ANNUAL MEETING - JUNE 1973
Memorandum on the mixed fishery problem in Subarea 5 and Statistical Area $6{ }^{1}$

> by
> D.J. Garrod
> Fisheries Laboratory, Lowestoft, England

The general concepts of the Schaeffer model provide a convenient framework for discussion of the mixed fishery problem. It is accepted that for individual resources progreasive increase in fishing mortality will generate a dome-ahaped yield curve with a maximam in the region of one half to one third the virgin stook size. In a mixed fishery exploited by a single, but heterogeneous, fleet, the field curve of individual resources may remain dome-shaped, but their addition towaris an aggregate yield curve will depend on the relative catchability of the separate resources.

The offective catchability of a resource (i.e. the coefficient q when $F=q f$.) is, at its aimplest, the product of its biologioal availability and the degree to which a fleet ooncentrates on that epecies. In a mixed fighery this combination will differ between species: some illustrative variants are shown in Figure 1.

EXAMPIE A. Here the biological availability of resources x and y are the same and the fleet does not concentrate more on one then the other (this is equivalent to fishing at random with respect to catch composition). Then $q(x)=q(y)$. Both resources will be exploited at an equal rate giving their individual MSY at the same level of fishing effort. This gituation is equivalent to a fishery which is mixed but where individual resources are captured in isolation, (the fibheries are separate in time or space), and total effort divides roughly in proportion to the size of the separate resources.
EXAMPLE B. Biological availability is different for resources XYZ, perhaps because of differential availability to the gear, or they occupy different

[^0]geographical areas with the mame oentre. But thatr distribution is suoh that the fleet cannot ooncentrate more on one then another. Then, in prinoiple resources X and Y oould be fished to a low level (extinction of the fishery?) whilst resource Z is still fully exploited. The aggregate yield curve of the complex would be skewed.

EXAMPLE C. In reality both the bioligioal availability and the ability of fleets to concentrate will vary. In C(1) a relatively amall stock X attracts fishing and the exploitation develops to the level ahow, and includes a 'by-catch' fishery on a leas valuable resource Y. At the point of exploitation indicated the data available would support the yield projection ahown by the dotted curve. However, if fishing contimues to inorease as in $C(i i)$ then the relative importance of Y may become predominant, reduced aatches of X actually reducing the fleets intereat in it. Then the effective exploitation of X will be reduced, shifting the peak catch to the right, and exploitation of Y will increase, shifting its peak jield to the left. The total aituation projected from $C(1)$ has been modified by the fleet fighing pattern. The generality is that if the fleet operates without restraint the peak of the aggregate yield curve will be less than the sum of the MSY of each resource, and, in the example given, even though conoentration upon X becomes less, its potential yield could be lost altogether.

The fishery in SA 5 and 6 is a more complex example of Type C., containing perheps ten important resource components that influence the distribution of fighing activity. On the theoretical grounds outlined it appears that stabilization of the catch or effort at a particular level will fossilize the present particular Type C situation. This may be deairable, but it may involve some aacrifice of potential yield that might be overcome by constraints on fishing that will transform it from Type C to Type A.

The initial step facing the Comaittee is to define the present gituation and to compare it with a distribution definsd by the desired level of fishing mortality per resolxce component. An approsch to this problem is set out in Tabie 1, the species and coefficients being entirely hypothetical as an ecample.

Across the top of the table are estimates of the numbers of days fiahing directed at individuel apeciea which, being 'standardized' days, provide, with their catch, a 'standardized' o.p.u.e. per species. All effort should be allocated to a fishery if posaible, thougi it would be possible to ingert a
TABLE 1 Estimated days fished (000) on each main species

COD
HADDOCK
REDFISH
R. HAKE
S. HAKE
Y'TAIL
HERRING
miscellaneous colum, provided ita constituent species were covered by standardized c.p.u.e. data in another column. Each of these main fisheries will take a by-catch which contributes to the exploitation of other resources. This effect on by-catch resources A, B, C, etc., has to be defined in terms of the effective effort in the main fishery for A or B or C, etc. It can be done approximately using the usual relationships that $F=q f$ and thence $\mathrm{YW}=\mathrm{qf} \overline{\mathrm{P}} \mathrm{w}$ and $\mathrm{YW} / \mathrm{f}=\mathrm{q} \overline{\mathrm{P}} \mathbf{w}$. The catch per otandard unit of fishing effort in the main fishery is an estimate of the catch per unit fishing mortality and so the total fishing effort on the main apecies a will be

$$
f(A)+f(B) \quad\left(\frac{\text { c.p.u.e. of by-catoh } A \text { in fishory B. }}{\text { c.p.u.e. of main ap. A in fishery A. }}\right)
$$

In Table 1 the bottom left of each box is a hypothetical ratio of a.p.u.e. in each column to the c.p.u.e. in the main fishery for that species in the row. These factors are applied to the fishing effort in each fishery to give the top right figure in each box, and these are crose-totalled to give a total effective fishing effort per apecies. The overall total effort will always be greater than the total recorded effort because effort is double counted according to the number of species it acts upon. The allocation of effeotive fishing mortality to the main fishery, of as a by-catoh will be imediately evident even though its level may not be properly known.

This distribution of fishing effort between species can be compared with any other distribution that may be an objective of management. For example, if the $F=q$ relation oan be eatablished from age composition analyses allied to estimates of a standard effort, then some objective levels of effort per specie can be established, for example, from yield per recruit conaiderations.

Table 2 sets out other population characteristics which in conjunction with Table 1 can be used to frama advice to R and S on the questions before the Committee.

[^0]: ${ }^{1}$ Presented to Special Commission Meeting, FAO, Rome, January 1973 as Sp.Mtg.Res.Doc. 73/6.

