ANNUAL MEEETING - JUNE 1973

Recent information on landings, age-composition and recruitment of Subarea 1 cod, and estimates of yield in 1972-75.
by
Sv.Aa.Horsted
Grønlands Fiskeriundersøgelser, Charlottenlund, Denmark.

1. Introduction.

The present paper is a revision of a working paper (same title) presented to the ICNAF Subcommittee on Assessment at its Mid-Term Meetings in Rome, January 1973. Revised figures for mean weights of various age groups have been introduced in the analysis, and information on stock composition received during December 1972 and the first four to five months of 1973 is to some extent incorporated. The general findings regarding future yields remain the same as in the working paper presented in January 1973.
2. Nominal catches 1968-1971.

Since it seems desirable to make assessment of Subarea 1 cod for Divisions $1 \mathrm{~A}-1 \mathrm{D}$ and $1 \mathrm{E}-1 \mathrm{~F}$ separately it is necessary to allocate landings from unknown division (Div. 1NK) on the Subarea 1 divisions. This has been done by the author on various principles. The paper would probably be too lengthy if each individual allocation should be mentioned. It is, therefore, just mentioned that the various principles try to take into account information on time (month), gear, vessel size and category, and traditional fishing of the fleets. Clearly the allocation can not be absolutely correct. However, it is considered an improvement compared to the situation where catches from Div. 1 NK are not allocated.

Nominal catches by division and gear category for the years 1968-1971 are shown in Tables 1-4.
3. Mean length and weight of age groups in 1972.

Tables 5 and 6 show age group frequencies, and mean length and weight of each age group in Danish cod samples from 1972. The overall mean length and weight for each age group in Divs. $1 A-1 D$ as given in Table 7 has been taken as straight mean of figures in Table 5. For Divs. $1 E$ and $1 F$ no offshore samples were taken in 1972. The overall mean lengths and weights in these two divisions also given in Table 7 have, therefore, been taken as straight mean of the two samples from Div. $1 F$ inshore given in Table 6.

The plot of the mean weight versus mean length of age groups is shown in Figs. 1 and 2 for offshore and inshore samples respectively. In Fig. 1 and Table 5 it is found that mean weight (condition) in November-February is better than in the period March-July (around the spawning season). The curves fitting these plots have been calculated and are shown on the figure. The relation between mean total length (cm below) and mean weight (kg, round fresh) was found to be

Offshore samples, November-February $: \bar{w}=\bar{I}^{2.750} \times 2.79 \times 10^{-5}$ Offshore samples, March-July
$: \overline{\mathbf{w}}=\mathbf{I}^{2.710} \times 3.19 \times 10^{-5}$
Inshore samples, June-August $\quad: \quad \bar{w}=\bar{I}^{2.897} \times 1.64 \times 10^{-5}$
For all plots combined the equation was found to be

$$
\bar{w}=I^{2.792} \times 2.49 \times 10^{-5}
$$

The curves may be used to readily obtain mean weight of an age group in cases where only mean length is known. Strictly speaking the curves are, of course, only valid when the standard deviation on mean length of age groups is similar to that found in the 1972 samples. It seems, however, to be a fair assumption that standard deviation on mean length of the various age groups will not differ much between samples and years.

Arno Meyer (ICNAF Res.Doc. $73 / 38$) has presented a very exterisive material on mean length and mean weight of cod in Subarea 1. Table 3 in A.Meyer's paper gives weighted mean values for the years 1965-72 for Divs. 1A-1D and

1F-1F : anparatrly. The weighting factors applicd are the monthly international catchei in $19 \% 0$. Such a weighting may not be relevant if the data are used to describe fluctuations in growth rate between years, areas and age groups, but the weighting is proper and very important for obtaining mean weights for converting nominal catches to numbers landed and vice versa.

Since the present paper tries to make predictions for future yields by means of virtual population analysis the author has adopted figures given by Meyer, also because Meyer's material is much greater than the Danish material and represents a major part of the fishery. The figures used in the analysis of the present paper are set out in Table 7 together with figures used by the Assessment Subcommittee in 1972 (Redbook 1972) and those obtained as straight mean from figures in Tables 5 and 6 of the present paper. For comparison between figures see Section 7 .

4. Numbers landed per age group in the years 1965-71.

Based on mean weights as given by Meyer (l.c.) and on landings as given in Tables $2-4$, and using samples as presented in Sampling Yearbook the numbers landed (nominal catch) of each age group have been calculated for the years 1969-1971. For the years 1965 and 1966 figures as given by A.Schumacher (1971) have been adopted, and for the years 1967 and 1968 also figures by A. Schumacher (pers.comm.) have been adopted except that for all four years (1965-68) the figures by Schumacher have been adjusted according to differences between Schumacher's figures for nominal catches and those by the author. The results are given in Tables $8 \mathbf{- 1 0}$.
5. Informetion on future recruitment.

In Uubarea 1 recruitment of cod to the fisheries will start at an age of (3-) 4 years. The year classes in question for recruitment in the period 1972-1975 are thus year-classes 1968-1972.

Predictions for the strength of the 1972 year-class can at present be made only on hydrographic and plankton observations in 1972. As indicated in the Danish Research Report, 1972 (Horsted, 1973) there are no reasons to expect that this year class will be more than a poor one. The same applies to the 1971 year-class (Hermann, 1972. Horsted and Smidt, 1972).

Also the 1970 year-class was on the basis of larval surveys predicted a poor one (Smidt, 1971). It has not yet been observed as undersized fish
in commorial catches and there is, therefore, no reason to change the prediction.
'lh. 1964 year-class was in 1969 regarded a rather poor one (Horstad, 1970). Pre-recruit surveys in 1972 have, unfortunately, been so limited that scarcely any now information on the 1969 year-class has been achieved. In samples taken Arom the trawlers' landings at the end of 1972 it is represented with very few individuals only. It must, therefore, still be regarded a poor year class.

The 1968 year-class has to some extent occurred in atches in Divs. 1A1D in 1971 (see Table 8) and in 1972 it has been of increasing importance in all divisions (see age-group IV in Tables 5 and 6). In the sample from Div.1D, offshore, December 1972 it constituted more than half the individuals, and it seems to form by far the major part of discards erom inshore pound net catches as shown in Table 11.

Further material has been collected in the first part of 1973. The are readinis has not yet becn carried out, but the length frequencies are
illustrated in Fig. 3. Since the mean length of the age-group 4 was 52.2 cm in the November 1972 sample and 50.6 cm in the December 1972 sample it seems quite clear that the very pronounced mode on the lentrth frequency curv:s in fig. 3 is due to a very considerable part of the catch being of the 17r: yoar-class.
 a viry ruat txtent on the 1968 year-ciass. Its actual sizc is, however, rather difficult to judge at present but may well be of the size as juriged by thr JCE: /ICNAF Working Group on Cod Stocks in the North Atlantic, i.e. 10 millions by afe 3 in Divs. $1 \mathrm{~A}-1 \mathrm{D}$ and 72 millions by age 3 in Dive. 1 ti- 1 F whim Jci:. Aroa XIV (swe Pable 8 in the Report of the Working Group, IONAr Re: Joce 7:/33).

Fer predictions of future yields the strength of thf pre-recruit or recruiting year classes is at present set as follows (millions of 3 year olds):

Year-class	Jivs. 1A-1D	Dive. 1E-1F
1968	90	40
1969	30	15
1970	30	15
1971	20	10
1972	30	15

The fi:ures for 1968-70 Divs. 1A-1D are those given hy the fonve mentioned forkini: Group. The figures by the Working Group for Divs. 1 bi-1e plu: icEij

Area XJV wert for the 1968 year-class 72 , for 196925 , and for 197025 millions. It has been regarded here that well above half of the fish oceur in Divs. $1 \mathrm{E}-1 \mathrm{H}$.
6. Rusuits of recont tiaging experiments.

Tapeing experiments on cod in recent years have unfortunately been made to a less extent than previously and have been made chiefly on small cod. discarded from pouna nets in coastal waters and fjords. The material from such experiments is not yet worked up but seems to be of value only for judging: local fishing mortality in the fjords and for indication of migratory routes but not for judging fishing mortality on fully recruited cod in the intornational fishery. Tageing of cod bigeer than 50 cm in the coastal and offshore waters has been rather limited, viz:

The recaptures (in per mille of numbers tagged) for these experiments by the und of 1972 are shown in Table 12. A remakable high proportion of the tufs has bein reported from leelandic and East Greenland waters, also for tags applied in Divs. 1D and 1C. Whetier this indicates an increasing tendency of south and eastward migration or a decreasing recapture (or reporting) rate at Wost Greenland is very difficult to judge. It may well be that the 190% yfar-class, which is to a great extent of East Greenland origin, and which has formed a significant part of the stock in the years regarded has a reletively ${ }^{\text {sreat }}$ tendency to undertake spawning migration to East Greenland and iculand. Anyway the recapture rate (or probably reporting rate) at West Greenland seems to have decreased in recent years as shown in Table 13 from a level of about 15% to a level of about 4% (with no correction for nonreportinf. . This may by itself indicate a decreasing fishing mortality in rocent ycars, but the situation is very complicated because traditionully i.2i: reporting fleets have a rapidly decreasing part of the fishery, and becaust experiments with different tags and tagging methods disturb the picture.

Ho wever, it should be noted that the slope of the regression linc of lot. of recapture percentage still shows a rather high value. The slope as calculatid in Table 13 is, however, also affected by any migration out of subarea 1. Bearinf: in mind the above made remarks on the possible migration of year-clas: 195) the slope for the $1968-69$ experiments may well be used as a measure tor
totill martality but this mortality contains a significant mieration out of the subarcil. If natural mortality is teken as $=0.20$ and migration is taken to Je equal to an extra natural mortality of in $=0.15$ then the fishing mortality coefficient [or iubarea 1 as a whole in recent years may well be no highfr than C. 5 f for fully recruited age groups. It must be considered, however, that the material itself is very limited and probably does not allow one to draw too many conclusions.
i. Virtual population enalyses and prognoses 1972-75.

Antilysee by the virtual population method have betn made in an attempt to predict catches for $1972-75$ at various levels of fishing mortality. Materiai. For the analyses is:

Numbers landed per age group and year : Tables 8-1\%.
Fistimates of recruitment (strengtriof year-classes 1968-72) : Page 4.
Natural mortality for all age groups : $\mathrm{M}=0.20$.
Extra "mortality" duc to migration for age-groups VII and older in
Dive. $15-1 F: M_{\text {extra }}=0.15$.
Fartial recruitment (or fluctuation of F with age) is taken as fiven in Tablu 15 of the report of the N.Atl. Cod, Working Group (Anon., 1972), viz.: (Figures are F as percentage of F in fully recruited age groups)

Age-group	Divs.	$1 \mathrm{~A}-1 \mathrm{D}$
III	$1 \mathrm{E}-1 \mathrm{~F}$	
IV	9	1
V	27	8
VI	64	41
	100	67
VIt	100	100
\vdots		
those fous		

'rhes risures correspond rather closely with those found by Horsted and Garrod (1969).

It was hoped that the analyses vould have giv n values of for the most recint years. However, the data do not seem to profuce any meaningful indicution if F in recent years, whereas there seems to have ken a rather steady fishin:mostality up to and including 1968.

Trabies 1-4 show that the fishery itswif droppedfabruptly from a livell ot $350-400.000$ tons to about half that levri in 1969 and further to a level of 115-1\%. (\%) tors in 1970. Also fishing pattern itsf fonged in these years with a rreater tendency to exploit spawning concoptrations from south-

has not been adequate or that parameters, e.g. those of fluctuation of F with age and those of mean weight of agt groups, have changes drastically. Anyway, the: model and the analysis urfortunately did not permit the author to irav firm conclusions on values of F in most recont years.

The programme for prognoses, therefore, had to be made on basis of a given (assumed) value of for 1971. This value has for fully recruited age groups in Divs. 1A-1D been taken as

$$
\mathrm{F}_{71, \mathrm{~A}-1)}=0.50
$$

whereas for Divs. $1 \mathrm{E}-1 \mathrm{~F}$ where the greatest uncertainties may be two values have been taken, viz.

$$
{ }^{4} 71, F-F=0.30 \text { and } F_{71, E-F}=0.65
$$

in the hope that the true value lies somewhere between the two values given.
The value for Divs. $1 \mathrm{~A}-1 \mathrm{D}$ and the lower value for Divs. $1 \mathrm{E}-1 \mathrm{~F}$ correspond closely to those given by the N.Atl. Cod Working Group (1.c. Table 9 : $F_{70, A-D}=0.49, F_{70, E-F+X I V}=0.30$) but are somewhat lower than the value used by the Asscssment Subcommittee at its 1972 Meetings ($F=0.60$ in 1970/71 for subarea 1 as a whole).

Predictions for the $1972-75$ yields have been made on the basis of a isinime mortality rate of F equal io that regarded as $F_{\text {max }}$ and F opt by the N.Atl. Coi Working Group (I.c.), i,e,
for Divs. $1 \mathrm{~A}-1 \mathrm{D}: \mathrm{F}_{\text {max }}=0.56, \mathrm{copt}_{\text {opt }}=0.35$, and
for Dive. $1 E-1 F: F_{\text {max }}=0.65 \mathrm{~F}_{\text {opt }}=0.45$.
The results are set out in Tables $14 a$ and $14 b$ below for the lower and upper F_{1971} values respectively.
Table 14a. Prognoses for Subarea 1 Tod. Nominal catches 1972-75 (metric toris).

F_{1971}	Divs. 1A-1D		Divs. 1E-1F		Subarea 1	
		50		30		
$\mathrm{F}_{1972-75}$	$\begin{aligned} & \mathrm{T}_{\max } \\ & 0.56 \end{aligned}$	$\begin{aligned} & \mathrm{F} \text { opt } \\ & 0.35 \end{aligned}$	$\begin{aligned} & F_{\max } \\ & 0.65 \end{aligned}$	$\begin{aligned} & F_{o p t} \\ & 0.45 \end{aligned}$	$F_{\text {max }}$	$\mathrm{F}_{\text {opt }}$
Catch 1972	79608	53987	60721	45597	140329	99584
" 1973	73781	57299	37092	32361	110873	89660
" 1974	66974	58514	26277	25005	93251	83569
" 1975	52691	51234	21330	21308	74021	72542

Table 14b. Prognoses for Subarea 1 Cod. Nominal catches 1972-75 (metric tons).

	Divs. 1A - 1D		Divs. 1E-1F		Subarea 1	
F_{1971}	0.50		0.65			
$\mathrm{F}_{1972-1975}$	$\begin{aligned} & F_{\max } \\ & 0.56 \end{aligned}$	$\begin{aligned} & \text { Fopt } \\ & 0.35 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\max } \\ & 0.65 \end{aligned}$	$\begin{aligned} & \text { Fopt } \\ & 0.45 \end{aligned}$	$F_{\text {max }}$	Fopt
Catch 1972	79608	53987	24294	18197	103902	72184
1973	73781	57299	18992	15913	92773	73212
1974	66974	58514	18017	15901	84991	74415
" 1975	52691	51234	17955	16780	70646	68014

For predicted catches in Divs. 1A-1D the above given values for 1972-73 by $F_{\max }$ are somewhat higher than those by the Assessment Subcommittee, 1972, for a value of F of 0.60 . For predicted catches in Divs. $1 E-1 F$ the values by $\mathrm{F}_{1971}=0.30$ are much higher for 1972 and a little lower for 1973 than predicted by the Assessment Subcommittee, 1972 , whereas by $\mathrm{F}_{1971}=0.65$ predictions for 1972 as well as for 1973 are lower than the Assessments Subcomittee's figures. The following Tables 15 a and 15 b compare the two set of figures.

Table 15a. Comparison between prognoses by $\mathrm{F}_{\text {max }}$ in present paper, Table 14 a , and in Assessment Report, Redbook 1972.

	1972			1973		
	1A-1D	1E-1F	Subarea 1	1A-1D	1E-1F	Subarea 1
$\begin{aligned} & \text { Redbook } 1972 \\ & (F=0.60) \end{aligned}$	59000	38000	97000	61000	41000	102000
$\begin{aligned} & \text { Present paper } \\ & \left(\mathrm{F}_{1971, \mathrm{E}-\mathrm{H}}=0.30\right) \end{aligned}$	79000	61000	140000	74000	37000	111000
Difference in percent of Redbook figure	+34\%	+61\%	+44\%	+21\%	-10\%	+8\%

Table 15 b . Comparison between prognoses by $\mathbb{F}_{\max }$ in present paper, Table 11 e , and in Assessment Report, Redbook 1972.

	1972			1973		
Redbook 1972 $(F=0.60)$	59000	38000	97000	61000	41000	102000
Present paper $\left(\mathrm{F}_{1971, \mathrm{E}-\mathrm{F}}=0.65\right)$	80000	24000	104000	74000	19000	93000
Difference in percent of Redbook figure	$+36 \%$	-37%	$+7 \%$	$+21 \%$	-54%	-8%

Part of the explanation for the difference may be sought in the difference between figures for mean weight of age groups used in the two estimates. The weight figures and the difference between them are shown in Table 7.

For Divs. $1 A-1 D$ the figures by Meyer and those obtained from Table 5 correspond rather well with each other, especially for those age groups (5-7) which make up by far the major part of the landings. For Divs. 1E-1 F the correspondence between Mayer's figures and those obtained from Table 6 is also rather good for the important age groups, but there are high discrepancies between very old (10 years or more) and very young (4 years) cod.

Meyer's figures, which are used for analysis in the present paper, differ rather much from figures used by the Assessment Subcommittee in 1972, especially when figures for Divs. 1E-1F are considered. Meyer's figures for these divisions are rather lower (except for age-group 8) than those used by the Assessment Subcommittee. This could partly explain why present estimates of 1972-73 yields in Divs. 1E-1F are lower than predicted by the Assessment Subcommittee last year.

Clearly figures for mean weight by age are critical figures, which because they can fluctuate very much betwean years and year classes - should be kept under careful and constant review.

Another most critical figures in the present paper is the fishing mortality rate in 1971. However, even assuming a very wide range of this parameter for Divs. $1 E-1 F$ does not change the general picture that the Subarea 1 cod in the next couple of years will reveal catches which are only about one-third of the level in the 1960'ies.

8. Acknowledgement.

Mr. Hans Lassen of the Danish Institute for Fisheries and Marinc ifesearch, Charlottenlund kindly undertook to make programmes and run the analyses on the computer of his laboratory. My sincere thanks are due to Mr. Lassen and the institute for this service.

REFFRENCES

Anon. Report of the ICES/ICNAF Working Group on Cod Stocks in the
1972. North Atlantic. Cons.Int.Expl.Mer, Coop.Res.Rep. 33:1-52. (Also ICNAF Res.Doc. 72/33).
Anon. Report of Assessment Subcommittee. Int.Comm. NW AtI.Fish. 1972. Redbook 1972/I:15-42.

Herman, F. Hydrographic conditions off West Greenland during 1971. Int. 1972. Comm: NW Atl. Fish. Redbook 1972/III:5-9.
Horsted, Sv.Aa. Danish Research Report, 1969. Int.Comm. NW Atl. Fish. Redbook 1970. 1970/II:30-40.

Horsted, Sv.Aa. Danish Research Report, 1972, Part I. Int.Comm. NW Atl. Fish. 1973. Summ. Doc. 73/19:1-8.
Horsted, Sv.Aa. and D.J.Garrod. A yield per recruit function for Subarea 1 1969. Cod. Int. Comm. NW Atl. Fish. Redbook 1969/III:17-21.

Horsted, Sv.Aa. and E.Smidt. Danish Research Report, 1971. Int.Comm. NW AtI. 1972. Fish. Redbook 1972/II:19-28.

Meyer, Arno. Mean length and mear weight for age-groups 3 to $10+$ of Green 1973. land cod living in Iiv. 1A to 1 D and Div. 1 E to 1 F . Int. Comm. NW Atl. Pish. Res.Doc. 73/38:1-3.
Schumacher, A. Fishing Mortality and Stock Size in the West Greenland Cod. Int. 1971.

Smidt., E. Danish Research Report, 1970. Int.Comm. NW Atl. Fish. Redbook 1971. 1971/II:27-33.

Table 1. Nominal catch (metric tons $x 10^{-3}$) of cod in Subarea 1, 1968 by division and crear. Catches reported as Div. 1 NK have been. allocated by the author. Catches under LINES may include some catches taken by gill nets (GN).

DIV.		OT		DV	IINES	GN	Mixed (Denm. G)	TOTAL
14		881			271		142	1294
1B	13	392	1	968	6790		1669	23819
1 C	103	483	9	096	8652		2738	123969
1 D	102	271	7	397	14398	268	6123	130457
1E	72	072			12282		2837	87191
1 F	16	539			3064		7207	26810
TOTAL	308	638	18	461	45457	268	20716	393540

Mable 2. Nominal catch (metric tons $\times 10^{-3}$) of cod in Subarea 1, 1969 by division and gear. Catches reported as Div. 1 NK have been allocated by the author. Catches under "Mixed" gear may include OT catchcs of about 9000 tons.

Table 3. Nominal catch (metric tons $\times 10^{-3}$) of cod in Subarea 1, 1970 by division and gear. Catches reported as Div. 1 NK have been allocated by the author.

Table 4. Nominal catcr (metric tons $\times 10^{-3}$) of cod in Subarea 1,1971 by division and gear. Preliminary figures taken from ICNAF Res. Doc. 72/124 as revised August 11, 1972. Catches reported as Div. INK have been allocated by the author. Some catches under "other gears" may well be OT catches.

 trawlers tishing offishore. $0 / 00=$ Frequencies in per mille.
cm - Incorrected mean total length in cm (cm below) \pm standard deviation.
kg . = Mean weight in kg round, fresh - standard deviation. Values are calculated from observed gutted weights (head on) by conversion factor 1.22.

Table 5 (continued)

Tabie б́. Subarea 1 cod, 1972. Danish samples from landimes of inshore risheries, gear mainly pound net. $0 / 00 . \mathrm{cm}$, and kg as in pable 5.

Age sroup	Divisior	1 B (north)		$\begin{gathered} 18 \\ (\text { south }) \end{gathered}$	10	11)	1 F	1 F
	Month	JUNE	UEP ${ }^{2}$)	JULY	JULY	dULY	JUNE	AUG
III	$\begin{aligned} & 0 / 00 \\ & \mathrm{con} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	0	0	0	0	0	0	0
IV	$0 / 00$ cun kg	$\begin{array}{ll} 1110 & \\ 483 .: & 3.7 \\ 1.48 & 0.35 \\ \hline \end{array}$	$\begin{gathered} 11 \\ 53.30 .6 \end{gathered}$	$\begin{array}{ll} 147 & \\ 51.3 & 4.8 \end{array}$	$\begin{array}{\|ll\|} \hline 327 & \\ 51.4 & 3.4 \\ 1.58 & 0.31 \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 74 \% & \\ 45.6 & 4.9 \\ 0.88 & 0.27 \\ \hline \end{array}$	$\begin{array}{ll} 262 & \\ 47.2 & 2.6 \\ 1.13 & 0.20 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 5 & \\ 57.0 & - \\ 1.71 & \\ \hline \end{array}$
V	o/00 cm kg	$\begin{array}{\|ll\|} \hline 453 & \\ 54.1 & 4.6 \\ 2.10 & 0.55 \\ \hline \end{array}$	$\begin{gathered} 20 \\ 61.8 \quad 6.7 \\ - \\ \hline \end{gathered}$	$\begin{array}{ll} 507 \\ 59.5 \quad 5.7 \end{array}$	$\begin{array}{lll} 413 & \\ 56.6 & 4.5 \\ 2.08 & 0.42 \end{array}$	$\begin{array}{\|ll\|} \hline 112 & \\ 51.1 & 5.4 \\ 1.23 & 0.38 \\ \hline \end{array}$	$\begin{array}{ll} 279 \\ 51.0 & 4.4 \\ 1.47 \quad 0.46 \\ \hline \end{array}$	$\begin{array}{cc} \hline 5 & \\ 52.0 & = \\ 1.59 & \\ \hline \end{array}$
VI	$\begin{aligned} & 0 / 00 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	$\|$352 58.7 7.3 2.76 0.95	$\begin{array}{cc} 59 & \\ 76.5 & 4.6 \end{array}$	$\begin{array}{\|ll} \hline 281 \\ 65.26 .7 \end{array}$	$\begin{array}{\|ll\|} \hline 190 & \\ 67.0 & 5.2 \\ 3.40 & 0.75 \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline 110 & \\ 61.8 & 4.9 \\ 2.10 & 0.44 \\ \hline \end{array}$	145 53.4 4.4 1.70 0.49	30 59.0 3.8 2.50 0.49
VII	$0 / 00$ cm kg 0	80 62.3 8.6 3.61 1.22	$\begin{array}{r} 309 \\ 82.44 .5 \\ \hline \end{array}$	$\begin{array}{cc} 35 \\ 73.7 & 4.9 \end{array}$	$\begin{array}{cc} 40 & \\ 69.0 & 5.3 \\ 3.55 & 0.71 \\ \hline \end{array}$	15 62.3 10.6 2.25 1.18	$\begin{array}{cc} 26 & \\ 58.3 & 5.2 \\ 2.26 & 0.59 \\ \hline \end{array}$	$\begin{array}{cc} 25 & \\ 61.4 & 3.0 \\ 2.67 & 0.3 \\ \hline \end{array}$
VIII	$\begin{aligned} & 0700 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 85.0 \\ 6.34 \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ 82.8 \quad 7.0 \end{gathered}$	75.0	$\begin{array}{\|ll\|} \hline 10 & \\ 76.0 & 1.4 \\ 4.70 & 0.60 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 18 & \\ 51.8 & 11.6 \\ 1.39 & 0.98 \\ \hline \end{array}$	$\begin{array}{ll\|} \hline 91 & \\ 64.4 & 8.7 \\ 2.95 & 1.19 \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 330 & \\ 66.4 & 4.9 \\ 3.36 & 0.61 \\ \hline \end{array}$
IX	$\begin{aligned} & \mathrm{o} / 00 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	0	$\begin{gathered} 46 \\ 86.06 .5 \\ -\quad \\ \hline \end{gathered}$	$\begin{array}{cc} 20 & \\ 77.8 & 11.5 \end{array}$	$\begin{array}{\|cc\|} \hline 10 & \\ 90.5 & 9.2 \\ 8.30 & 1.38 \\ \hline \end{array}$	$\begin{gathered} 4 \\ 84.0 \\ 5.10 \\ \hline \end{gathered}$	$\begin{array}{ll} 159 & \\ 69.1 & 6.5 \\ 3.55 & 1.02 \\ \hline \end{array}$	$\begin{array}{lll} \hline 510 & \\ 70.3 & 5.5 \\ 3.89 & 0.73 \\ \hline \end{array}$
X	$\begin{aligned} & 0 / 00 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	0	$\begin{array}{cc} 49 \\ 90.1 & \\ \hline \end{array}$	0	0	0	$\begin{array}{cc} 22 & \\ 71.5 & 6.5 \\ 3.94 & 1.08 \end{array}$	65 74.3 5.0 4.40 0.61
XI	$\begin{array}{\|l} \hline 0 / 00 \\ \mathrm{~cm} \\ \mathrm{~kg} \\ \hline \end{array}$	0	$\begin{array}{lll} \hline 264 & \\ 92.4 & 5.2 \end{array}$	8	$\begin{gathered} 5 \\ 87.0 \\ 6.83 \\ \hline \end{gathered}$	0	$\begin{array}{ll} 12 & \\ 74.4 & 6.6 \\ 4.28 & 0.82 \\ \hline \end{array}$	30 76.5 9.4 5.34 2.32
XII	$\begin{aligned} & 0 / 00 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	0	$\begin{array}{ll} 172 \\ 93.68 .0 \end{array}$	0	$\begin{aligned} & 5 \\ & 94.0 \\ & 7.81 \end{aligned}$	0	$\begin{gathered} 2 \\ 93.0 \end{gathered}$	0
XIII	$\begin{aligned} & 0 / 00 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	0	$\begin{gathered} 11 \\ 85.02 .6 \end{gathered}$	0	0	0	0	0
XIV	$\begin{array}{\|l\|} \hline 0 / 00 \\ \mathrm{~cm} \\ \mathrm{~kg} \\ \hline \end{array}$	0	$\begin{gathered} 7 \\ 98.52 .1 \end{gathered}$	0	0	0	$\begin{array}{cc} 3 & \\ 83.8 & 10.8 \end{array}$	0
XV	$\begin{aligned} & \hline 0 / 00 \\ & \mathrm{~cm} \\ & \mathrm{~kg} \\ & \hline \end{aligned}$	0	$\begin{array}{cc} 10 \\ 100.3 & 7.2 \\ - & \\ \hline \end{array}$	0	0	0	$92.59 .2$	0
XV+	$0 / 00$	0	0	0	0	0	0	0
Overal length	11 mean	56.1	$(86.9)^{2)}$	60.9	58.3	48.5	55.6	68.7
Overal weight	11 mean	$(2.40)^{\text {1 }}$	-	-	2.37	1.10	$2.45^{3)}$	3.03
Discar	rds	no inf.	no inf'.	no inf.	no inf.	4)	$\begin{aligned} & 25-50 \% \text { by } \\ & \text { weight } \end{aligned}$	no inf.
Nos s	ampled	199	284	200	199	274	719	200
lianded (tons fresh) ented	weight round, represby sampl	no inf. le	no inf.	no inf.	no inf.	3)	7	no int.

1) Weight uncertain. May have been round, fresh weight originally observed and, therefore, 1.22 times too high here.
2) Some recorded lengths suspicious, probably recorded 10 cm too long.
3) Projected weights used for age groups, where observed weight does not exist: XII, XIV aik XV : 9.1, 6.2 and 8.5 kg .

Table 7. Mean weight (kg round, fresh) by age groups as obtained from Tables 5 and 6 (straight mean). For comparison figures by Meyer (Kes.Doc. $73 / 38$, Table 3) and those used by the ICNAF Subcommittee on Assessment, 1972 (Redbook 1972, I : 20) are also given. Figures by Meyer have been used in the enalysis in the present paper.

Age	3	4	5	6	7	8	$8+$	9	10	$10+$
$\begin{aligned} & \text { 1. Divs. 1A-1D } \\ & \text { from Table } 5 \end{aligned}$	0.56	1.23	1.85	2.85	3.99	4.42	-	4.36	6.00	8.61
$\begin{aligned} & \text { 2. Divs. } 1 \mathrm{~A}-1 \mathrm{D} \\ & \text { after Meyer } \end{aligned}$	0.58	1.08	1.94	2.80	3.60	3.98	-	4.63	5.48	6.23
$\begin{aligned} & \text { Divs. } 1 \mathrm{E-1F} \\ & \hline \therefore \text { from Table } 6 \end{aligned}$	-	1.42	1.53	2.10	2.46	3.16	-	3.72	4.17	4.80
4. Divs.after Meyer	0.41	0.82	1.27	1.88	2.68	3.25	-	3.90	5.02	6.23
5. All divisions	0.62	1.18	2.1	2.7	3.0	3.0	5.5	-	-	-
$\begin{aligned} & \text { 5. }-2 \text {. in per } \\ & \text { cent of } 5 \end{aligned}$	+6	+8	+8	-4	-20	-33				
5.-4. in per cent of 5	+34	+31	+40	+30	+11	-8				

Table 8. Numbers of cod $\left(x 0^{-3}\right)$ in nominal catches from Divs. 1A-1D per year and age group, and nominal catich 1965-1971. Figures for 1965-1966 after Schumacher (1971) and for 1967-1968 after Schumacher (pers.comm.).

Age group	Year	$\left.1965^{x}\right)$	1966^{x}	1967^{x}	$\left.1968^{x}\right)$	1969	1970
2	2648		53				
3	14163	350	1678	3756	662	49	272
4	54481	5876	14021	6982	12257	2597	2453
5	47115	42294	27246	25957	5542	8846	9054
6	7166	35344	47457	19852	12078	3142	7219
7	4780	4327	18762	23071	8069	5222	1963
8	11430	1937	2117	7769	7749	1376	3104
9	1187	4680	1627	1543	4053	936	811
10	343	582	4320	710	470	633	1184
11	330	204	297	2034	162	61	746
12	1359	74	65	164	558	52	68
13	53	795	130	32	14	104	27
14	13	108	378	31	60	7	105
$14+$	171	150	53	258	6	34	41

| Total Nos.
 $\times 10^{-3}$ | 145239 | 96721 | 118204 | 92159 | 51680 | 23059 | 27047 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nominal catch 296204 | 290545 | 34372ε | 279539 | 144331 | 62447 | 76448 | |
| (tons) | | | | | | | |

Table 9. Numbers of cod ($\mathrm{x} 10^{-3}$) in nominal catches from Divs. 1E-1F per year and age group, and nominal catch 1965-1971. Figures for 1965-66 after Schumacher (1971) and for 1967~68 after Schumacher (pers.comm.).

age	Year	$1965{ }^{\text {x }}$	$1966^{\text {x }}$	$1967{ }^{\text {x }}$	$1968{ }^{\text {x }}$	1969	1970	1971
-			112					
3			1180	49	8			
4		2447	1996	1070	994 10713	142 3167	171 1496	1118
5		5336	19836	3211 14391	10713	3167 15355	3323	2064
6		1889	4597	14391	9972 11520	15355 6595	8763	3274
7		5110	1588	5800 583	11520 2236	4662	2989	6054
8		3965	3018	583 369	$\begin{array}{r}182 \\ \hline 182\end{array}$	731	1874	1266
9		1662	2232 707	369 917	183	43	647	657
10		223	707 79	95	314	75	88	207
11		158 552	79 56	28	23	- 146	33	10
12		552 22	186	36	5	27	97	24
14		24	31	75	11	2	20	29 15
$14+$		105	97	32	45	2	7	

| Total Nos.
 $\times 10^{-3}$ | 21493 | 35715 | 26616 | 36146 | 30947 | 19508 | 14784 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nominal
 catch (tons) | 64137 | 77661 | 85751 | 114001 | 70476 | 53550 | 43837 |

x) The original figures by Schumacher have been adjusted according to differences between Schumacher's figures for nominal catch and those by the author as given in the table. The figures for nominal catch used by Schumacher are: 1965: 52532, 1966: 60980, 1967: 70613, and 1968: 112271 tons.

Table 10. Numbers of cod $\left(x 10^{-3}\right)$ in nominal catches from Subarea 1 per year and age group, and nominal catch 1965-1971. (Combined figures from Tables 8 and 9).

$\begin{array}{ll} \text { Age } \\ \text { group } & \text { Year } \\ \hline \end{array}$	1965	1966	1967	-4968	1969	1970	1971
2	2648	112	- . 53				
3	14163	1530	1727	3764	662	49	2519
4	56928	7872	15091	7976	12399	2768	- 2519
5	52451	62130	30457	36670	8709	10342	10172
6	9055	39941	61848	29824	27433	13985	5237
7	9890	5915	2456 ¢	34591	14664	13985 4365	9158
8	45395	4955	2700	10005	12411	2810	2077
9	2849	6912	199E	1725 833	4784 513	1280	1841
10	566	1289	523 i	833	237	149	953
11	488	283	35:	2348	704	85	78
12	1911	130	$9 \div$	187	704	201	51
13	75	981	166	37	61		134
14	37	139	45\%	42	62 8	27 41	134 56
$14+$	276	247	85	303	8	41	
Total Nos. $\times 10^{-3}$	166732	132436	144821)	128305	82627	42567	41831
'.ominal catch 'tons)	360341	368206	429473	393540	214807	115997	120285

Table 11. Subarea 1 cod, 1972. Sample of cod discarded from pound net catches in Div. 1F, June. Cod above 40 cm will be retained for landing. Frequencies, length and weight as in Tables 5 and 6.

Age group	$\begin{gathered} 1 \mathrm{~F} \\ \text { JUNE } \end{gathered}$		
III	-/00	67	
	cm	32.0	2.7
	kg	0.32	0.07
IV	- 00	918	
	cm	35.9	2.8
	kg	0.44	0.10
V	-\%o	15	
	cm	39.9	1.1
	kg	0.60	0.05
$\begin{aligned} & \text { Overall } \\ & \text { mean length } \end{aligned}$		35.7	
Overall mean weight		0.44	
Nos. sampled		297	

Tatle 12. Recaptures from tagging experiments in Greenland offshore and coastal waters (excl. fjords) $1968-69$ given as per mille of numbers tagged within each division and length group. Significant numbers of recaptures may still occur in the 3 rd and 4 th year after tagging.

Tagged	in Division	$1 A+1 B$			1 C			10			1E			17		
Length group tagged	Calendar year after reiease	Total	Icl.	$\begin{aligned} & \text { E.Grl. } \\ & \text { or } \\ & \text { Ici. } \end{aligned}$	Total	Icl.	$\begin{aligned} & \text { E.Grl. } \\ & \text { or } \\ & \text { Icl. } \end{aligned}$	Total	Icl.	$\begin{aligned} & \text { E.Grl. } \\ & \text { or } \\ & \text { Icl. } \end{aligned}$	Totel		$\begin{aligned} & \text { E.Grl. } \\ & \text { or } \\ & \text { Icl. } \end{aligned}$	Total		$\begin{aligned} & \text { E.Grl. } \\ & \text { or } \\ & \text { Icl. } \end{aligned}$
50-59	0	-	-	-	20	$\stackrel{-}{-}$	-	-	-	-	-	-	-	14	-	-
	1	48	-	-	7	-	-	_	_	-	41	_	-	9	-	_
	2	-	-	-	20	7	-	--	_	_	27	-	14	9	-	-
	3	16			7	-	-	-	-	-	-	-	-	18	-	5
	4+	-	-	-	-	-	-	-	-	-	-	-	_	9	5	5
	- / 00 Nos.tagged	$\begin{aligned} & 64 \\ & 62 \end{aligned}$	16	-	$\begin{array}{r} 54 \\ 149 \end{array}$	7	-	$\overline{30}$	-	-	$\begin{aligned} & 68 \\ & 73 \end{aligned}$	$-$	-	$\begin{array}{r} 59 \\ 219 \end{array}$	5	10
60-69	0	8	-	-	7	-	-	-	-	-	-	-	-	19	-	-
	1	35	-	-	28	14	7	8	-	-	43	17	9	48	-	10
	2	4	4	-	28	7	7	-	-	-	35	26	9	19	\cdots	10
	3	-	-		-	-	-	8	8	-	17	17	-	19	10	10
	4+	-	-	-	-	-	-	-	-	-	-	-	-	10	10	-
	- / 00 Nos.tagged	$\begin{array}{r} 48 \\ 259 \end{array}$	4	-	$\begin{array}{r} 63 \\ 144 \end{array}$	21	14	$\begin{array}{r} 15 \\ 132 \end{array}$	8	-	$\begin{array}{r} 96 \\ 115 \end{array}$	61	17	$\begin{aligned} & 115 \\ & 104 \end{aligned}$	19	29
70-79	0	15	-	-	11	-	-	-	-	-	-	-	-	-	-	-
	1	19	-	-	55	44	-	29	6	-	14	-	-	-	-	-
	2	15	7	-	22	22	-	6	-	-	-	27	-	107	71	-
	3	-	-	_	-	-	-	-	-	-	-	-	-	,	-	-
	$4+$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	$\begin{gathered} 0 / 00 \\ \text { Nos.tagged } \end{gathered}$	$\begin{array}{r} 49 \\ 267 \\ \hline \end{array}$	7	-	$\begin{aligned} & 88 \\ & 91 \\ & \hline \end{aligned}$	66	-	$\begin{array}{r} 35 \\ 173 \\ \hline \end{array}$	6	-	$\begin{aligned} & 41 \\ & 73 \\ & \hline \end{aligned}$	27		$\begin{array}{r} 107 \\ 28 \\ \hline \end{array}$	71	
80-89	0	-	-	-	-	-	-	18	-	-	-	-	-	125	-	-
	1	-		-	-	-	-	12	-	6	32	-	32	-	-	-
	2	-	-	-	-	-	-	-	-	-	65	65	-	-	-	-
	$\begin{aligned} & 3 \\ & 4+ \end{aligned}$	-	-	-	-	-	-	-	-	-	-		-	-	-	-
	4+	-			$=$	-	二	-	-	-	-	-		-	-	-
	$0 / 00$ Nos.tagged	71	-	-	22	-	-	$\begin{array}{r} 29 \\ 171 \end{array}$	-	6	97 31	65	32	$\begin{array}{r} 125 \\ 8 \end{array}$	-	-

Table 13．Cod tagged by Denmark in ICNAF Subarea 1 （excluding fjoras）1960－69 and recaptured ir．Subarea 1. year．

		$\begin{aligned} & \underset{\sim}{x} \\ & \underset{0}{0} \\ & 0 \\ & 1 \\ & \underset{\sim}{4} \\ & \stackrel{\sim}{\sim} \\ & 11 \\ & b \end{aligned}$		x 8 0 0 1 9 + $\stackrel{1}{2}$ 11 $>$						
		$\begin{aligned} & \text { M } \\ & 0 \\ & 0 \\ & \underset{-1}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{H}} \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \stackrel{n}{m} \\ & \stackrel{m}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 앙 } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { on } \\ & \sim \\ & N \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\stackrel{\sim}{6}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \sim \end{aligned}$
		$\begin{aligned} & \text { 日 } \\ & \text { 1 } \\ & 1 \\ & \underset{A}{1} \end{aligned}$			$\begin{aligned} & \text { A } \\ & \text { 1 } \\ & \text { + } \end{aligned}$				$\begin{aligned} & \text { 出 } \\ & 1 \\ & \text { M } \\ & \text { H } \end{aligned}$	$\begin{gathered} \text { ry } \\ \text { a } \\ 0 \\ 0 \\ 0 \\ 0 \\ \sim \\ 0 \end{gathered}$
			$\begin{aligned} & \text { J } \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & -7 \end{aligned}$			N 0 1 1 0 0 -			on 1 0 0 0 \sim -1	

G 8

