THE NORTHWEST ATLANTIC FISHERIES

ANNUAL MEETING - JUNE 1973
 Estimate of immediate tagging mortality of adult Atlantic salmon

by

W.H. Lear and R.H. Payne
Fisheries Research Board of Canada Biological Station, St. John's, Newfoundland

Introduction
The main aim of the recent International Salmon Tagging Experiment at West Greenland was to estimate (1) the return rate of salmon from Greenland to nome waters and (2) the exploitation rate and fishing mortality rate at West Greenland. Any estimates obtained from tagging studies without first of all determining to some degree the immediate tagging mortality would probably result in serious error.

The act of capturing, handling and marking a fish may cause wounds or abrasions in the epidermis which may provide an entrance for infection either through the marking wound or breaks in the epidermis caused by handing. Also, the adult Atlantic salmon taken at last Greenland by drift nets have thinner skin than those in fresh water and are more susceptible to scale loss than fish which are entering home rivers. This scale loss incurred while struggling in the nets and during handling may cause increased osmoregulatory distress and death. Iiia nylon twine of the nets also causes constriction of the salmon which bruises the nonxial muscles and also causes rupture of the blood vessels (Murray, White and Whitaker, 1969). Even in the event of small scale loss, there may be short term mortality after strenuous activity from struggling in the nets and handing. Siecondat and Diaz (1942) reported that blood lactate concentrations of tench (Tinca tinca) increased following forced activity, but usually subsided by the end of six hours. These investigators also observed that some fish died and the blood lactate levels of these had failed to decrease. Parker and Black (1959) and Parker, Black and Larkin (1959) found a positive association between blood lactate level and death in samples of troll-caught chinook and coho salmon in sea water. While the high blood lactate levels were not shown to be a direct
cause of death, they are a significant correlate of death following hyperactivity. The aim of this paper is to provide a first estimate of the imnediate mortality caused by handling and tagging adult Atlantic salmon in the West Greenland area.

Methods and materials

Thirty-one adult Atlantic salmon captured during August 26 -September 20 (Table 1) by surface drift nets near the West Greenland coast were held in large tanks to determine the immediate mortality due to tagging and handing. Only those salmon winich were considered in good or fair condition for tagging (Table 2) and whuld ordinarily have been released were used in this experiment. Sixteen of these salmon were caught while patrolling the nets in the rubber boat. These were tagged, measured, and a scale sample was obtained and their condition recorded while on board the small boat. They were then placed in a small canvas recovery tank in the rubber boat and carried back to the A. T. Cameron to which they were transferred in a small rubber transfer tank filled with water. The ialmon were then placed in two round fihreglass tanks filled with circulating Fon water. The tanks wern circular with the following dinensions: (1) 4 feet in diameter and $22 / 3$ feet high and (2) $42 / 3$ feet in diameter and 3 feet high. While the salmon were being held in the tank, sea water was being continuously circulated in the tanks from the sea water supply system on the deck of the A. T. Cameron. Fifteen salmon were tagged while taking the nets back on board the A. T. Cameron and after tagging and sampling for scales and length were placed in rither of the lwo tanks. The maximun number of fish held in the tanks at any one time was eleven - six in one tank and five in the other. The salmon were held in the tanks for periods varying from 5.67 to 54.58 hours (Table 1) before bein; released provided they were in suitable condition for releasing.

Results and discussion

Thirty-one tagged adult Atlantic salmon were placed in the recovery tank; only two fish (6.5\%) died subsequentiy. The initial condition of both fish which died was 'fair' but it became clear soon after they were placed in the tank that behaviour was erratic. Generally fish classified as 'fair' or better swan actively in the tank but these two specimens lay on their sides and did not engage in swimming activity unless disturbed by the rolling of the ship or by being lifted up manually from the bottom of the tank. After disturbance, the salmon swam for

- 3 -

2-5 minutes before sinking again to the bottom of the tank. Finally, they showed no movement of gills or body musculature and were removed from the tank.

The 29 fish which survived and were subsequently released did not lose condition while in the recovery tank. Condition generally improved. Nine salmon graded as 'fair' when placed inftially in the tank were regraded as 'good' at the time of release while a further six fish maintained their 'fair' grading during the experiment, as did 14 fish graded as in 'good' condition. In general, fish were noticeably more active when released after 24 hours confinement in the recovery tank than during the first few hours after capture.

While the tagging mortality under experimental conditions was quite low it must be expected that mortality would be appreciably higher for fish released after tagging without a recovery period, because 6 (40\%) of those fish graded as 'fair' did not resume swimming immediately they were placed in the recovery tank but sank to the bottom where they lay for up to one hour before active swimming resumed. Mortality and predator vulnerability of such torpid individuals would be considerable if they were not confined in recovery tanks. If one considers that the 6 fish which remained in a torpid condition for a prolonged period would not have survived if released immediately after tagging, the estimate of immediate post tagging mortality must be revised upwards to 26%. This may be a more realistic estimate of immediate tagging mortality.

References

Murray, A. R., D.R.L. White and R. S. Whitaker. 1969. Muscle damage in adult Atlantic salmon caught in nylon gillnets. J. Fish. Res. Bd. Canada 26: 1694-1696.

Parker, R. R. and E. C. Black. 1959. Muscular fatigue and mortality in troll-caught chinook salmon (Oncorhynchus tschawytscha). J. Fish. Res. Bd. Canada 16: 95-106.

Parker, R. R., E. C. Black and P. A. Larkin. 1959. Fatigue and mortality in troll-caught Pacific salmon (Oncorhynchus). J. Fish. Res. Bd. Canada 16: 429-448.

Secondat, M. and D. Diaz. 1942. Rêcherches sur la lactacidémie chez le poisson d'eau douce. C.R. Acad. Sci. Paris 215: 71-73.

- 4 -

Tag No.	Time Hour	Tagg Day	ad (GT) Month	Condition Tagged	Scale Loss:	Survived	Died	Time Hour	Relea Day	sed (GT) Month	Position Lat.	Released Long.	Duration in tank (hours)	Condition Released	Scale Loss \%	$\frac{\mathrm{Tag}}{\mathrm{Deck}}$	$\frac{\text { ed }}{\text { Bodt }}$
$\times 10147$	1100	26	August	F	10	x		1700	26	August	$66^{\circ} 03^{\prime} N$	$53^{\circ} 50 \cdot \mathrm{~W}$	6.00		10	X	
$\times 10148$	1110	,	"	F	10	x		1700	11	August	" "	" "	5.83	G	10	x	
$\times 10149$	1115	"	"	F	10	X		1700	"	"	" "	${ }^{\prime}$	5.75	F	10	X	
$\times 10150$	1120	"	"	F	20	x		1700	"	"	"	"	5.67	G	20	X	
$\times 10167$	1430	30	August	F	10	X		1415	31	August	$67^{\circ} 47{ }^{\prime} \mathrm{N}$	$54^{\circ} 04^{\prime} \mathrm{W}$	23.75	6	10	x	
人10190	0630	12	Sept.	F	15	X		1250	13	Sept.	$67^{\circ} 571 \mathrm{~N}$	$54^{\circ} 11{ }^{\prime \prime} 45^{\prime \prime W}$	30.33	G	15		X
$\times 10191$	1110	1		F	15	x		1250	-	Ser.	" "	" 4	25.67	G	15	X	
$\times 10193$	0740	13	Sept.	F	5	X		1113	14	Sept.	$67^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$	$54^{\circ} 26^{\prime} 00^{\prime \prime} \mathrm{W}$	27.55	F	5	X	
$\times 10201$	0630	"	St.	G	15	X		1113	${ }^{1}$	Sept.	" ${ }^{\prime \prime}$	$1{ }^{1}$	28.72	G	15	χ	χ
$\times 10194$	0830	"	"	G	15	X		1113	u	${ }^{*}$	" 11	1	26.72	G	15		X
$\times 10195$	0840	${ }^{\prime \prime}$	"	G	5	X		1113	u	-	" " "	"	26.55	G	5		X
$\times 10196$	1110	"	"	F	15	X		1113	"	-	" " "	" "	24.05	G	15	x	
$\times 10197$	1230	${ }^{\prime \prime}$	"	F	5	X		1113	"	"	" " "	" ${ }^{\text {a }}$	22.72	G	5	x	
$\times 10212$	0730	16	Sept.	F	30	X		1405	18	Sept.	$67^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{N}$	$53^{\circ} 34^{\prime} 30^{\prime \prime} \mathrm{W}$	54.58	F			X
$\times 10199$	1000	*		G	20	X		1405	"	Sept.	-	53-1	52.08	G			X
$\times 10200$	1100	"	"	G	5	χ		1405	"	"	${ }^{1}$	"	51.08	G		x	
X10202	1130	"	"	G	5	X		1405	"	-	${ }^{\prime}$	"	50.58	G		X	
$\times 10203$	1240	"	"	G	10	X		1405	"	"	" " "	" " "	49.42	G		X	
$\times 10204$	0630	19	Sept.	F	20		X	*1700	*19	Sept.	-	-	10.50*				X
$\times 10205$	0630	"	"	G	5	x		1245	20	Sept.	$67^{\circ} 35^{\prime} 00^{\prime \prime} \mathrm{N}$	$54^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}$	30.25	G	5		X
$\times 10206$	0645	"	"	F	10		X	*1430	*19	Sept.	67-351	5410 W	7.75*	-	5		X
$\times 10207$	0700	${ }^{\prime \prime}$	"	G	10	X		1245	20	Sept.	$67^{\circ} 35^{\prime} 00^{\prime \prime} \mathrm{N}$	$54^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}$	29.75	G	10		X
$\times 10208$	0830	"	"	G	10	X		1245	${ }^{\prime \prime}$	Sept.	" "1"	$4{ }^{4}$	28.25	G	10		$\hat{\chi}$
$\times 10213$	0705	"	"	G	10	χ		1245	${ }^{1}$	"	" " "	" ${ }^{\prime}$	29.67	G	10		X
$\times 10214$	0845	"	"	F	10	x		1245	"	"	" " "	"	28.00	F	10		X
$\times 10215$	0730	"	"	G	10	x		1245	"	"	" " "	" " "	29.25	G	10		x
$\times 10217$	0745	"	"	G	20	χ		1245	"	"	$67^{\circ} 35^{\prime} 00^{\prime \prime} \mathrm{N}$	$67^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}$	29.00	G	20		X
$\times 10218$	1300	"	"	G	15	X		1245	"	*	" 11	" " "	23.75	G	15	x	
$\times 10216$	1305	"	"	F	10	X		1245	"	"	" ${ }^{\prime}$	"	23.67	G	10	X	
$\times 10220$	0630	20	Sept.	F	20	X		1210	21	Sept.	$67^{\circ} 13^{\prime} 10^{\prime \prime}$ N	$53^{\circ} 53^{\prime} 30^{\prime \prime} \mathrm{W}$	29.67	F	20		X
$\times 10221$	1100	${ }^{\prime \prime}$	"	F	15	x		1210	11	Sept.	$1{ }^{\prime \prime}$	" " "	25.17	F	15	X	x

Table 2. Criteria for rating the condition of fish for tagging.

Good - minor scale loss (generally 10% or less but up to 20% if fish is very lively), fish lively and hard to handle, swims away quickly after tagging.

Fair - moderate scale loss (generally 10\% to 20% but to a maximum $\mathbf{3 0 \%}$), fish swims slowly in tagging tank and on release.
*Poor - moderate to large scale loss (generally 10% to 30%), fish has difficulty maintaining its position in tagging tank; operculum or fins may be injured; if released, fish swims away sluggishly and erratically.
*Fish in poor condition were not tagged though this rating was used to describe condition of a tagged fish if, upon release, the fish was obviously in greater distress than had been anticipated.

