
b Recaptured at Greenland in 1970
c Labrador Sea in spring

Table. 7 Estimates of catch-per-unit-effort in the Norwegian Sea Long-line Fishery 1968-71.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Country & \multicolumn{6}{|c|}{No. of Salmon/1000 Hooks caught in} & No. of selmon \\
\hline & & Februaxy & Maxch & April & May & June & Total season & sampled \\
\hline 1968 & Denmark & & & 92 & 100 & & & 5.539 \\
\hline \multirow[t]{2}{*}{1969} & Denmark & & 43 & 57 & 44 & 29 & 39 & 25,891 \\
\hline & Germany Faroe & & & 50 79 & 46 & 23 & 42 & 5,459 \\
\hline \multirow[t]{3}{*}{1970} & Denmark & \multirow[t]{3}{*}{42} & 50 & 67 & 35 & 27 & 49 & 72,000 \\
\hline & Germany & & & 66 & 35 & 16 & 46 & 6,313 \\
\hline & Faroe & & & \(40^{\text {a }}\) & & & & 366 \\
\hline \multirow[t]{3}{*}{1971} & Denmark & & & & \(42^{\text {b }}\) & \(25^{\text {b }}\) & & 31,105 \\
\hline & Germany & & \(72^{\text {c }}\) & & & & & \\
\hline & Faroe & & \(82^{\text {a }}\) & \(39^{\text {a }}\) & & & \(60^{2}\) & 499 \\
\hline
\end{tabular}
a - Research catch, 20-80 nautical miles NB of Faroe Islands.
b - Including catches discarded because undersized.
c - Research catch.

Table 8 Recaptures of salmon tagged in the long-line fishery in the Norwegian Sea (to March 1972).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underset{\text { Year }}{\text { Tagred }}\)} & \multirow[t]{3}{*}{Number Tagged} & \multirow[t]{3}{*}{\begin{tabular}{l}
Year \\
Recaptured
\end{tabular}} & \multicolumn{4}{|c|}{Recaptures} \\
\hline & & & Norwerian Ses & Home & Vater & Total \\
\hline & & & Norwegian Sea & Norway & U.S.S.R. & Sotal \\
\hline \multirow[t]{3}{*}{1968} & \multirow[t]{3}{*}{238} & 1968 & 0 & 5 & 0 & 5 \\
\hline & & 1969 & 0 & 0 & 1 & 1 \\
\hline & & Total & 0 & 5 & 1 & 6 \\
\hline \multirow[t]{4}{*}{1969} & \multirow[t]{4}{*}{932} & 1969 & 5 & 49 & 6 & 60 \\
\hline & & 1970 & 2 & 13 & 2 & 17 \\
\hline & & 1971 & 0 & 2 & 0 & 2 \\
\hline & & Total & 7 & 64 & 8 & 79 \\
\hline \multirow[t]{3}{*}{1970} & \multirow[t]{3}{*}{1,118} & 1970 & 10 & 117 & \[
8
\] & 135 \\
\hline & & 1971 & 2 & 10 & \[
3
\] & 15 \\
\hline & & Total & 12 & 127 & 11 & 150 \\
\hline 1971 & 1,937 & 1971 & 5 & 138 & 18 & 161 \\
\hline
\end{tabular}

Table 2 Recaptures of fish tagged in Faroe waters.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Number & \multicolumn{6}{|c|}{Recaptures} \\
\hline Tagged & Targed & Norway & England & Scotland & Ireland & Fussia & Greenland \\
\hline 1969 & 74 & - & - & 2 & - & - & - \\
\hline 1970 & 233 & 2 & 1 & 5 & 3 & 1 & 1 \\
\hline 1971 & 359 & 3 & - & 8 & 2 & - & 1 \\
\hline
\end{tabular}
Tablo 10 Catches in home waters, 1960-71 (salmon plus grilse except where show separately) in metric tons, round frech weicht.

Table 11

\section*{H. APPENDICES}

\section*{1. Resolution adopted at the ICNAF Meeting in 1970 concerning} Regulation of Salmon Fishing

Recognizing that the proposal adopted at the 1969 Annual Meeting for the prohibition of the fishery for salmon outside national fishery limits, not having been accepted by all Contracting Governments, has not been fully effective;

Considering that interim measures are desirable in order to avoid the escalation of fishing for salmon throughout the Convention Area pending a more accurate assessment of its effects on coastal and river fisheries and on the stocks; and

Noting that Contracting Governments which have not participated in the fishery have no present intention of so doing;

The Commission also proposes that:
1. That each Contracting Government which has participated in the fishery for Atlantic salmon, Salmo salar L., take appropriate action to limit the aggregate tonnage of vessels employed or catch taken by its nationals in the fishery in the Convention Area to a level not exceeding the aggregate tonnage of vessels so employed or catch so taken in 1969;
2. That Contracting Governments which have not accepted the prohibition on fishing for Atlantic salmon outside national fishery limits take appropriate action to prohibit fishing for Atlantic salmon outside national fishery limits in the Convention Area before 31 July and after 30 November.
3. That the use for salmon fishing of any trawl net, any monofilament net or any troll be prohibited throughout the Convention Area provided that Contracting Governments may authorize the continued use of monofilament nets acquired before 1 July 1970.
4. That these measures be in force for the year 1971 subject to review within that period, in the event of substantial changes in the catches of Atlantic salmon in the Convention Area or in home waters or in the fish stocks.
2. Resolution adopted at the NBAFC Meeting in 1270 concerning

Regulation of Salmon Fishing
"Fishing for salmon shall be regulated by the following measures as provided for in Article \(7(1)\) of the Convention.
1. Closed Season Art. 7(1)(c)

In regions 1 and 2 of the Convention Area, outside national fishery limits, fishing for salmon shed be prohibited from July lst to May 5th, both dates inclusive.

Where salmon occurs within the national fishery limits of Contracting States, those States shall preseribe annual closed seasons during which fishing for salmon shall be prohibited.
2. Minimum size for salmon Art. \(7(1)(b)\)

No salmon of a size less than 60 cm , measured from the tip of the snout to the end of the tail fin shall be retained on board, but shell be returned immediately to the sea.
3. Mesh of Nets Art. 7(1)(a)

Drift nets, anchored nets and seines used for fishing of salmon shall
have a minimum mesh size of 160 mm . The mesh size is to be measured
in accordance with the mesh regulations already in force under
Recommendation (1).
4. Other Messures for the Regulation of Fishing Gear Art. 7(1)(e)

In the fishery for salmon
a) any hooks used shall have a gape of not less than 1.9 cm ;
b) the leader attaching the hook to the line shall have a minimum strength comparable to 0.6 monofil nylon;
c) the \({ }^{\text {tuse }}\) of any trawl net, any monofilament net, or any troll shall be prohibited.

\section*{5. Closed Areas Art. 7(1)(d)}

Fishing for salmon in the Convention Area, outside national fishery limits, shall be prohibited.
a) between latitudes \(63^{\circ}\) and \(68^{\circ} \mathrm{N}\) and east of longitude \(0^{\circ}\)
b) east of longitude \(22^{\circ}\).

The regulations under 2,3 and 4 shall apply within the whole Convention Area, but outside national fishery limits.

This regulation for salmon fisheries shall enter into force on lst January 1971 and shall be subject to review by the Commission after two years or in any case if substantial changes occur in the catches of salmon on the high seas or in home waters, or in the fish stocks.

In addition to making this Recommendation, the Commission agreed to urge all Contracting States fishing for salmon on the high seas only to participate in the planting of smolts."
3. SECOND REPGRT OF THE PLANNING GROUP FOR TEE INC工RNATIONAL TAGGING EXPERTMENT AT HEST GRGENLAND IN 1972

This Group held their second meeting at Copenhagen from 18th to 20th January, 1972. Those prasent were:
\begin{tabular}{|c|c|}
\hline O. Christersen & Denmark \\
\hline Sv. Aa. Horsted & Denmark \\
\hline A. W. May (Chairman) & Canada \\
\hline A. L. Keister & U.S.A. \\
\hline E. rilton-Hansen & Denmark \\
\hline J. Ḱfller-Christensen & ICES \\
\hline J. 1 ijSller-Jensen & Demmark \\
\hline W. R. Junro (Rapporteur) & Scotland \\
\hline G. こ. Ridgway & U.S.A. \\
\hline L. Rosseland & Norway \\
\hline A. Swain & England \& Wales \\
\hline H. Tambs-Lyche & ICES \\
\hline R. Vibert & France \\
\hline
\end{tabular}

The Group began by reviewing, briefly, the results of the Danish/U.K. and Canai̇ien saimon work at Greenland in 1971, with particular reference to the decisions which they had to take in relation to the plans for the 1972 tagoting experimont.

They then went on to reconsider, and to expand, the plans for tine 1972 experiment, which were outlined in their first report (Appendix \(H\) to C. Si. 1973/s:2). They also discussed in dotail the drafts of the 'Guido Book for Participants in the ICES/ICNAF Salmon Tagging Programme at Greenland, 1972' prepared by Dr. May and Mr. Horsted.

Jany of the Group's decisions have been fully incorporated in the draft Of, the Guide Eook, which will be submitted to the Joint Norking Party at their meoting in Dublin in March 1972. The ooments which follon, set out under the headings adoptad as the agende for this meatink, are intended only to cover those decisions which were not relevant to the Guide Book and where consiaered necassary, to explain the reasons for some of the points incor?orated in it. Yos a full apprecintion of the results of this meeting, this report should be read in conjunction with the draft of the Guide Book.

\section*{Revien of the Objectives of the Experiment}

The Group considered that the objectives of this experiment, as set out on Page 1 of their previous report, still held good and that these were edequately, if more briefly described in the Guide Book (Section 1). Research Vessel and Scientific Staff Participation and Scheduling

Up-dated information on the availability of research vessels for this experiment is given in the Guide Book (Section 2.1), together with an amended programe of research vessel distribution throughout the experiment, based on this latest information. Those organisations sending research vessels are asked to provide copies of their programa to other perticifants as soon as they are available and well in advance of their vessel's arrival in Greenland.

Apart from the scientific staff ellocated by those organisations which are providing research vessels, the U.S.A. offered to provide scientific assistance up to a total of 24 man/weaks (probably as two teams of two scientists). It was also understood that, as recorded in the previous report, Irelanc might be able to provide one scientist for six weeks.

It seemed unlikely that outside scientific assistance mould be required on the Danish or U.K. research vessels, but help from one or tro U.S. scientists would be eppreciated on the 'A.T. Cameron'. The French vessel could provide accomodation for two foreign scientists but, if these places mere not required, they would be filled from their own staff. It seemed probable that some accommodation would be available on the U.K. vessels, which could be utilised by scientists with specialist interests, if required. It was agreed that details of these arrangements should be finalised at the karch meating of the Joint Working Party in Dublin and that any organisation wishing to avail themselves of the U.S. offer should contact Dr. Ridgeway directly.

The Group racoived, through Dr. Say, a request from the University of lancton for facilities to continue their PIROP seabird scheme by placing observers on research vessels taking part in the tagging programe. This
programe is concerned with studying the biology of seabirds while they are at sea and, particularly, with the effects of drift-netting on Brunnich's guillemot. In recent years PLROP observers have been placed on Canadian and French vessels operating in this area. Observers would not necessarily be Canadian, but might be recruited from appropriate organisations in the research vessel's own country.

With the exception of the Danish vessel, on Fhich accommodation was very limited, it was agreed, in principle, that accommodation could be made availabie for a PIROP observer on each research vessel and that this organisation should contact participating organisations directly regarding the placing of their observers.

\section*{Selection of Fired Fishing Stations}

At their first meeting the Group proposed that a set of fixed stations should be fished periodically throughout the experiment to provide information on the distribution of salmon throughout the fishing season. At this meeting the Group accepted the pattem of fixed stations suggested by k . Horsted (see Guide Book, Section 4.1.3). In their first report the Group had proposed that these stations should be fished overnight but, after considerable discussion, it was decided that these should be fished during daylipht, in exactly the same way as during the rest of the experiment (Guide Book, Section 4.4). It was felt that such an errangement would provide catch data which would be directiy comparable with the more extensive records whiah would be available from the ordinary fishing programe and would also provide the best opportunity oi maintaining progress towards the tagging target.

Tre programe for fishing these standard stations is set out in Section 4.1.2 of the Guide Book.

It was appreciated that scientists in charge of research vessels might have to nodify their proerammes depending on circumstances at the time, particuiariy if the numbers of fish which they had been able to tag proved disappointing.

\section*{Gear and Fishing Technicue}

The Group considerad available information on the efficiency of various mesh sizes of net, including that obtained by the 'Adolf Jensen' and 'A. T. Careron' in 1971, using 120 mmesh nets. They concluded that there Mas no particular edvantage in fishing the latter and that, overall, 130 ma nets seemed to give the best results. However, after considering evidence that there were differences in the size distribution of salmon in vamious areas off Greonland, and through the iishing season, it was decided that two meshes should be used and that these should be 130 mm and 150 mm stretched mesh.

In viaw of the increasing evidence from both comercial and research vessels that monofilament nets were more effective, particularly in daylieht, it was decided that only monofilament nots should be used during the experiment. It was also felt that this deaision v:uld simplify the provision of spare nets to replace any which were lost or damaged.

Details of the standard design for these nets and the composition of the fleet of nets to be used are set out in the Guide Book in Sections 4.3 and 4o4, respectively. It was noted that the 'Adolf Jensen', because of the limited space on board, would be unable to fish more then 80 nets. Scheduling and Prograrme for Observers

Prc: inrormation provided at the meeting, it seemed likely that the requirement for placing observers on six commercial vessels could be met, as two Norwegian vessels were willing to carry observers and it seemed probable thet three Faroese and two Danish vessels would also eccept observers.

The situation with regard to the provision of observers was not finelised but Norway could probably provide two trained observers and Denmark two or three. In addition, three Feroese observers, who would not be memioers of the Faroese research staff, would be available for duty on Paroese vessels. It was hoped that further details would be available in Dublin in March.

It wes agreed that the primary function of observers on comarcial vessels Would be to ensure the recovery of all tags and to tag suitable fish from the cetch. Since it was considered that this would leave then little or no time for other duties it was decided that they should not be asked to carry out ary other, more specialised tasks.

If it should prove impossible to inplement the full programe of observer participation, it was suggested that the available effort should be concentreted towards the ?ater nart of the season, when it wes hoped that satostantial numbras of tagked fish would have been liberated.

\section*{Taps, Tageing Tochnicue, Data from Tegred Fish}

The tags to be used will be, basically, as described in the Group's first report (see also Guide Book, Section 4.5.1), but Dr. Wiay undertook to investigate the zossibility of using a heavier gange wire for attachaent.
A. total of 10,000 tags would be ordered and these would be issued to appropriate organisations by the end of June (1000 each to research vessels and 5,000 diviced among observers). Tagging equipment, as specified in Section 4.5.1 of the Guide Book, would be supplicd to both observers and research vessels, on request to the Biological Station at St. John's, Newfouncland.

Full instrictions on tagging are given in the Guide Book (Sections 4.5.2 and 4.5.3).

\section*{Other Biojocical Data and Specimens, Disposition of Fish}

Research vessels mould be prepared to collect on roquest, biological data and materiel other than that set out in Seotion 40.5.4.1. of the Guide Book. Inüivicuals or organisations requiring such facilities shoul. make their own arrangements with the relevant organisation and should provide any necessary equiprent.

The Group confirmed their previous decision that no fish caught by research vessels shoula be sold.

\section*{Comuriczion during Experiment}

The Group reiterated their vien that good commnications were vital to the success of the experiment. Full details of their proposals for commanication during the experiment are set out in Section 2.3 of the Guide Book. All participating organisations were asked to provide, as soon as possible, details of the radio facilities available on their vessels, for inclusion in Section 2.3.2.

It was realised that regular oontaot with observers might be difficult to achieve and that commercial vessels might be reluctant to reveal details of their position and catch over the radio, but it was recommended that observers shoula atiempt to contact the 'Adolf Jensen' daily and report the general area in which they were operating; the number of fish tagged; the number of recaptures recorded (1972 experiment tags and others, separately) and the probeble time of tieein next contect. It was sugeested that 1500 hours (Iocal tines) might be a suitable time for observers to report. Recorizng, Meporting end Exchanging Data

Details of the standard reoords to be maintained by research vessels and obseivers are provided in Section 4.5 .4 .1 of the Guide Book and arrangements for subsequowt handing of the data are given in the folloring section.

ICES undortook to produce the three standard forms reouired for data recording and to investigate, and report in March, on the possibility of producine appropriate scale envelopes for the experiment, as illustrated in the Guide Book.

Data Analysis
This item was not discussed in detail but it was agreed that those Errangaments set out on Page 27 of the Group's first report should be accepted. Publicity

The cirafit text of a publicity pemphlet (see Appendix), submitteci by Dr. Hay, was considered and accepted and ICES undertook to investigate the provision of a pamphlet in four lancuages, for which Dr. Hay also submitted a
preliminary design.
It mas agreed that a Normegian text would not be needed if a Danish one mas provided and thst the pamphlet should, therefore carry the text in Denish, Greenlandio, French and English. A first estimate of the Likely requiremont for this pamphlet was 20,000 oopies, but this figure should be reviewed in March.

The possibility of producing a film record of the experiment wes discussed briefly and it was suggested that this topic should be raised again in karch, with a view to standardizing technique on the various research vessels.

\section*{Sudget and Financing}

Although no fomal promises of contributions to the Special Fund for this experiment had yet been received by ICBS, it was understood that the following countries had provisionally indicsted their villingess to subscribe, as follows:

Since considerable expenditure would arise prior to the beginning of the experiment, it was recommended that contributore should be asked to pay their contributions to ICES before lst July. Beaanse of administrative difficulties, T.S.A. would not be able to make a contribution in advance but other arrangements would be made by them with ICES.

It was agreed that it would be simplest if ICAS did not open a separate bank account for the "ICES/ICNAF Salmon Tegging Brperiment Fund", but that they woild, of course, keep separate accounts for the Fund. Office expenses incurred by ICES would not be cherged to the Fund but these might be offset by any bark interest accruing from the Fund.

It was also agreed that savings on some of the items specified in the budget could be syent on other items, with the agreement of the Chairman of the Joint Working Party and, similarly, that expenditures from the contingency item in the budget, other than those mentioned specifically, should be made only on the same authority.

The Group reconsidered the estimates of expenditure given in their first report anc amended these in the light of such more recent information as was available. Details of these amended estimetes are given below and are followed by comments on the chenges made in some items.
1) Tags, tag preparation, tagging equipment and scale packets. 650
2) Travel for observers incluãing subsistence on shore at Greenland (12 round trips at \&250).2 53000

Subsistence on boerd commercial vessels (90 days for 6 observers at 25 D.kre/day + 6 x £50) \({ }^{\text {b }} 6\) observers at 25 D.kre/day + \(\quad\) £1100 4100
3) Clothirs allowance for specially-recruited ooservers (\(6 \times 400 \mathrm{D.kr}\)). \({ }^{\mathrm{c}} 150\)
4) Salaries of specially-recruited observers (5 observers for 4 months at \(£ 250 /\) month). d 5000
5) Payment for fish tagged on commercial vessels (1800 fi sh at an average of \(£ 5 / \mathrm{fish}\)). \({ }^{e}\) 9000 .
6) Equipment ior observers on commercial vessels (lienks, measuring boards etc). 400
7) Publicity (printed pamphlet) \({ }^{\text {P }}\) 350
8) Contingencies, including:
a) Expenses incurred in the attendance of an ICES representative at the Joint Morking Party meeting in Dubiin in March, 1972.
b) The shipment of materials and specimens. \({ }^{8} 1350\) \(£ 21000\)

Motes
二a The cost of travel per observer was increased from E2OO, as given
in the lest report, to 2250 . The present estimate for this item was
thought to be a realistic over-estimate since some of the Faroese
ceservers seem likely to travel at least one way on comercial vesselso
b. The revised estimate for this item was based on a figure of

25 D.kr/dey, together with a 'good will' payment of \(£ 50\) to each vessel.
c. It was agreed that this provision should be applicable to specially-recruited observers only and that it should be at the rate of 400 D.kr/observer. Employing organisations should reciaim expenditure under this item from ICES.
d. The exact number of such observers could not be establishod at the meeting but the estimate given is based on the assumption that funds rould probably be required for three Faroese and two Danish observers only, for a period of four months (includine travel to and Eror Greenland).

The problems which could arise in relstion to accident insurarce, health benefits etc, if observers were employed directiy by ICES, were discussed. The Group agreed that such an arrangement should be avoided and suegested that observers might be recruited as temporary employees of the appropriate Government organisation or that they might be employed and paid by the captain of the comrarcial vessel, who woula be raimoursed by ICES.
e. It was apreed that the price paid for tageed fish would have to vary according to the size of the fish, in order to avoid selection of only the smaller fish for tagging. It was suggested that this should be on the basis of a price/length curve, since accurate weichts pouid not be available for tagged fish. If captains of comercial vessels agreed to this arrangement, payment would be made to them by ICES on presentation of a bill countersigned by the appropriate observer.

Danish and Nomegian representatives provided details of 1971 salmon prices in relation to weight and the estimate of the cost of this item was calculated on the basis thet the pavment for an average Greenland-caught salmon would be 55 (3.5 kg at \(20 \mathrm{D.kr} / \mathrm{kg}+20\) D.kr).

Eewbers vore asked to bring to the Dublin meeting of the Joint Forging Party，any relevent data whicis they had on the total length／ gutjed weight relationship for salmon caught at Greenlend． ざ．ICAS obtained a very preliminary estimate of 5，200 D．kr（£289）
as the cost of producing 20,000 two－colour pamphlets．
6．This item，which was shown separately in the estimates in the first report，was transferred to＇contingencies＇。

In addition to the items mentioned above，the question of training obeervers was discussed．It was decided that it was not praoticable to mare special arangements for training observers and that arrangements for a simple form 02 training should be left to employing organisations（a demonstration of tagging techriques for representatives of organisations employing observers， woule be arranged at the Dublin meeting）．This item was，therefore，deleted from the estimates． ICES Aministrative Functions

Lost of these have already been dealt with elsewhere in this reporto Howevor．arrangements for dealing with tag receptures through ICES，as sugzested in the Group＇s firsi report，were also reviened．The possibility that tag rewards should be paic from the Fund was discussed and it was agreed that such en errangement would raise serious problems because oi the differing levels of romand paid in the verious countries．It was，therefore，agreed that organisations should pay for the rewards for recaptures mado in their own territories，in accordance piti the arrangements set out in the previous report． OGer Ttems
a）Index maps of Danish charts for Greenland waters，English translations of＇taribour Regulations for Greenland＂ara copies of relevant parts of the first draft of the＇Guide Book＇were issued for omerd transmission to research vessel captains．
h; 'hr: wriblem of co-ordinatine rebearch vessel programmes and controiling ti: activities of observers was discussed. Fijth the agreement of kr. Horsted, it was decided that the senior scientist on board the 'Adolf Jensen', as the person who would have the most comprehensive knowledge of day-to-day events, should have overall responsibility for the comordination of the programe. He would, therefore, have responsibility for, (a) co-ordinating and advising on research vessel movements and, (b) controlling the work of observers, with particular reference to the avoidence of excessive expenditure or unvise expenditure on fish bought for tagging.
c) The Group considered that it was essential that a representative from ICES should be present at the meeting of the Joint Working Party in Dublin and recommended that the expenses of such a representative should be borme by the Trunk (see 'contingencies').
d) The future of the Group mes not discussed but it was recommended that the Joint woriming Pariy should consider this question at thair Dublin meetirg.

\section*{APPENDIX}

Research vessels from Canaka, Denmark, England, France and Scotland will take part in 3almon tagging at Greenland in 1972. Soientists will also be present from other countries. Some of these will be working on fishing vessels. Fishermon at Greemland and in other countries are being asked to co-operate in this experimont by returning tags and capture information quickly.

Salmod from many countries on both sikes of the Atlantic spend part of their ives in the sea near Greenlend. Jany thousands of salmon have been tagged when leaving the rivers as young fish and many hundreds of these tags have been returned from the Greenland fisheries. Smaller numbers of salmon have been tacged at Greeniand, and some of these tags have been returned from coastal areas and rivers of Europe and North America.

All the countries which produce and fish for Atlantic salmon have egreed that a large tagging experiment at Greanlani is needed to determine the facts necessary to marage the Atlantic salmon resource for the best interests of all concernea. Very little is knomn about the life of salmon in the sea, and information is needed on distribution, abundance, origins of fish, survival in the sea, and the numbers of sainon that can safely be harvested without causing a decrease i: abundance. Tageing at Greenland, combined with other studies or selmon at sea and in fresh water, and cooperation of fishermen all over the North Atlantic, mill provide the information needed.

Fags are of yellow plastic, are printed with the letter \(X\) followed by a number, and are attached below the large fin on the back. Nost of the selmon bearir: these tops should be taken in 1972 at Greenland and in 1973 in other countries, but some may also be expected in 1973 at Greenlend aind 1974 in other countries. In addition to this special experiment, salmon tagging will also be done in other areas. It is of course just as important to return all these tags es well.

TaEs may be returned to any biologist or fisheries official in the countries where they are taken, or mailed directly to the address on the tag (Internationel Council for the Exploration of the Sea, Cbarlottenlund, Denmarik). Keward paymsits rill be mede by the various countries taling part in the experiment. Every fisherman who returns a tag will also be seat information on the timo and place of taggine of the individual salmon.

\section*{4. List of Working Papers}

Note In this list, reference numbers are only quoted for three papers to be circulated to the International Commission for the Northwest Atlantic Fisheries.
1. A report on the 1971 salmon long-lining cruise off the Faroes, by G. Struthers.
2. Scottish salmon tagging data 1963-1971, by D.A.F.S. Pitlochry.
3. Greenland salmon research programe, 1971 - 'Adolf Jensen', by W. R. Munro. (ICES/ICNAF Salmon Doc. 72/1) (also ICNAF Res.Doc. 72/65)
4. Scottish salmon catch statistics, by W. R. Munro. (ICES/ICNAF Salmon Doc. 72/2)
(also ICNAF Res.Doc. 72/66)
5. Sex ratios of North Esk salmon in relation to age, by W. M. Shearer. (ICES/ICNAF Salmon Doc. 72/3) (also ICNAF Res.Doc. 72/67)
6. The length, weight and age composition of commercial catches taken on the Rivers Tweed, Tay and Spey in 1971, by W. R. Munro and I. J. R. Hynd.
7. The length, weight and age composition of the salmon catch of the North Esk (Scotland) in 1971, by W. M. Shearer.
8. Surmary of salmon parasite investigations \(1970-71\), by J. H. C. Pippy. (ICES/ICNAF Salmon Doc. 72/4) (also ICNAF Res.Doc. 72/68)
9. First estimates of "salmon" versus grilse quantities in Canadian commercial catches, 1969 and 1970, by A. W. May and W. H. Lear. (ICES/ICNAF Salmon Doc. 72/5) (also XCNAF Res.Doc. 72/69)
10. Gutted weight versus total length of Atlantic salmon at West Greenland, by A. W. May and W. H. Lear.
11. Preliminary observations on differences in fishery contributions of hatcheryreared Atlantic salmon (Salmo salar) smolts related to stock selection and release location, by J. A. Ritter and D. B. Lister (ICES/ICNAF Salmon Doc. 72/6) (also ICNAF Res.Doc. 72/70)
12. Exploitation of Miramichi Atlantic salmon based on smolts tagged in 1968 , 1969 and 1970 , by G. E. Turner. (ICES/ICNAF Salmon Doc. 72/7)
(also ICNAF Res.Doc. 72/71)
13. A series of graphs prepared for discussion purposes for the March 1972 Joint ICES/ICNAF Working Party on North Atlantic salmon.
14. German long-line fishery off Norway 1971.
15. Research vessel fishing on salmon off Norway (catch, gear behaviour, age, tagging), by F. Thurow.
16. Data from counting installations on the Rivers Coquet and Axe, by M.A.F.F. London.
17. Salmon and grilse catches, by M.A.F.F. London.
18. Percentage of female salmon in the upstream migrations on the River Axe, Devon, by M.A.F.F. London (ICES/ICNAF Salmon Doc. 72/8) (also ICNAF Res.Doc. 72/72)
19. Salmon tagging data for England and Wales, by A. Swain.
20. Salmon catches for England and Wales, by A. Swain. (ICES/ICNAF Salmon Doc. 72/9) (also ICNAF Res.Doc. 72/73)
21. The derivation by analysis of covariance of indices of total migrant population size from angling catch returns from the River Wye, by A. S. Champion. (ICES/ICNAF Salmon Doc. 72/10) (also ICNAF Res.Doc. 72/74)
22. The Danish salmon fishery in the Norwegian Sea in 1971, by 0. Christensen.
23. Geographical and seasonal distribution of the Danish offshore salmon fishery at West Greenland in 1971, by 0. Christensen. (ICES/ICNAF Salmon Doc. 72/11) (also ICNAF Res.Doc. 72/75)
24. The Faroese offshore fishery for salmon at West Greenland 1971, by A. Reinert. (ICES/ICNAF Salmon Doc. 72/12) (also ICNAF Res. Doc. 72/76)
25. The size composition and growth rate of salmon landed in West Greenland during the autumn, 1970, by J. Mф1ler Jensen. (ICES/ICNAF Salmon Doc. 72/13)
26. Grilse salmon relationship in two Irish rivers, by Eileen Twomey. (ICES/ICNAF Salmon Doc. 72/14) (also ICNAF Res.Doc. 72/78)
27. Catches in 1971 and their seasonal break-down, by Eileen Twomey. (ICES/ICNAF Salmon Doc. 72/15) (also ICNAF Res.Doc. 72/79)
28. Rates of exploitation in Irish waters, by Eileen Twomey. (ICES/ICNAF Salmon Doc. 72/16) (also ICNAF Res.Doc. 72/80)
29. Use of scales to determine mainland origin of Atlantic salmon caught in offshore waters, by K. H. Mosher. (ICES/ICNAF Salmon Doc. 72/17)
(also ICNAF Res.Doc. 72/81)
30. Second report of the Planning Group for the International Tagging Experiment at West Greenland in 1972.
31. A Guide Book for participants in the ICES/ICNAF salmon tagging programme at Greenland, 1972.
32. Canadian tagging data.
33. Preliminary report of salmon tags of Maine (USA) origin recovered from fisheries in the ICNAF Convention area during 1971, by A. L. Meister.
34. Norway, salmon catches.
35. Salmon tagging in the Norwegian Sea 1969-1971, by L. Rosseland.
36. Norwegian salmon tagging data.
37. Distant and local exploitation of a Labrador Atlantic salmon population by commercial fisheries, by R. F. Peet and J. D. Pratt. (ICES/ICNAF Salmon Doc. 72/18) (also ICNAF Res.Doc. 72/82)
38. Norwegian salmon tagging data.
39. Canadian catches of Atlantic salmon 1960-1970 (graph only).
40. Overfishing and depleted stocks of Northwest Miramichi salmon, by P. F. Elson. (ICES/ICNAF Salmon Doc. 72/19) (also ICNAF Res.Doc. 72/83)
41. Sex ratios of salmon and grilse, by P. F. Elson.

FIG. 1 DISTRIBUTION OF WEST GREENLAND SALMON FISHERY, 1971

G 9 NORWEGIAN SEA IN 1971

\\I Maximum extent of the Danish fishery
XX Area within which \(43 \%\) of the fishery took place```

