$\frac{\text { Serial No. } 2804}{(B . g .14)}$

ICNAF Res. Doc. $72 / 77$
(also ICES/ICNAF, Salmon
Doc. 72/13)

ANNUAL MEETING - JUNE 1972

the SIZE COMPOSItion and growit rate of salmon landed in WEST GREENLAND DURING THE AUTUMNF, 1970.

> By J. Moller Jensen
(Gronlands Fiskeriundersogelser)

The material used for this paper is based on informetion from the Royal Greenland Trade Department and Godthab Fiskeindustri itã.

All measurements apply to round, fresh fish, and the conversion factor for converting gutted fish with head on is 1.11. The lengths are fork lengths.

The material consists of 317651 salmon with a total weight of 970031 kg .
The area off West Greenland is here divided in aix subdivisions.

Table 1.

Size compoeition.

The original material was given in numbers of aelmon and corresponding Teights in three different sise-groups (1.1-3.3, 3.3-5.6 and more then 5.6 kg .) for each landing. The whole material 1 s presented in Table 2 for each subdivision.

Table 2. Wumber, weight and average we1ght of asamon in the alx subdiviaions.

The best catchas (447 metric tons) were landed in subdipision II, which is the area around Frederikshâb and Arsuk (1E), but the biggest aelmon were caught in subdivision VI (the northernmest subdivision)

Fige. 1 and 2 show the changes of the relation between the three dizegroups during the autumn in the different subdivisions, and Fig. 3 ghow the same for all subdivisions I-VI.

There were relatively many bigger salmon (size-group 3) in the catches in the two northern subdivisions (V and VI), especielly in the beginning and In the ond of the fiahing season, and the same tendency but weaker is found In the other subdivisions (I-IV).

Selmon of size-group 3 belong to sea-age-group. $2+$ and older, and it looks like . $2+$ and older taimon have a pattern of migration different from that of $.1+$ aalmon.

Growth.

It is obvious that salmon froll aize-groups 1 and 3 belong to sea-agegroups . $1+$ and . $2+$ (and older) respectively. In size-group. 2 ($3.3-5.6 \mathrm{~kg}$) both . $1+$ and $.2 \dot{\text { in a almon are represented. }}$

By une of a lengthmeight key, estimated of meterial collected during the aeason 1970 on the fishing industries (461 salmon), it is possible to aet up the lower and upper limits of lengthe of the alze-groups.

Equation for length-weight:

$$
\begin{aligned}
& w=q \times I^{b} \quad I=\text { fork length } \\
& \begin{aligned}
1 & =\text { fork length } \\
w & =\text { weight, } \mathrm{kg} . \\
& =0.000024729
\end{aligned} \\
& \begin{array}{l}
q=0.0000 \\
b=2.306
\end{array}
\end{aligned}
$$

Table 3. Size-groups (kg.) and the corresponding Iimita of fork lengthe (c:m)

$\begin{aligned} & \text { Size-group } \\ & \mathbf{E}_{R_{e}} \end{aligned}$	$1.1^{1}-3.3$	$3.3^{2}-5.6$	$5.6^{3} \text { and more }$
Lower limit, cm Upper n	$\begin{array}{r} 46 \\ 67 \\ \hline \end{array}$	$\begin{aligned} & 68 \\ & 80 \end{aligned}$	81

From Table 1 and 2 in ICES/ICMAF Salmon Doc. $71 / 4$, it is possible to split size-group 2 into age-length diatribution.

The material in the paper mentioned above was eampled atratified for age deteratination and at random for length distribution

Table 4 (pago 3) show the numbers of . 1+ sqimon and the corresponding average weighte per week in the catches.

On the assumption that the . $1+$ ealmon is normally distributed in the whole West Greenland area, and that we have the ame stock from the beginning to the ond of the fishing season, it is possible to estimate the growth by use of a linear regression analysia of the material in Table 4. It has been done on material from weeks Nos, $32-44$, which period cover exactly 3 months (Aluguat - October). 93% of . $1+$ salmon were caught in that period.

- 3 -

Table 4. Catches of . 1+ salmon at West Greenlana, 1970

Week No.	Number	Weight, kg .	Mean weight, kg.
28	68	213.3	3.14
29	4	11.8	2.95
30	53	150.5	2.84
31	241	775.6	3.22
32	1030	2971.1	2.88
33	21022	58618.1	2.79
34	23715	64 676.1	2.73
35	29778	79355.2	2.66
36	38841	111551.3	2.87
37	36227	105617.8	2.92
38	28.321	83524.0	2.95
39	31976	96322.8	3.01
40	26309	82.814 .4	3.15
41	24150	74320.6	3.08
42	18099	55961.8	3.09
43	15965	49413.2	3.10
- 44	6134	19901.0	3.24
45	978	3284.2	3.36
46	589	-. 791.6	3.38
47	176	596.8	3.39
48	31	128.1	4.13
49	8	35:9	4.49
50	23	91,3	3.97
303738		892326.2	2.94

Fig. 4 ahows the growth of fit salmon eatimsted from the catches during Augurt-0ctober, in which period the average weight increased from 2.7 to 3.2 kg . (18\%), and the corresponding length increased from 62.4 to 66.3 om

21g, 1. The clangea of the relation between size-groups during the autumn 1970, for subdiviaions I-III.
Size-group 1: 1.1 - 3.3 kg .
$\begin{array}{lll}\mathrm{H} & 21 \\ \mathrm{~m} & 3: & 3.3= \\ & & 5.6 \mathrm{~kg} . \\ & 5.6 \mathrm{~kg} .\end{array}$

