THE NORTHWEST ATLANTIC FISHERIES
$\frac{\text { ICNAF Res.Doc. } 72 / 44}{\text { (Revised) }}$
Serial No. 2825
(C.c.72)

ANNUAL MFETING - JUNE 1972
German Research Report, 1971
Part I
Wibarea 1 and phst tireenland
by
A. Meyer and W. Lenz Institut fur Seefischerei Palmaille 9, 2 Hanburg 50

A. Status of the Fisheries

Table 1 gives the nominal catch off West and East Greenland, taken by the fleet of the Federal Republic of Germany during the last 10 years from 1962 to 1971. Although the total output increased by 14% the catch in 1971 with $86,500 \mathrm{t}$ is only 52% of the average of the 10 years period and only 35% of the maximum catoh in 1963. The average catch per fishing day however in 1971 wae the $3^{\text {rd }}$ highest since 1962. But this could only be sohieved by very heavy fishing during the very short season of highest concentration of the cod (March to June) and very little fishing during the other months when the fish is leas concentrated. In contrast to this newly developed fishing pattern the fishery off West and East Greenland during the first half of the sixties was more or less regular fishing during the whole year round. A comparison with the high yearly average of the catch per fishing day in 1962 and 1963 achieved by a more or less annual fishing and this in addition with far smaller and less efficient trawlers (see Table 3) shows the considerable decrease in the size of the stocks as well of cod as especially of redfish.
I. Subarea 1 (West Greenland)

The fishing activity in Subarea 1 decreased further by 10%. However due to only seasonal fishing lrom January to the middle of June and due to very suocessful fishery in April on spawning cod in Division tC and on postspawners in May and June in Divisions 1 E and mostly 1 F again $38,000 \mathrm{t}$ of cod were caught. Thus with 24.6 t the higheat yearly average per fishing day since 1962 was achieved. This catch per fishing day is of course mo more a measure for stock abundance and of no use for assessment purposes. It is only an economic figure and shows the great availability of the concentrated cod during the spawning and postspawning season.

Again as in 1969 and 1970, ice - also in those parts north of Cape Desolation which up to 1968 were more or less free of ice during
the whole year - hanpered the fishery to large extent. Otherwise probably more than 30 t per fishing day would have been achieved during the time of seasonal fishing.

Only 3,300 t of redfish were caught in 1971. This is by far the lowest catch and only 5.8% of the maximum of the last 10 years period. Redfish is now only a by-catch in fishing for cod or is oaught on some very few trips of wet-fish trawlers in the Cape Thorvaldsen area.

II. East Greenl and

As predicted in last years report the cod catches in 1971 exceeded those of the redfish for the first time since the beginning of the German fishery of East Greenland in 1955. The cod catches doubled and reached with $28,000 \mathrm{t}$ nearly the maximum catch of cod in 1964. The oatch per day increased by 76% and was by far the highest since 1955. This increase in output and catch per day was due to the good state of the East Greenland spawning stock and also due to increased fishing activity of nearly the whole fleet of German factory trawlers during the spawning season.

The redfish catches, mostıy taken by wet-fish trawlers, decreased further to only $14,000 \mathrm{t}$, which is the lowest figure up till now and only 37% of the 1964 maximum.

III. Forecast for 1972

1. Subarea 1

Due to the reduced size of the stock of cod of West Greenlandic origin the catches in 1972 in Subarea 1 will as in the preceding year depend mainly on the cod of East Greenlandic origin when this cod in May and June is returning as shoals of postspawners from East Greenland. Although the stock of East Greenlandic spawners is in a rather good state the output of the fishery will be very much conditioned by the ice situation. If this fishery is again as in the last 3 years effected by ice the total output in Subarea 1 will be as small as in 1970 and 1971 or probebly less. An unsolved question is whether the new quota regulation on herring in subarea 5 and the announced closure of the Tcelandic fishing grounds will compel the factory trawlers to reopen the fishery in Subarea 1 in the second half of the year, although there will be no chance to make this flahery paying.

2. East Greenland

The big spawning shoals of the $1961,1962,1963$, and 1964 yearclasses will again be very attractive eapecially for the fleet of factory trawlers. The total output will depend very much on the ice situation. The fishery will be very paying when N.E.wind prevail during the spawning season and the big ice belt is pressed against the shore and makes the rough banks free for fishing. 48 in 1971 again the cod catches will exceed those of redfish.

B. Special Research Studies

I. Environmental Studies

1. Hydrography (by W.Lenz)

In late fall 1971 (4.-11. December) hydrographic measurements have been done by the German R/V "Walther Herwig" off the west coast of Greenland. Five sections (Fig. 2 and 3) have been worked from Little Hallbut Bank to Cape Farewell; the positions are given in Fig. 1.
agares)

The winter 1972 will bring probebly 'severe ice situations. This was indicated by the far progression of ice in late 1971: off South East Greenland ice already appear in late November, and in the middle of December ice was seen up to Fyllas Bank. In the first days of December ice bergs were seen up to Danas Bank and ice covered the fishing areas of Nanortalik, Kitsigsut, and Cape Farewell. Off Cape Parewell a tremendous conglomeration of ice bergs was found: 15 miles south of the Cape (Sta.211) 130 targets were visible in the radar within the 6-miles-range!

Although only a few comparisons with December 1970 are possible, it might generally be said that in December 1971 the hydrographic situation off West Greenland was found to be at least as bad as in the previous year, which means that the trend to a cooler hydro-climate continues.

Surface waters are below $0^{\circ} \mathrm{C}$, sometimes delow $-1^{\circ} \mathrm{C}$ even 10 miles off the continental slope. The depth of the 0°-isotherm (corresponding to a salinity of 32.8%) increases northwards but usually not exceeding 50 m . On top of the banks the temperature lies between 1° and $2^{\circ} \mathrm{C}$. In the Irminger component of the West Greenland Current we found the following maximum values: $5.36^{\circ} \mathrm{C}$ at 550 m depth off Fyllas Bank and $34.964 \mathrm{~s} \%$ at 600 m depth off Cape Farewell.

To give an idea of how much cooler it became since the warmer period we may compare our measurements from early December 1971 with those from early December 1963 (first cruise of R / V "Walther Herwig"), a year which is presumably reprentative for a medium warm year. The mean values shown below are calculated from Noname, Fyllas, and Little Halibut Bank:

	$\frac{1963}{}$	$\frac{1971}{}$	Difference
$T_{\min }$ at the surface $\left({ }^{\circ} \mathrm{C}\right)$	0.1	-0.8	-0.9
$\mathrm{~S}_{\min }$ at the surface $\left({ }^{\circ} / 00\right)$	33.01	32.44	-0.57
$\mathrm{~T}_{\max }$ in the Irminger component $\left({ }^{\circ} \mathrm{C}\right)$	5.6	5.3	-0.3
$\mathrm{~S}_{\max }$ in the Irminger component $(\% / 00)$	34.99	34.94	-0.05

 the watur: at the aurface but also in kreater depths, which is stated by the lower salinities.

II. Biological Studies

In 1971 32,198 length measurements and 8,406 age determinations were made. They showed that in the northern Division $1 C$ and $1 D$ the 1965 and 1966 year-classes are dominating. Now for the $3^{\text {rd }}$ time in the history of the German fishery off West Greenland big concentrations of spawning cod were found on the western slopes of Banana Bank. Most of the fishery took place as in the years 1961 and 1966 in very great depths of 500 to more then 1000 m. The 1965 year-class (av.length 70.6 cm) dominated with 54%, followed by the 1961 (14%), 1966 (13%), and 1960 (7%). The year-classes 1962,1963 , and 1964 were nearly missing, showing again how poor these year-classes are in the cod stock of West Greenland origin. All cod older than 6 years were mature. Of the 1965 year-class 94% and of the 1960 year-class 51% had reached maturity.

In the fishery on the Banana Bank in the second part of June the 1963 year-class, missing in the catches of spawners, was dominating with 2%, showing that in the meantime these East Greenlanders, after having spawned off Eatit Greentand had reached Banana Bank on their northward fceding migratiun. The 1906 and 196^{\prime}, cod made up 19 and 20% respectivel. . The average lontith of the 196 , year-ilass was $b \mathrm{~cm}$ less than in spring in the spawning fishery, showing that only the quicker grown fish had reached maturity. Also the 5 years old cod were smaller than in the spawning fishery.

In the research catches of R / V "Wal ther Herwig" in December in Division 1C the 1966 and 1965 /dominated with 27% and 21% respectively and in Division 1D for the first tine the new, possible promising yearmclass 1968 (av.iength 39.5 cm) was strongest with 33%.

Whilst the stock of cod of West Greenland origin is at present of rather smail size due to high fishing effort in the sixties and due to poorness of year-classes born after 1961 - also the 1965 and 1966 seem to be only of average size . the East Greenland stock (living off E. and S.W.Greenland) is in a rather good condition due to less fishing effort, protection by ice and a continous succession of average to very rich year-classes (1960, 1961, 1962, 1963, 1964). This explains the shift of the German fishery since 1968 (see German Research Report for 1970) from the northern Division 1B to 1D to the southern Division 1E and 1F
and the increased importance of the East Greenlandic fishing grounds. In 1970 and 197175% and 62% respectively of the German cod catches in Subarea 1 were taken in Division $1 E$ and $1 F$ and this inspite of the increasing obstruction by ice just in this area.

In 1971 off S.W.Greenland the rich 1963 year-class dominated with 50% ($41-65 \%$) followed by the 1964 year-clase with 28% ($9-46 \%$). The 1962 and 1961 year-classes in the meantime have lost much of their commercial importance (8% and 5% respectively). The 1965 and 1966 cod are nearly missing off S.W.Greenland they are pure W.Greenland year-classes. However research catches in the Thorvaldsen area in December 1971 revealed that the 1968 year-class is also well presented in the south (average length 3.2 om less than on the northern banks). This means that in the last warmer year 1968, before the increase in ice flow startet, as well off East Greenland as off West Greenland a possible more promising year-class was born. The gap of 3 years with poor recruitment (1965, 1966, 1967) off East Greenland will in the coming years negatively effect the fishery off S.W. and E.Greenland and will also reduce the emigration to the spawning places in Iceland waters.

In the catches of migrating and spawning cod off East Greenland during the first half of the year the rich 1963 year-class dominated with 47% off S.E.Greerland and with 41% in the more northern Angnagsaalik Dohrn Bank area. The 1964, 1962, and 1961 year-classes were off S.E.Greenland of nearly equal atrength (14-17\%). However in the northern part of East Greenland the older year-classes 1962 and 1961 reached 24 and 21% respectively, whilat the share of the 1964 year-class, which in 1971 and 1972 recruits to the spawning stock was still small (7%).

Pigure 1: Cruige track of the German R / V "Walther lierwig", 24.11. - 11.12 .1971

Figure 2: Temperature and salinity sections acrosa Little Halibut, Danas, and Noname Bank for December 1971

Figure 3: Temperature and salinity sections off Cape Desolation and Cape Farewell for December 1971

Part IT

GrRMAN (FRG) Research femert, 1971
Subarens ? - 3 (excludnnt herrime)
by
J. Messtorff and W. Lerz

Subarea?

The upper part of table 4 fives the nominal catches taken by trawlers of the Federal Hepublic of Germany off Labrador from 1958 to 1971. During this time three different periods of fishoned activity can be distinguished.

The first period from 1958 - 1960 was characterised by a successful redfish fishery at the slope of the shelf mainly in Division 2 J . On average 83 of of the total catch consisted of redfish.

During the following years 1961-1964 fishery activity of Cerman trawlers was relatively low in subarea ado to the preference given to the extremely good fishing conditions in Greenlandic waters. Apart from year to year variations the total catch taken from Cubarea 2 during this second period consisted of cod (47%) and redfish (46%) at almost equal quantities.

The third period from 1965 onwards is marked by a considerable increase in fishing effort and catches in connection with a shift to a nure off-sintore cod fishery. Up to the present the average proportion of cod amounted to 95% of the total German catches. The peak of this fishing activity was reached in 1969 with a maximum catch of over 70000 t of cod. In the following year the Geraian cod catch decreased considerably by 32% and continued by decline even more prorounced in 1971 by 60% against 1970.

The sharp decline of the Subares 2 catch of cod during the last two years was due to a considerable reduction of fishing effort (days fished) by 25% and 53% as compared to 1969 and 1970 respectively. This effort reduction was primerily effected by increasing severe ice conditions off Labrador in spring which forced the fleet to leave the fishing grounds much earlier than in former years. Fiven a shift of effort to the adjacent Division 3 K where more or less the same cod population was fished could by far not compensate the losses in Subfrea 2 and even there fishing operations were handicapped by extended drift ice in spring 1971. As no noteworthy fishing activity of Cerman trawlers took place in Subarea 3 Divisions larther south (except some negligible records from Div. 3 M) the combined nominal catches of Subareas $2+3$ are given at the bottom of table 4 for comparison. In 1971 the combined catches of cod amounted to only 30000 t or 52% of the 1970 catch and only 42% of the record catch in 1969. By the way this proved to be exactly the guessed maximum yield already forecasted in the last years' report (Redbook 1971, Part II, p.75).

Fishing activity was recorded in Subarea 2 only from beginning of Jenuary to 18. February, when ice stopped the operations. It started off Cape Nugford (Division $2 \mathrm{G} / \mathrm{II}$) but ice forced the fleet to move bouthward to Division 2 J already in mid-January, where 95% of the ubarea 2 , atah was taken during the remaining; four weeks of the very short season. Compared to the averace of the precedine three years the catch of cod per fisting day had decreasea by 23%. Fishing operations were exclusively carried out by factory trewlers of an averace size of 1863 GRT (916-2684).

As in the three preceding years the redfish by-catch remained unimportant and amounted to only 2% of the total catch in Subares 2.

Forecast for 1972

Fishing operations of German trawlers in Suharea 2 and Division 3 K were again restricted by very severe ice conditions to the first quarter of 1972. After: preliminary estimates their total catch of cod is not expected to exceed that of 1971, but will probably be even smaller (abt. 25 000 t).

B. Special Research Studies

I. Environmental Studies (by W. Lenz)

Hydrographic observations were carried out by R/V "Walther Herwig" between 25. and 30. November 1971 consisting of three sections across the shelf off southern (Division 2 J), middle (Div. 2 H) and northern Labrador (Div. 3 G) as shown in figure 5. For the position of these sections see the cruise track in Fig. 1 (German Research Feport, Part $I_{;}$, Subarea 1).

Comparisons with earlier investigations by k / V "Walther Herwig" in October 1967 and 1969 (Redbook 1968, Part II, pp. 56-58, and Redbook 1970, Part III, p. 40) show that in general the water temperatures observed in 1971 were slightly lower by some tenths of a degree. Although the measurements in 1971 were taken tour weeks later than in the previous years, the advanced winter cooling carnot be the only cause for the lower tenperatures, because they were found down to 1000 meters ($T_{\max }=4.3^{\circ} \mathrm{C}$ in the West Greenland component of the Labrador Current). Along with this we found also lower salinities: at the surface less than $32.6 / 00$ and in deep water off the slope never exceeding 35.0%. Therefore we suppose the lower values to be a consequence of the cold years 1969-70.

The cold water layer with halleraturea below $0^{\circ} \mathrm{C}$ was found to be 100 - 150 m thick ofl Cape Chidley, about 100 m off middle Labrador and to vanish somewhere at about 'it N latitude. There was obviously no connection to the cold wetter body with temperatures below $0^{\circ} \mathrm{C}$ observed on Hamilton Bank, which is supposed to be a residue of the previous winter cooling. This is indicated by considerably higher salinities ($>33 \%$) than those observed in the cold water of polar origin ($<32.2 \%$) in the northern sections. Attention is alsc drawn on some peculiarities in the structure of the isothermes as shown in fig. 5: Of Cape Chidley there are symptoms of a vertical eddy indicating the core of a strong current. At the outer part of Hamilton Bank a couple of complicated inversions were found in a matter very similar to 1969 (Redbook 1970, Part III, p. 40).

II. Hiological Studies

R/V "Walther Herwig" carried uut a one week groundfish survey off Labrador including Division 3 K in late November 1971. Of 26 hauls in varym ing depths 8 were obtained in Division 2 J and 6 each in Diviaions $3 \mathrm{~K}, 2 \mathrm{H}$ and 2 G . The totel catch amounted to 17522 kg fiah ($947 \mathrm{~kg} /$ trawling hour) of which 18 g consisted of $\operatorname{cod}(3087 \mathrm{~kg}=2468 \mathrm{figh}$, mean weight 1.25 kg$)$. Length measurements were taken of all, otoliths of 1414 cod .

Preliminary results indicate that over 80% uf cod were $5-8$ yasra old (year classes 1963-66). Mean lengths of cod were below 50 cm in all four Divisions ($3 \mathrm{~K}-47.8$; $2 \mathrm{~J}=47.5$; $2 \mathrm{H}=43.8 ; 2 \mathrm{G}-49.4$). Maximbm length recorded was 80 cm and only 1% of cod measured between $70-80 \mathrm{~cm}$.

Other priority species sampled for length frequency distribution were Redfish (16% of total catch weight), Greenland halibut (20%) and Roundnosed grenadier (37%). The rest (9%) consisted of further 37 species some of which were additionally sampled for length distribution.

Subarea 3
A. Status of the Fisheries

The nominal oatches taken by trawlers of the Federal Republic of Germany from 1962-71 are given in the midule of table 4. The total catch given for 1971 was not exclusively taken in Division 3 K as stated in the trixt table but includes some catches from Flemish Cap (3 M) amounting to about 15%. These were taken during the first half of March when fishing operations in Division 3 K were stopped by ice. As in the year before fishing pperations in Divisions 3 K and 2 d overlapped and were more or lesa directed towards the same cod population. About 78% of the total catch of Division 3 K was taken during a very short season of only 2-3 weeks after midafebruary. For additional information see Section A. for Subarea 2.

3. Epecial Research Studies

See section B., II. for Subareá 2.

Subarea 4

A. Status uf the Fisheries

Except for herring (see sprcial res. Rep.), there was no commercial fishery.

B. Special Research Studies

Selectivity experiments on cud were carried out by k / V "Walther Herwig" in August/September 1971 in Division 4 Vn (Dr. H.-J. Bohl).

Subarea 5

A. Status of the Fisheretes

Fxcept for herring (see special Res. Rep.), there was no commercial fishery.
B. Special Iesearch Studies

I. Environmental studies

Eydrographic observations were carried out by R / V "Walther Herwig" between 31 October and 12 November $1 \geqslant 71$ in connection with the joint ICNAF-Survey of larval herring in the Gulf of Maine - Georges Bank area. At each ichthyoplankton station BT-measurements plus surface and bottom temperatures and additionally at selected stations forming two N-S sections across the eastern and western part of Georges Bank on $67^{\circ} \mathrm{W}$ and $69^{\circ} \mathrm{W}$ respectively complete hydrographic casts were obtained.

The temperature and salinity distribution on Georges Bank as shown in figures 5 and 6 (eastern section) and figure 7 (western section) was found to be almost the same s observed in November 1969 (Redbook 1970, Part III, pp. 47-48) except that the temperatures on top of the bank were considerably higher in November 1y71. The distribution of surface and bottom temperatures in the surveyed area (figures 8 and 9) show that the observed maximum temperatures of $13-15^{\circ} \mathrm{C}$ were found except west of $70^{\circ} \mathrm{W}$ only over Georges Bank, whereby they were restricted to the top of the bank at the bottom and extended somewhatbeyond the slopes at the surface.

II. Biological Studies

R/V "Walther Herwig" took part in the joint ICNAF-Survey of larval herring in the Gulf of Maine - Georges Bank area from 31 October until 12 November 1971. At 118 stations oblicue plankton tows using paired 60 cm bongo nets were made from a maximum depth of 200 m at a speed of $3 . b$ knots. At 101 stations additional surface tows with a neuston net were obtained at the same time.

4

	COD	REDFISCH	OTHER FISH	ALL SPRCIES
Div. 2 G	2 (-)	- (-))	2
Div. 2 H	4 (42)	(1)	2 (2)	6 (45)
Div. 2 J	57 (592)	7 (82)	35 (221)	92 (895)
Total	63 (634)	7 (83)	37 (223)	107 (940)
Div. 3 K	27 (-)	5 (35)	7 (15)	39 (50)

roxt III

Subarea 4, 5 and 6 (Herring only)
by K. Schubert

A. Status of the Fisheries

Few trawlers (3) from the season 1970 were fishing in January in Gubarea 4, y and 6. Fifteen stcm lxueaer trawlers operated with pelafic net:; in Subarea 's fron the middle of June to December 1971. The total catch in Division 4 Vn in January amounted to 68 t , in Division 5 Y 226 t , in Division 5 Zw 291 t and in Division 6 A 11 t . From July to December the fifteen trawlers yielded 52,680 t in Subarea 5. The main catch with $55,243 t$ came from Division 5 Ze and only 963 t (December) from 5 Y and 74 t (December) from 5 Zw .
In Subarea 5 the catch decreased from 88,561 to $56,860 \mathrm{t}$. This decreasing was due to diminished effort which decreased from 2,056 to 1,250 fishing days, whereas the catch per day slightly increased from $42.5 t$ to 45.5 t.

Monthly catch, total catch, effort, catch per unit effort and discarded fish are given in Table 6.

Fig. ${ }^{10}$ shows the catch per day in baskets (50 kg) on an average of about 5 days of 14 German freezer trawlers in 33 trips in 5 Ze from the end of June 1971 to the first decade of November. A large increase of the catches is to observe with the beginning of the spawning time.

B. Special Research Studies

On board of trawlers in 5 \&e 13,466 inerring were measured (Table 7). The averafe lergth was $26.51 \mathrm{~cm}(n=366)$ in August, $29.93 \mathrm{~cm}(\mathrm{n}-11,347)$ in September and 28.53 cm ($n=6,753$) in October.

From these measurements 12 samples were examined (August $=4$, Septemm ber $=5$, October $=3$). The average length of these measurements are in good agreement with the measurements on board of the trawlers. The average length in the different months was $26.51 \mathrm{~cm}, 29.40 \mathrm{~cm}$ and 28.11 cm (Table 8.).
The length measurements of the spawning stock (Fig. Ill) show that in the first time of the spawning season larger fish were in the area (curve A), whereas in the first decade of October the proportion of amaller herring increased considerably, and the number of larger herring decreased (curve B). The total curve ($A+B$) shows that the number of smaller herring were predominant in the spawning time.
Maturity stages $5(418 \%$) and $4(341 \%$) were dominant in August (Table 3). Some importance had also maturity stage 2 (161%). In September only spawning herring (stage 6) were in the catches (1000%) whereas in October the bulk of the catches was formed also from maturity atage 6 (997%) with some spent herrine (stage 7).

The age composition shows the predominance of the 3-year old herring (year-class 1968) with 618%. Some importance had with 157% the 4 -year old herring (year-class 1967). In September older herring were in the catches. 4-year (1967), 3-year (1968) and 5-year old specimens (1966) formed with 345%, 251% and 220% the bulk. In September the age composition changed to more younger herring. 3-year old (year-class 1968) and 4-year old herring (year-class 196%) were dominant with 555% and 318% (Table 8).

The average number of vertebrae varied between 56.33 and 56.42 , the keeled scales between 13.95 and 13.98 and the gillrakers between 48.93 and 49.44 (Table 8).
In Table 8 are further given the mean lencth and mean l_{1} for age (cm).

Environmental Studies

During the spawninc; time soal hydrographical measurements were made by a member of the staff of our institute on board of our fishery protection vessel "Poseidon".

The main spawning place was as in the observation yeaxs 1969 and 1970 situated on the northern edge of the Georges Bank in depth from 40 to 80 m . The spawning area extended from $41^{\circ} 30^{\prime} \mathrm{N}-42^{\circ} 20^{\prime} \mathrm{N}$ and $66^{\circ} \mathrm{W}-68^{\circ} \mathrm{W}$. from east to west the area was about 80 sm and from north to south about 30 sm lone.
The first spawning was observed on the $28^{\text {th }}$ of Alecust. However, the main spawning started about $8 \mathbf{m} 10$ days later. The spawning happened first in the western part of the area $\left(67^{\circ}-68^{\circ} \mathrm{W}\right)$, where larger herring were caught and shifted with the beginning of October more to the east $\left(66^{\circ} 30^{\prime}-67^{\circ} \mathrm{W}\right.$), were younger fish were met.
The spawning places are situated in a narrow band from $10^{\circ}-13^{\circ} \mathrm{C}$ in the bottom along the northern edge of the Bank. It seems that the herring was coming in from the northern and northwestern area with cooler bottom water temperatures.
Table 6.

Table: 7 Lenisth composition (\%) 1971 after measurements

Area 5 Ze

Month	August	September	October
cm			
20	11	-	-
21	16	-	-
22	27	-	-
23	68	-	-
24	140	+	+
25	233	11	18
26	162	74	174
27	79	138	306
28	82	146	185
29	79	169	120
30	52	161	87
31	19	111	48
32	19	81	27
33	8	60	14
34	5	36	11
35	-	12	7
36	-	1	3
Total \%	1000	1000	1000
No.of Samples	4	28	12
No.measured	366	11347	6753
Mean length (cin)	26.51	29.93	28.53
Mean weight (kg)	0.378	0.221	0.200

Table 8 - continued.

[^0]

Fig. 1 . Length measurements of spawning herring in Subdivision 5 Ze 1971 ($\%$)
=-- Trawler A (15.-28.9.71)
-.-.-Trawler B (3.-9.10.71)
$A+B$

C 1

[^0]: Fig.10. Herring catch/day (baskets) on an average of about 5 days of 14 German freezer trawlers in 33 trips in 5 Ze (total 37 trips), 1971

