$\frac{\text { Ser1al No. } 2794}{\text { (B.g. 14) }}$

ICNAF Res.Doc. $72 / 67$
also ICES/ICNaí SaImon
Doc. 72/3)

ANNUAL MEETING - JUNE 197:
 Sex Ratios of North Esk Salmon in relation to Age

by

M.N. Shearer
D.A.F.S., Pitlochry

Since 1962 , the net and coble catches on the North Esk have been sampled on
two days per week throukhout the commercial fishing season and, two days per week throughout the commercial fishing season and, as part of this programme, each Fish examined mas sexed, on external appearance. In addition, in each year since 1961, a proportion of the smolts migrating downstream has been examination. This raterial has been used in all, were killed and sexed by internel the sex ratio of North Esk salmon at various stages in the provide information on
.
evidence of their sex, this was detples could not be opened to provide internal the head; a total of 795 this was determined on the general ahape and appearancs of shown that males had longer heads than females of the samp length and less rouniad opercula. The presence or absence of a small hook on the lower jan was ignored, sexual characteristics.

While this method of sex deternination may seem subjective, it has been found to give relatively good results in practice. For orample, using external criteria a total of 233 female salnom and erilse were selected from the commarcial catch during 1964 and 1965 for fecundity measurements and only one, a small grilse, was

Table 1 gives the sex ratio of grilse in each year and Table 2 gives the comlatter for each sea-age qge groups of salmon, together with the breakdom of the Table 3 ese 1970 and the sex ratio of the maiden aurvivors in esampled in each year from 1961 to each smolt migration, together with the combined values for all maiden salmon from (2-4ST) and all madden survivors, including grilse ($1-4 \mathrm{ST}$). The maiden salmon table are based on samples of the and sexed on external appearance commercial catch and amalier numbers of fish trapped號
but no siata was also examined for a relationship between sex ratio and smolt age different smolt aje.

Grilse - Sex Notsk, 1962-71

Year	No. in Sample	Hale: Female
	346	
1962	918	$1.00: 1.02$
1963	845	$1.00: 0.79$
$19 € 4$	896	$1.00: 0.55$
1965	972	$1.00: 0.20$
1966	1043	$1.00: 0.69$
1967	688	$1.00: 0.71$
1968	1337	$1.00: 0.33$
1969	911	$1.00: 0.74$
1970	787	$1.00: 0.63$

Table 2

ar	25W		
		M^{-}	: F
62	200	. 00	0.98
1963	1403	. 00	: 1.20
1964	1173	. 00	0.89
1965	1059	. 0	0.98
1966	1520	1.00	1.18
1967	1993	1.00	1.57
1968	1316	1.00	40
1969	605	1.00	37
1970	1024	1.00	1.84
19	1630	1.00	1.70

Nat and Coble Catches, N, 5sk, 1962-71 Sajmon - Sex Ratios

359	$\frac{\text { Sea Age }}{-\frac{45 F}{}}$
No. ${ }^{1}$: F	No. M-: F
$281.00: 0.12$	
$521.00: 3.33$	$22.00: 0.00$
102 1.00 : 0.50	
$1431.00: 0.91$	
200 1.00: 1.11	$11.00: 0.00$
$3831.00: 1.16$	$91.00: 0.13$
250 1.00: 1.17	$151.00=0.50$
$2461.00: 1.56$	$11.00: 0.00$
$1231.00: 1.20$	$51.00=1.33$
$1211.00: 1.05$	$55.00: 0.00$

Prev. Spawners

Overall
$2371.00: 0.85$ $12951.00: 1.25$
$1.00: 0.86$
$1.00: 1.25$ 1243 1.00: $=1.00$ 764 1.00: 1.00 $7641.00: 1.21$ $24611.00=1.50$
$16071.00: 1.36$ $16071.00: 1.56$
$8591.00: 1.36$ $8591.00: 1.36$
$11561.00: 1.43$ $11561.00: 1.75$
$17651.00: 1.63$

$$
17657.00: 1.75
$$

Year	Smolte			15\%			2STH Seat Age											2-4SW			1-4SW			
Exgration				Ho. $-\frac{\text { M }}{}$								No.		No										\underline{L}
1961	113	1.00	$: 1.76$	3461.00	: 1	1.02	1421	1.00	11	1.22		1121.00	: 0.53											
1962	99 +42	1.00	:1.83	10181.00	: 0	. 80	1406	1.00		1.16		1927.00	$: 0.94$	1	1.00	0	0.00	1599	1.00	$: 1.13$	2617	1.00:		0.73
1963	142	1.00	: 1.78	10801.00		. 56	1316	1.00		0.94		2201.00	: 1.12	9	1.00	: 0	0.13	1545		: 0.99	2625	1.00	:	0.79
1964	837 1220	1.00	$: 1.53$	12001.00		. 28	1706	1.00		1.22		4201.00	: 1.09	15	1.00	: 0	0.50	2141	1.00	$: 1.17$	3341	1.00	:	0.77 0.74
1965	1220	1.00	$: 1.95$	10961.00		. 72	2196	1.00		1.56		2711.00	: 1.15	2	1.00	: 1	1.00	2469	1.00	: 1.52	3365	1.00		1.20
1966	76	1.00	: 1.71	11551.00		. 41	1480	1.00		1.33		2511.00	$: 1.56$	7	1.00	1	1.33	1738	1.00	$: 1.42$	2893	1.00	:	1.20 0.86
1967	89	1.00	: 1.78	7221.00		. 67	658	1.00	: 1	. 37		1231.00	1.20	5	5.00		0.00	786	1.00	: 1.32	1508			0.96
1968	67	1.00	$: 1.58$	15271.00	$: 0$.	. 41	10261	1.00	11	. 83		1211.00	1.05					1147	1.00	: $1.73{ }^{\text {A }}$	2674			0.96
1969	54	1.00	$: 2,00$	9111.00	$: 0$.	. 74	1630	1.00	: 1	. 70								1630	$1 . \infty$	$: 1.70^{\text {a }}$	2541		:	$1.25{ }^{\text {a }}$
1970	247	1.00	: 1.84	7871.00	$=0$.	. 63												J6.	. 0	- 1.7				$0.63^{\text {a }}$

