The Greenland Fishery for Atlantic Salmon and Canadian Catches
by

J.E. Paloheimol and P.F.Elson ${ }^{2}$

Introduction

A new evaluation of effects of the high seas fishery
on Canadian catches, present and future, is offered in this paper. It involves analysis of more detailed data on Canadian fisheries and stocks than have been available to the ICES/ICNAF Joint Worxing Party on North Atlantic Salmon (ICES/ICNAF, 1967; 1969: 1971a,b, 1972).

Effects of the Greenland fishery (Table 2) on home salmon catches (Table 1) are assessed by examining the changes in Canadian catches since the beginning of that fishery. The analysis indicates that the most important effect of the gireenland fishery is not the inmediate loss to home-water fisheries (Figs l and 2) but the reduction of spawning stocks and the future long-term production of salmon in Canada.

Tagging studies

Data for the 1950's are used to provide a base with which to compare that for the 1960's when salmon were, besides the traditional fisheries, also subject to fishing in the West Greenland area. A continuing program of marking and/or tagging the seabound smolts has been carried out by the fisheries Research Board of Canada in tributaries of the Miramichi River system since 1950. Emphasis is placed on the FRB studies because they are the only long-term series available and the taggings in different years are relatively comparable.

From 1950 to 1961 a total of 174.509 salmon smolts were marked by finclipping as they descended Miramichi tributaries ${ }^{\text {in }}$ Kerswill, 1971). Some of these data are summarized in Table 3.

Diacing serially 1960 s a comparable program was continued by piacing serially numbered tags on the smolts. Early FRB taging in the Miramichi system was reported by Saunders (1969). A compendium of all of the taggings carried out was given by Elson (1970) and orought up to date by May (1971). Table 4 summarizes the FRB tagging data from the Miramichi system and Table 5 the results of some Resource Development Branch tagging
in Table 3. Data for finclipped smolts (1b50 to 1960) are given 1963 data for later taggings are grouped for 1960 to 1963. 1964 and 1965, and 1966 to 1968 in Table 4.

```
Present address: Ramsay Wright Zoological Laboratories,
    University of Toronto,
    25 Harbord Street, Toronto 5, Ontario
2Present address: Fisneries Research Board of Canada.
    Biological Station, St. Andrews, N.B.

Table 6 summarizes the percentage escapements (passed through counting fence and not subsequentiy caught by anglers) and the percentage recoveries (counting fence plus angling) in home river for native and hatchery-reared fish in the Northwest Miramichi. The percentages are based on total recaptures for salmon or grilse.

The total percentage recovered in the home river should be a more sensitive index of effects of the Greenland fishery on home water stocks than the percentage escapement. In the early years, 1950-60, about \(22 \%\) of salmon were caught or counted in their home river. In the early 1960's when the Greenland fishery was just starting, the percentage dropped to 18\% and then later on to \(9-12 \%\) in 1964 to 1968 (Table 6). Correlating the percentage returns in home river with the average catches in Greenland one year earlier gives as coefficient of correlation \(r=-0.94\), significant at \(95 \%\) level.

A number of tagging experiments have been carried out in Nova Scotia by both the Fisheries Research Board and the Resource Development Branch. Table 7 summarizes the results of those tagings involving substantial numbers of fish over several years. The rivers include the Margaree, the River Philip and the Medway. The rate of recovery ranges between \(0.5 \%\) to \(0.9 \%\). These figures compare with \(0.5 \%\) reported by Tetreault and Carter (1972) for taggings in two Quebec rivers.

The data on llewfoundiand taggings of wild smolts up to 1968 are sumarized in Table 8 . Dniy about 2 thousand fish were tagged in 1963 or before, but some 17 thousand were tagged between 1964 and 1968 . Returns from West fireenland are conspicuousty alssent. These results may, however, be peculiar to the particular rivers where the experiments were carried out. Table 8 shows that only about \(5 \%\) of the returns were salmon and \(95 \%\) were grilse. These data contrast with the breakdown of Hewfoundland landings where salmon account for about 53 to \(65 \%\) of total (May and Lear, 1972). Hence these tagging experiments reflect poorly the Newfoundand fisheries as a whole. later tagging studies on smolts (14.755) of the Sandhill River of latirudar showed about \(67 \%\) returns as grilse in home waters and \(33 \%\) as \(1+\) fish in Greenland and 2-sea-winter fish in home wabers. About \(51 \%\) of the non-frilse were taken in Greenland, A1z in home-water commercial fisheries and 5\% were registered as escapement (Peet and Pratt, 1972).

Tetreallt and farter (1972) give information on the effect of Greculand catches on nuebec salmon. A total of 20,456 hatchery-reareatsinolts vere releasfed in 196s. Only 105 were recapturad inaluding 44 fish in fireenlind, 14 in Newfoundland and \(1 /\) in home waters. The percentige captured in Greenland (4?\%) is higher than for any other taggings except those for large sumon of the Sandhill River (5, i\%). A high rate of utilization of Quebec fish by the Greenland fishery may explain neqative correlation between fincreased catches in Greentand and decreased catches in quebec ( \(r=-0.74\) ) or between catches in fareenland and decreased catch per rod hour in Quebec rivers ( \(r=-0.35\) ).

In 1969, 36 recaptures were reported from Greenland, only 3 of these from the offshore fishery. Yet, as Tetreault and Carter point out, the inshore fishery took only 2.15 milition ib and the offshore fishery 2.72 million 10 . The discrepancy between number of recoveries reported and landings suggests that a much higher number of tagged fish were actually caught but not reported. By correcting the reported recoveries from the offshore fishery for non-reporting. Tetreault and Carter estimate that 80 fish were in fact captured as opposed to the 44 reported.

\section*{Rate of utilization of salmon}

Table 9 gives percentages of salmon caught both in Greenland and levfoundland for the previously reported taggings in New Brunswick and in Nova Scotia. Percentages do not incorporate any correction for non-reporting.

Of particular interest are percentage returns for salmon and the trends exhibited. Data for grilse have been entered for completeness. Only the data for native salmon. Part A (and native grilse, Part \(A\) ) are assumed to give reliable information on trends. Numbers of hatchery-reared fish for the early 1960 's are rather small to base conclusions on.

The important fact that emerges from Table 9 is that while the Greenland fishery has been increasing its share, the other distant fishertes, e.g., the Newfoundland fishery, have not. Recent depression of the New Brunswick stocks appears not to be related to increased exploitation in Newfoundiand.

Inspection of the actual percentages shows that the Greenland fishery takes \(16-24 \%\) of all salmon originating in New Brunswick and \(20-52 \%\) of those originating in Nova Scotia. If we were to correct for the non-reporting of tags in the manner earlier applied by Elson (1970) and Tetreault and Carter (1972), the actual nuaber of returns would almost double and the estillated share of the Greenland fishery wothd range from 27-38\% for Hew Brunswick salmon stocks and from 32-68\% for Nova Scntia stocks. In a paper analysing returns from smolt tagifnas in 1968-70 in the Miramichi, Turner (1972) estimates that the relative exploitation by the high seas fishery of Mirdilichi salmon stocks is around \(39 \%\). For their four Quebec rivers Tétriault and Carter estimated a \(30 \%\) exploitation rate of luchec grilse plus salmon by the offshore Greenland fishery and \(27 \%\) by the inshore fishery based on total recaptures of luetrec fish (i.e., both grilse and salmon combined).

\section*{Stork and recruitnent}

The fisheries Research Board of Canada has maintained a counting fence un the Northest Miramichi at Curventon since 1950 (kersaill, 1971). Counts of salmon and grilse ascending the river past the fence have been tabulated in Table 10 . columns 1 and ? The aloundance of young has been followed by annual efectrofishing surveys in \(10-14\) sanpling sections of the river. fstumated populations converted to \(100 \mathrm{yd}^{2}\) indices are tabulated in Table 10, columins 3,4 and 3 . Column 3 gives the minders of underyearlings, column the numbers of small parr and enlumn b fht: nilloters of large, pre-smolt parr. By and large these corrospond to \(0+1+\), and \(2+\) year olds.

Humbers of molts counted descending the rivers are given in colum 6 . For most years the counts are not complete. installation of the fence being delayed by lon drives andor high water. But, except 1952, 1957, 1960, 1961 and possibly lo63, they probably provide some indication of levels of snotr production.

Cstimates of the smolt run for the whole Miramichi system are qiven in Table ll. It lists the numbers of smolts tagged or fin-clipped at Curventon, number caught in researchoperated estlarial traps at Millbank, number of recaptures at Millbank of smolts marked up river and Petersen estimates of total stiolt runs for all vears except 1952 when no estimate was feasible and 1963 when the Petersen estimate appeared totally unreasonable. Estimates for those two years have been obtained by regressing estimated smolt production for the remaining years on the numbers descending at Curventon and subsequent total salmon landings and obtaining substitute estimates from a regression equation as indicated in Table 12.

To determine the relationship between the number of potential spawners and the resultiant progeny, multiple regression analysis has been carried out by regressing the estimated density of underyearlings ahove Curventon on the numbers of grilse and salmon ascending the year before. The results are presented in Table 13. To counteract sampling errors and fluctuations in the environment a threeyear running average of the data has been used in the regression.

The regression of the numbers of underyearlings on the numbers of salmon is significant while that on the numbers of grilse is not (Table l3). Graphically, this can be verified by plotting the numbers of underycarlings against the numbers of salmon (Fig. 4) and against the numbers of grilse (Fig. 3).

The results from the multiple regression suggest that the numbers of salmon are more important in determining the spawning success that the numbers of grilse. To ensure adequate recruitment in this stream spawning stocks must include adequate numbers of salmon and not grilse alone.
he have also estimated the number of eggs deposited and correlated that with the number of underyearlings. The potential eqg deposition has been calculated by assuming 800 eggs per pound of female fish. The sex ratios of male:female have been set at \(1: 1\) for salmon and \(2: 1\) for grilse and the average weights at 9.2 lb and at 3.2 lb respectively. The resultant figures are given in Table in, column 7 . Correlation between the potential eqg depositign in the previous fall and density of underyearling gives \(r^{2}=0.69\), Table 13. Part B. While this is significant, it is not as high as the multiple correlation coefficient, \(\mathrm{R}^{2}=0.82\), when the numbers of grilse and salmon are entered separately. The discrepancy is consistent with our earlier conclusion that salmon are more important than grilse in determining the spawning success.

Further regression analysis carried out in Table 14 shows a significant relaticaship tetween density of small parr and that of underyearlifigs the year before, while the relationship between density of large parr and preceding small parr is not signifirant.

Correlation between larme narr and the numbers of smolts colinted is, however, significant despite the incompleteness of counts in many years (Table iA. Part C). Since the relationships between abundances at successive stages frop the spawners through to smolt run are all significant. except for the relationship between the small parr and large parr, it is concludel that the transitional phase from the small to large parr is a mate ciritical, or at least a most variable phase in the freshatatir lite of inorthest Miramichi salmon. This particalar relationehif is probably also weakened by the fact that the small parr aboup includes, in addition to \(1+\) fish, some small 2-year-blas. but large parr, regardless of age, are likely to becothe sholts the following spring (Elson, lys7).

\section*{Smolt production and subsequent landings}

Miranichi smolt production as estimated in Table 11 is variable. The annial estimates are sometimes based on small samples of marked fish in the estuarial traps. Part of the apparent variability is probably due to sampling error. That a significant correlation exists between estimated parr popujations and subsequent smolts suggests that some of the observed variability is real.

The commercial fishery in New Brunswick is based on salmon, i.e. on fish that have spent two or fore years at sea (Allen, 1967). Table 15 gives the summary of sea ages of commercially caught fish in New Brunswick from 1949 to 1964 and. for comparison, also those landed in Nova Scotia and Newfound-
land. Over \(80 x\) of the reported landings in New Brunswick were salmon which had spent 2 years at sea. Although some grilse ported in commerctal 4) they are, for the most part, not reis illegal. landings because their sale in New Brunswick

Through the 1950's and earlier the Miramichi system produced about 60\% of the salmon landed in New Brunswick. A significant relationship between Miramichi smolt production and New Brunswick landings two years later might be expected if Our analysis of taq returns indicatificant effect on the stock. whose take from New Brunswick indes the only distant fishery that in the Greenland area stocks has appreciably changed is had a noticeable effect on Newnce if the Greenland fishery has ship which may exist between Brunswick stocks, any relationand subsequent home commeen smolt production of the Miramichi when the Greenland landings are landings should improve noticeably the case.

Total landings of salmon that originate in New Brunswick include those caught in West Greenland. New estimate might be that \(50 \%\) of the west Greenland. A reasonale from Canadian waters and that the past ten years are landed in New \(22 \%\) of Canadian catches in ( \(=.50 \times .22\) ) of Greenland catehes New Brunswick. Thus about \(11 \%\) The ll\% may be too low since mors should be New Brunswick fish. Brunswick than fish originatiore fish originating in New caught in Greenland. Lacling in Newfoundiand appear to be centage, we have made our cing faformation on the actual perThe \(20 \%\) figure which agreves uith thons using both \(11 \%\) and \(20 \%\). Table 4 is derived as follows. the tag returns tabulated in returns reported from Greenland out of 1964 there were 82 tag Assuming about \(50 \%\) losses for non-reportinglal of 704 returns. been 164 Greenland captures out of aportingl, there should have giving a \(20 \%\) rate of exploitation a total of \(786(=704+82)\) The latter figure, in fact, will give us slight (164/786=.20). although the conclusions arr essentially unaltered better results

The coeffi
smolt production and ient ( \(r\) ) for simple correlation between rynning averages for both setswick landing based on three-year \(r^{2}=0.79\) (rable 16). When the ildata is represented by are included with the New liruns ll\% of the Greenland landings to \(r^{2}=0.93\). Adding \(20 \%\) instead of landings this is increased slight improvament but not sinnificant ilf gives \(r^{2}=0.94\), a are done without smoothing the data, If if the calculations but the correlations are not as high.

The fact that correlation between smolt production and subsequent home landinis is appreciably improved by including an allowance for Hev Brunswick fish taken in Greenland of Hew Brunswich smolt praduction fisy exploits a noticeable share tween smolt production arnduction. The close relationship beFig. 5.

Landings per million smolts (Table l7) have. on the average, been somewhat higher since 1963 than prior to that. The rate of exploitation is higher now than at any time since this has had an adverse effect of the Greenland fishery. That and hence subsequent recruitment toscapement, egg deposition explotted in home waters is understantocks aiready heavily

\footnotetext{
This degree of non-reporting
but is increasingly valid as cannot be substantiated for 1964 fishery increased.
}

Table 18 11sts the number of salmon and grilse caught in the estuary at Millbank in research traps while ascending the Miramichi system. These are the best avaflable indicators of escapement of salmon and grilse from the commercial fishery. Potential egg deposition represented by these catches is also set out in Table 18, column 3. The figures do not represent the total escapement or egg deposition in the Miramichi system. but egg deposition thus calculated should be an indication of the total for the system and hence an index of expected level of progeny.

If recruitment to young stocks is a limiting factor, then egg deposition, or some index of \(i t\), should correlate with consequent smolt production.

If the survival at sea and the take by the fishery were constant from year to year, egg deposition per smolt production should also be constant. But hoth natural and fishing mortality doubtless vary. With all other factors constant, inverse correlation between egg deposition per smolt production and landings per smolt production would be expected, i.e.inigh landings from a smolt run would imply fewer salmon remaining for spawning. But if landings are dependent on variable natural mortaitity, then high landings per smalt production would tend to be an index of good survival of a yearclass. This would tend to counteract any inverse correlation with egg depostion.

Since grilse escapement results from smolt production one year before and salmon escapement from smolt production two years befure, egg deposition arises from production both one and two years carlier. The two-year component is a very important one because salmon, due to figher fecundity and female:male sex ratio, frequently make the larger contribution to egg deposition. There are now, moreover, indications of genetic polymorphism in Atiantic salmon stocks which involves a tendency for progeny to mature at the same sea age as their parents, i.e. large salmon spawners dppear necessary for recruitment of a goad stock of large salmon (Eison, ig73a). In addition. the analysis presented in Table 13 suggests that salmon eggs, usually larger than grilise eggs, are also more viable, To dvoid the difficulties of smolt production contributing to egg deposition one and two years later, threc-year running averages have been used for calculations.

The problem of two smolt classes contributing to one year's egg deposition can be approached in another way. It has already been shown (Table 16) that home commercial landings, consisting of over \(90 \% 2\)-sea-winter salmon, are correlated with smolt production 2 years befnre. Escapesment of salmon (an index of egg deposition) inight, then, also the expected to correlate with sholt runs two years before, i.e.. salmon escapement (and egg depositfon) per smolt production should be constant if other factors such as natural and fishing mortality.
etc. are coristant.

Multiple regression analyses of both egg deposition (Table 19, Part A) and salmon escapement (Part B) on Greenland and home commercial landings are summarized in Table 19. The analyses show significant and positive correlation with New Brunswick landings and significant and negative correlation with Greenland landings in both cases.

\footnotetext{
It is concluded on the basis of these results that
landings in New Brunswick have acted more as an indicator of the year-ciass strength and subsequent escapement, but that Greenland landings have contributed to the depressed escapement reported by Eison (1973b). The escalated Greenland landings supply the best available explanation for the recent and continuing deficiency in numbers of salmon returning to the Miramichi River to spawn.
}

Recaptures of Atlantic salmon tagged as smolts show that substantial numbers of those produced in the Naritimes are caught in Greenland waters. Percentane recoveries in the home river system show a significant inverse correlation with levels of catches in Greenland. Analyses of detailed data collected since 1950 indicate that the onset of the Greenland fishery is one of the major, if not the most significant, recent changes in salmon fisheries affecting Miramichi stocks of 2-sea-winter salmon.

Total landings have risen higher per million smolts produced in the Miramichi system since the Greenland fishery began. The escapement from fisheries and the potential spawning stock per given numbers of smolts has dropped correspondingly.

Lowered escapement has been followed by lowered abundance of progeny as reflected by density of young in nursery stream areas. Significantly, the recruitment as measured in the numbers of underyearlings depends more crucially on the numbers of salmon escaping the fishery than on numbers of grilse. As shown by this statistical analysis, the Greenland fishery has had a direct adverse effect on the numbers of salmon surviving to enter their spawning river. Colisequentiy, the abundant smolt runs in 1964. 1965, and i968 produced by good escapement some four years earlier failed to maintain adequate levels of recruitment and have instead been followed by alltime low commercial catches and recruitment of young in rivers.

\section*{References}

Allen, K.R. 1967. Smolt age and sea age of Atlantic salmon in Eastern Canada. Fish. Res. Board Can. MS Rep. 907: 205 p.

Elson, P.F. 1957. The importance of size in the change from parr to smolt in Atlantic salmon. Canadian Fish Culturist No. 2l, p. 1-6.
1970. Canadian tagging and recapture data for Atlantic salmon, updated to February 26,1970 . ICES/ICNAF Salmon Doc. 70/9, Serial No. 23i2, Annual Meeting, 1970.

1973a. Genetic polymorphism in Northwest Miramichi salmon, in relation to season of river ascent and age at maturation and its implications for management of the stocks. ICNAF Res. Doc. 73/76, Annual Meeting, 1973.

1973b. Limited recovery of depleted Northwest Miramicht salmon follgws ban on commercial fishery. ICNAF Res. Doc. 73/75, Annual Meeting, 1973.

ICES/ICNAF 1967. Report of the Joint Working Party on North Atlantic Salmon, 1966 . Cooperative Research Report Series A. No. 8, International Council for the Exploration of the Sea, Charlottenlund, Denmark.
1969. Report of the Joint Working Party on North Atlantic Salmon. May 1968 . Cooperative Research Report Series \(A\), No. l2, International Council for the Exploration of the Sea, Charlottenlund, Denmark.

197la. Report of the Joint Working Party on North Atlantic Salmon, Dec. 1970. Cooperative Research Report Series \(A\), No. 24 , International Council for the Exploration of the Sea, Chariottenlund, Denmark.

1971b. Report of the Joint Working Party on North Atlantic Salmon, Pitlochry, March 29-Aprili. 1971. ICNAF Comin. Doc. 71/14. Serial No. 2561, Annual Meeting. 1971.
1972. Report of the Joint Working Party on North Atlantic Salmon. Dublin. 21-24 March 1972. ICNAF Res. Doc. 72/32. Serial No. 2785, Annual Mecting, 1972.

Kerswill. C.J. 1971. Relative rates of utilization by commercial and sport fisheries of Atlantic salmon (Salmo salar) from the Miramichi River. New Brunswick. J. Fish. Res. Board Can. 28: 351-363.

May, A.K. 1971. Canadtan tagging and recapture data for Atlantic salmon 1959 through 1970. [CES/ICNAF Salmon Doc. 71/26 or ICNAF Res. Doc. 71/110. Serial No. 2593. Annual Meeting, 1971.

May, A.W., and W.H. Lear. 1972. First estimates of "salmon" versus grilse quantities in Canadian commercial catches. 1969 and 1970. ICES/ICNAF Salmon Doc. \(72 / 5\) or ICNAF Res. Doc. 72/69, Serial No. 2796. Annual Meeting. 1972.

Peet, R.F., and J.D. Pratt. 1972. Distant and local explottation of Labrador Atlantic salmon population by commerical fisheries. ICNAF Res. Doc. 72/82 and ICNAF Redbook 1972, Part III, 65-71.

Saunders, R.L. 1969. Contributions of salmon from the Rorthwest Miramichi River, New Brunswick, to various fisheries. J. Fish. Res. Board Can. 26: 269-278.

Tetreault, B., and \(H\). Carter. 1972. Adult salmon recaptures from a 1968 smolt stocking program. ICNAF Res. Doc. 72/49, Serial No. 2786, Annual Meeting, 1972.

Turner, G.E. 1972. Exploitation of Miramichi Atlantic salmon based on smolts tagged in 196B, 1969 and 1970 . ICNAF Res. Doc. 72/71 or ICES/ICHAF Salmon Doc. 72/7, Serial Ro. 2798, Annual Mecting, 1972.

Table 1. Commercial sitmon landings by provinces and angling catches for the provinces of New Brunswick and Nova Scotia from 1950-1971. Data from May \& Lear (1971) till 1970, for 1971 from the Wykes \(\&\) Dunfield (1972). Landings and catches are in thousands of pounds.
\begin{tabular}{lcccccc} 
& & Commercial Landings & & Angling Catches \\
Year & N.B. & N.S. & P.Q. & \begin{tabular}{c} 
Nfld. \\
and \\
Labr.
\end{tabular} & N.B. & N.S. \\
& & & & & & \\
50 & 980 & 294 & 829 & 3676 & & \\
51 & 740 & 262 & 799 & 3351 & & \\
52 & 717 & 214 & 793 & 3415 & 315 & 38 \\
53 & 698 & 271. & 672 & 3087 & 302 & 50 \\
54 & 879 & 228 & 520 & 2355 & 292 & 30 \\
55 & 349 & 128 & 443 & 1751 & 226 & 21 \\
56 & 422 & 136 & 466 & 1645 & 290 & 21 \\
57 & 500 & 146 & 445 & 1965 & 230 & 10 \\
58 & 613 & 204 & 510 & 2154 & 380 & 38 \\
59 & 786 & 210 & 651 & 2345 & 191 & 34 \\
60 & 642 & 240 & 632 & 2089 & 158 & 13 \\
62 & 604 & 279 & 509 & 2093 & 141 & 24 \\
62 & 735 & 312 & 501 & 2239 & 178 & 33 \\
63 & 663 & 302 & 432 & 2677 & 354 & 21 \\
64 & 1063 & 252 & 449 & 2792 & 269 & 28 \\
65 & 1233 & 294 & 572 & 2561 & 309 & 16 \\
66 & 1246 & 281 & 590 & 3078 & 401 & 21 \\
67 & 1448 & 346 & 501 & 4007 & 349 & 32 \\
68 & 798 & 232 & 424 & 3980 & 155 & 19 \\
69 & 586 & 171 & 381 & 3176 & 210 & 28 \\
70 & 574 & 355 & 383 & 3842 & 174 & 28 \\
71 & 273 & 69 & & & 98 & 19
\end{tabular}

Table 2. Commercial salmon catches off the West Coast of Greenland from 1960-1971 in thousands of pounds. Data from ICES/ICNAF Joint Working Party Report (1972).

Year

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

Commercial Landings
West Greertland
132.3
280.0
537.9
1027.3
3392.9
1898.2
3020.3
3529.5
2484.6
4872.2
4731.1
5765.0

Lable 3. Numbers of marked Northwest Miramichi smolts raturned as grilse and salmon. Smolts marked by finclipping from
 1950 to 1961. Data from Kerswill (1971).

Total Number Finclipped from 1950-1961 = 174, 509
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Method of Capture} & \multicolumn{2}{|c|}{Recaptured as} \\
\hline & Grilse & Salmon \\
\hline \multicolumn{3}{|l|}{Commercial} \\
\hline Home & 278 & 1753 \\
\hline Distant & 315 & 607 \\
\hline Angling & 339 & 126 \\
\hline Escapement & 796 & 531 \\
\hline Total & 1728 & 3017 \\
\hline \multicolumn{3}{|l|}{Percentage escapement from total returns} \\
\hline & & \(=46.18\) \\
\hline & & \(=17.68\) \\
\hline \multicolumn{3}{|l|}{Rate of Recovery \(=2.718\)} \\
\hline
\end{tabular}

Table 4. Numbers of tagged smolts returned as grilse or aimon. All smolts marked and liberated in Northwest Miramichi by the Fisheries Research Board of Canada between 1960 to 1968. Data from May (1971).

Years 1960-1963


Years 1964-1565


Table 4 continued.

Years 1966-1968
\begin{tabular}{cr} 
Native fish & Hatchery fish \\
Total No. \(=48500\) & Total No. \(=70147\)
\end{tabular}


E 14

Table 5. Numbers of tagged molts returned as grilse or salmon. All smolts marked and liberated in the Miramichi system mostly by the Resource Development Branch between 1960 to 1968. Data from May (1971).

Years 1960-1963
\begin{tabular}{rr} 
Native fish & Hatchery fish \\
Total No. \(=1474\) & Total No. \(=7658\)
\end{tabular}


Years 1964-1965


Table 5 continued.

Years 1966-1968


Table 6. The percentage escapement and the percentage recovered in home rivers for the Northwest Miramichi taggings. Data from Tables 3 and 4.

The percentage escapement
\begin{tabular}{ccccc} 
& \multicolumn{2}{c}{ Native fish } & \multicolumn{2}{c}{ Hatchery fish } \\
Years & Grilse & Salmon & Grilse & Salmon \\
\(1950-1960\) & 46.1 & 17.6 & - & - \\
\(1960-1963\) & 62.8 & 3.4 & 48.6 & 4.6 \\
\(1964-1965\) & 43.6 & 2.9 & \(20: 7\) & 1.9 \\
\(1966-1968\) & 31.9 & 4.3 & 13.2 & 1.7
\end{tabular}

The percentage recovery in home river
\begin{tabular}{ccccc} 
& \multicolumn{2}{c}{ Native fish } & \multicolumn{2}{c}{ Hatchery fish } \\
Recaptured as \\
Years & Grilse & Salmon & Grilse. & Salmon \\
\(1950-1960\) & 65.6 & 21.7 & - & - \\
\(1960-1963\) & 82.6 & 18.0 & 58.1 & 20.9 \\
\(1964-1965\) & 76.8 & 8.8 & 51.2 & 10.1 \\
\(1966-1968\) & 67.7 & 12.0 & 49.3 & 8.6
\end{tabular}

The correlation coefficient between the percentage recovery and the Greanland catches, \(r^{2}=-0.94\)

F 3

\title{
Table 7. Numbers of returns of smolts tagged in Nova Scotia rivers of Margaree, Medway and Philip from 1960 to 1968. Data from May (1971).
}

Years 1960-1963
\begin{tabular}{|c|c|c|}
\hline Fishery & Hat
Tota
Re & sh
7658
as \\
\hline Caught in & Grilse & Salmon \\
\hline W. Greenland & & 2 \\
\hline Commercial & & \\
\hline Home & 0 & 2 \\
\hline Distant & 9 & 3 \\
\hline Angling & 31 & 4 \\
\hline Escapement & 4 & 2 \\
\hline Total & 44 & 13 \\
\hline Rate of Recovery & \multicolumn{2}{|c|}{0.748} \\
\hline \multicolumn{3}{|l|}{Years 1964-1965} \\
\hline & \multicolumn{2}{|c|}{Hatchery fish} \\
\hline & \multicolumn{2}{|l|}{Total No. \(=25195\)} \\
\hline & \multicolumn{2}{|c|}{Recaptured as} \\
\hline Caught in & Grilse & Salmon \\
\hline W. Greenland & & 26 \\
\hline \multicolumn{3}{|l|}{Commercial} \\
\hline Home & 1 & 25 \\
\hline Distant & 12 & 41 \\
\hline Angling & 27 & 10 \\
\hline Escapement & 46 & 34 \\
\hline Total & 86 & 136 \\
\hline Rate of Recovery & \multicolumn{2}{|c|}{0.883} \\
\hline
\end{tabular}

Table 7 continued.

Years 1966-1968
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{Fishery Caught in} & \multicolumn{2}{|c|}{Hatchery fish} \\
\hline & \multicolumn{2}{|c|}{Recaptured as} \\
\hline & Grilse & Salmon \\
\hline W. Greenland & & 117 \\
\hline Commercial & & \\
\hline Home & 3 & 29 \\
\hline Distant & 49 & . 54 \\
\hline Angling & 18 & 7 \\
\hline Escapement & 41 & 28 \\
\hline Total & 111 & 225 \\
\hline Rate of Recovery & \multicolumn{2}{|c|}{\(0.485 \%\)} \\
\hline Years 1960-1968 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Fishery Caught in} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Native fish \\
Total No. \(=7614\) \\
Recaptured as
\end{tabular}} \\
\hline & Grilse & Salmon \\
\hline W. Greenland & & 7 \\
\hline Commercial & & \\
\hline Home & 1 & 5 \\
\hline Distant & 1 & 15 \\
\hline Angling & 13 & 1 \\
\hline Escapement & 16 & 3 \\
\hline Total & 31 & 31 \\
\hline Rate of Recov & & \\
\hline
\end{tabular}
- 19 -

Table 日. Numbers of returns of smolts tagged in Newfoundland rivers from 1960 to 1968. Data from May (1971).

Years 1960-1968

Fishery Caught in
W. Greenland

Commercial Home
Distant
Angling
Escapement
Total

Rate of Recovery

Native fish
Total No. \(=19868\)
Recaptured as
Grilse Salmon

0

5
1
1
1
120
B
0.648

Table 9. The percentage utilization of salmon and grilge in Greenland and other distant (mostly Newfoundland) waters. Data from Table 3 and 4 for Northwest Miramichi, Part A, and from Table 7 for Nova Scotia, Part B.

Part A, New Brunswick
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Percentages by years} \\
\hline Place of Capture & 1950-1960 & 1960-1963 & 1964-1965 & 1966-1968 \\
\hline Native Salmon Distant & 20 & 17 & 10 & 15 \\
\hline Greenland & 0 & 13 & 24 & 22 \\
\hline Hatchery Salmon Distant & & 40* & 26 & 26 \\
\hline Greenland & 0 & 7* & 23 & 16 \\
\hline Native Grilse Distant & 10 & 4 & 6 & 7 \\
\hline Hatchery Grilse Distant & 0 & 13 & 25 & 25 \\
\hline \multicolumn{5}{|l|}{Part B, Nova Scotia} \\
\hline Hatchery Salmon Distant & & 23* & 30 & 24 \\
\hline Greenland & 0 & 15* & 19 & 52 \\
\hline Hatchery Grilse Distant & & 20* & 14 & 41 \\
\hline
\end{tabular}
* based on total returns which number less than 50 fish.

Table 10. Numbers of grilse and salmon ascending at the Curventon Counting Fence and the subsequent production of young and eggs.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{No. ascending the year hefore} & No. of underyearlings & \begin{tabular}{l}
No. of \\
Small \\
Parr
\end{tabular} & No. of L.arge Parr & Smolt Run & \begin{tabular}{l}
Fgg \\
Deposition \\
in millions
\end{tabular} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1950 & & & 5.6 & 3.5 & 0.5 & & \\
\hline 1951 & 720 & 1931 & 24.9 & 15.7 & 8.9 & 33451 & 4.31 \\
\hline 1952 & 387 & 2113 & 19.8 & 19.3 & 11.6 & \(849^{1}\) & 3.24 \\
\hline 1953 & 1302 & 2148 & 22.1 & 27.8 & 12.2 & 25269 & 6.64 \\
\hline 1954 & 1030 & 2165 & 1.0 & 4.8 & 7.0 & 25429 & 5.65 \\
\hline 1955 & 1055 & 2601 & 53.3 & 1.0 & 2.6 & 25728 & 6.12 \\
\hline 1956 & 783 & 2756 & 11.2 & 37.6 & 1.4 & 13251 & 5.25 \\
\hline 1957 & 561 & 762 & 14.7 & 20.6 & 13.0 & \(831^{1}\) & 2.72 \\
\hline 1958 & 706 & 875 & 20.7 & 12.6 & 6.1 & 18327 & 3.35 \\
\hline 1959 & 580 & 2420 & 33.9 & 18.6 & 9.8 & 19241 & 4.21 \\
\hline 1960 & 1002 & 7357 & 125 & 14.2 & 104 & \(32^{2}\) & 10.00 \\
\hline 1961 & 377 & 2712 & 6.7 & 14.2 & 8.9 & \(402^{1}\) & 3.72 \\
\hline 1962 & 879 & 952 & 26.3 & 2.8 & 9.2 & 18559 & 4.05 \\
\hline 1963 & 223 & 2285 & 13.1 & 19.3 & 5.9 & 6716 & 2.78 \\
\hline 1964 & 311 & 6085 & 17.6 & 11.3 & 13.2 & 28929 & 6.37 \\
\hline 1965 & 146 & 5125 & 13.9 & 11.0 & 10.3 & 32504 & 4.93 \\
\hline 1966 & 120 & 1689 & 5.9 & 14.8 & 12.4 & 22749 & 1.89 \\
\hline 1967 & 111 & 2990 & 10.6 & 4.5 & 11.3 & 30892 & 2.97 \\
\hline 1968 & 171 & 1809 & 16.7 & 4.9 & 6.8 & 51161 & 2.18 \\
\hline 1969 & 74 & 971 & 1.2 & 6.8 & 6.3 & . 12878 & 1.11 \\
\hline 1970 & 129 & 2453 & 34.2 & 4.9 & 4.5 & 17675 & 2.58 \\
\hline 1971 & 105 & 731 & 4.4 & 5.9 & 8.6 & 15322 & 1.02 \\
\hline
\end{tabular}

Columns 1 and 2: Data from Henderson et al (1965) for 1950 to 1963 , for the later years from Elson. (unpublished manuscript F.R.B., St. is Andrews).

Columns 3 to 5: Data from Elson (unpublished manuscript, F.R.B. St. Andrews).
The figures are average numbers per 100 square yards with lower and upper sectinns of the Northwest Miramichi weighted equally.

Column 6: Data from the same source as for columns 1 and 2.
Column 7: Egg deposition \(=800(9.21 \times . S(n o\). of salmon ascending) \(+3.22 \times .333(n o\). of grilse ascending) \}

\footnotetext{
\({ }^{1}\) Not used in regression analysis in Table 12.
}

Table 11. Estimated smolt production of Miramichi from 1951 to 1971.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Column & (1) & (2) & (3) & (4) & (5) \\
\hline \multirow[t]{2}{*}{Year} & \[
\begin{gathered}
\text { No. } \\
\text { finclipped }
\end{gathered}
\] & \[
\begin{gathered}
\text { No. } \\
\text { tagged }
\end{gathered}
\] & No. of smolts at Millbank & \begin{tabular}{l}
No. \\
recap. at Millbank
\end{tabular} & Estimated smolt prod. in millions \\
\hline & M & M & n & m & \\
\hline 1951 & 48373 & & 1671 & 48 & 1.7 \\
\hline 1952 & 1309 & & 3998 & 0 & \(2.3{ }^{2}\) \\
\hline 1953 & 45214 & & 17615 & 989 & 0.8 \\
\hline 1954 & 45914 & & 35592 & 1068 & 1.5 \\
\hline 1955 & 38792 & & 76818 & 2265 & 1.3 \\
\hline 1956 & 21863 & & 58215 & 679 & 1.9 \\
\hline 1957 & 779 & & 25118 & 17 & 1.2 \\
\hline 1958 & 28853 & & 69855 & 776 & 2.6 \\
\hline 1959 & 26426 & & 4337 & 209 & 0.6 \\
\hline 1960 & 3429 & & 40823 & 47 & 3.0 \\
\hline 1961 & 597 & & 18906 & 20 & 0.6 \\
\hline 1962 & \(16737^{1}\) & & 44826 & 237 & 3.2 \\
\hline 2.963 & & 8958 & 49723 & 49 & \(2.2{ }^{3}\) \\
\hline 1964 & & 24499 & 16472 & 79 & 5.1 \\
\hline 1965 & & 30184 & 31930 & 194 & 5.0 \\
\hline 1966 & & 40566 & 9085 & 366 & 1.0 \\
\hline 1967 & & 41720 & 20555 & 313 & 2.7 \\
\hline 1968 & & 55093 & 6414 & 65 & 5.4 \\
\hline 1969 & & 63214 & 4927 & 793 & 0.4 \\
\hline 1970 & & 47665 & 8698 & 346 & 1.2 \\
\hline \multirow[t]{2}{*}{1971} & & 18950 & 2431 & ". 36 & 1.3 \\
\hline & & & & & : \\
\hline \multicolumn{2}{|l|}{Column (1): Data} & \multicolumn{3}{|l|}{Kerswill (1971).} & \\
\hline Column & \begin{tabular}{l}
(2): Data \\
Andre \\
and \(h\)
\end{tabular} & \[
\begin{aligned}
& \text {, Elson } \\
& \text {, chery-rea }
\end{aligned}
\] & \begin{tabular}{l}
published \\
1971). Fig \\
smolts.
\end{tabular} & nuscript, es include & \begin{tabular}{l}
\[
R B, S t .
\] \\
both native
\end{tabular} \\
\hline
\end{tabular}

\section*{Table 11 continued.}

Column (3) 6 (4): Data from Elson (unt é
St. Andrews), some of the earlier data given in Kerswill (1971).

Column (5): Petersen estimate \(=\mathrm{Mn} / \mathrm{m}\)

1
Not included in Kerswill's article because of the 1961 cut-off date.

2 No Petarsen estimate available. The value given is calculated from the regression of smolt run at Miramichi on landings in New Brunswick and Greenland, Table 12, Part A.

3 The Petersen estimate comes to 9.9 million smolts. This was judged totally unreasonable in the light of subsequent landings (Table 1) or of numbers of smolts descending at Curventon. Instead two estimates, one based on the regression of smolt run on landings, and the other based on the regression of smolt run on numbers descending at Curventon were used; the two regressions gave the estimates 3.6 and 0.8 , the average 2.2 being the one used in the Table.

Table 12. The regression of estimated smolt run (Table 11) on the New Brunswick commercial landings two years later (Table 1) and on the numbers descending at Curventon. The regressions are used only to estimate the smolt run at Millbank for 1952 and 1963.

Part \(A \quad Y=\) smolt run from Table 11, \(X=\) New Brunswick commercial landings two years later. The years 1952 and 1963 have been excluded.

Regression Analysis
\begin{tabular}{cccc} 
& \multicolumn{2}{c}{ Regression Analysis } \\
Variable & Regr. Coeff. & Std. Dev. & t-ratio \\
Const. & -0.2696 & & \\
X & 0.0035 & 0.00104 & \(3.39 * *\)
\end{tabular}
\[
r^{2}=0.812
\]

Part \(B \quad Y=\) smolt run from Table \(11, X=\) numbers descending at Curventon. The years 1952, 1957, 1960 and 1961 have been excluded.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Regression Analysis} \\
\hline Variable & Regr. Coeff. & Std. Dev. & t-ratio \\
\hline Const. & 0.061 & & \\
\hline X & 0.000088 & 0.000031 & 2.92** \\
\hline & & \multicolumn{2}{|c|}{\(r^{2}=0.611\)} \\
\hline & & & * \\
\hline \multicolumn{4}{|l|}{A* Significant at 1\% level.} \\
\hline
\end{tabular}

Table 13. Regrassion analysis of the densfty of underyearilings on the numbers of grilse and salmon the year before ( \(P a r t A\) ) deposition (Part B) underyearifing on the estimated egg deposition (Part B).

Part A \(\quad X=\) the number of underyearlings (Table 10), \(X_{1}=\) numbers of salmon ascending, \(X_{2}=\) numbers of grilse ascending at Curventon. Data smoothed by taking three-year running averages.
\begin{tabular}{lccc} 
& \multicolumn{3}{c}{ Regression Analysis } \\
Variable & Regr. Coeff. & Std. Dev. & t-ratio \\
Const. & 8.17 & & \\
\(\mathrm{X}_{1}\) & 0.014 & 0.0024 & 5.92 n * \\
\(\mathrm{X}_{2}\) & 0.0003 & 0.0008 & 0.405
\end{tabular}
\[
R^{2}=0.818
\]

Part B \(\quad X=\) the estimated egg deposition, \(Y=\) numbers of underyearlings.

Regression Analysis
Variable Regr. Coeff. Std. Dev. t-ratio
Const. 5.06

X
2.73
0.694
3.94 \%

Significant at lq level.
a The second correlation coffficient is based on a differently calculated three-yoar rumning average. In the first instance the successive yoars are grouped in the second the data is arranged in ascending order in \(X\) prior to calculating the three-year running average.

Table 14. Regression analysis of the abundance of young salmon on their abundance in the previous year. Data from Table 10 and Table 11 . Figures based on three-year running averages.

Part \(A \quad Y=\) number of small parr, \(X=\) number of underyearlings a year before.

> Regression Analysis


Part \(B \quad X=\) number of large parr, \(X=\) number of small parr a year before.

Regression Analysis
\begin{tabular}{cccc} 
Variable & Regr. Coeff. & Std. Dev. & t-ratio \\
Const. & 7.000 & & \\
\(\mathbf{X}\) & 0.118 & 0.104 & 1.13
\end{tabular}
\(X\)
0.118
\[
r^{2}=0.265
\]
\[
(0.693)^{a}
\]

Part C \(\quad Y=\) smolt production, \(X=\) number of large parr a year later.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multicolumn{3}{|l|}{Regression Analysis} \\
\hline & Regr. Coeff. & Std. Dev. & t-ratio \\
\hline \multirow[t]{2}{*}{Const.} & 0.585 & \multirow[b]{2}{*}{0.092} & \multirow[b]{2}{*}{2.05*} \\
\hline & 0.187 & & \\
\hline \multirow{2}{*}{X} & & \multicolumn{2}{|r|}{\(\mathrm{r}^{2}=0.445\)} \\
\hline & & - & .397) \({ }^{\text {a }}\) \\
\hline
\end{tabular}
** Significant at \(1 \%\) level.
* Significant át \(5 \%\) level, one-sided test.
\({ }^{a}\) See footnote \(a\) for Table 13.

Table 15. Sea ages of commercially caught salmon in New Brunswick,
Nova Scotia and Newfoundland.'

\section*{New Brunswick}
\begin{tabular}{cccccc} 
& \multicolumn{6}{c}{ No. of salmon at sea age } \\
Years grouped & 1 yr & 2 yrs & 3 yrs & 4 yrs & Ave. age \\
\(1949-54\) & 52 & 1686 & 228 & 1 & 2.09 \\
\(1955-60\) & 245 & 5287 & 363 & 8 & 2.04 \\
\(1961-64\) & 631 & 2127 & 262 & 7 & 2.00 \\
Total & 928 & 9100 & 853 & 16 &
\end{tabular}

Nova Scotia

1949-64
38
40
9
0
2.00

Newfoundland
\begin{tabular}{llllll}
\(1949-54\) & 102 & 427 & 35 & 0 & 1.99 \\
\(1955-60\) & 309 & 985 & 44 & 0 & 1.97 \\
\(1961-64\) & 102 & 293 & 11 & 0 & 1.96 \\
Total & 513 & 1635 & 90 & 0 &
\end{tabular}

1 Data source same as used in Allen (1967).

Table 16. Regression analysis of total landings from New Brunswick salmon stock on the estimated total smolt production of the Miranichi. A three-year running average has been used in all cases.

Part A \(\quad Y=\) total New Brunswick commercial landings in 1000 pounds two years later, \(X=\) smolt production at Miramichi in millions of fish.

Regression Analysis
Variable Regr. Coeff. Std. Dev. t-ratio

Const.

X
249.11
\[
226.96
\]
\[
\begin{gathered}
46.47^{\circ} \quad 4.88 * 0 \\
r^{2}=0.784 .
\end{gathered}
\]

Part B \(\quad \begin{aligned} & Y=\text { total New Brunswick commercial landings two years } \\ & \text { later }+0.11(G r e e r l a n d ~ c a t c h e s ~ a ~ y e a r ~ l a t e r) ~ i n ~ \\ & 1000\end{aligned}\) later + 0.11(Greerland catches a year later) in 1000 pounds, \(X=\) smolt production.

Regression Analysis
\begin{tabular}{|c|c|c|c|}
\hline Variable & Regr. Coeff. & Std. Dev. & t-ratio \\
\hline Const. & 45.85 & - & \\
\hline X & 376.95 & 38.68 & 9.75* \\
\hline & & \(r^{2}\) & . 929 \\
\hline
\end{tabular}


Table 17. Landings per smolt production. Data from Table 11 and Table 1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
Commercial \({ }^{1}\) \\
Landings
\end{tabular} & Total Commercial landings 1954-1963 & Smolt Production two years earlier & Total Smolt Production two years earlier & \begin{tabular}{l}
Landings \({ }^{2}\) \\
Per Smolt \\
Production
\end{tabular} \\
\hline 1954 & 879.0 & & 2.3 & & \\
\hline 1955 & 349.0 & & 0.8 & & \\
\hline 1956 & 422.0 & & 1.5 & & \\
\hline 1957 & 500.0 & & 1.3 & & \\
\hline 1958 & 613.0 & & 1.9 & & \\
\hline 1959 & 786.0 & & 1.2 & & \\
\hline 1960 & 642.0 & & 2.6 & & \\
\hline 1961 & 630.5 & & 0.6 & & \\
\hline 1962 & 791.0 & & 3.0 & & \\
\hline 1963 & 770.6 & & 0.6 & & \\
\hline & ! & 6383.1 & & 15.8 & 404.0 \\
\hline 1964 & 1268.5 & 1963-1971 & 3.2 & & \\
\hline 1965 & 1911.6 & & 2.2 & & \\
\hline 1966 & 1625.6 & & 5.1 & & \\
\hline 1967 & 2052.1 & & 5.0 & & \\
\hline 1968 & 1503.9 & & 1.0 & & \\
\hline 1969 & 1082.9 & & 2.7 & & \\
\hline 1970 & 1548.4 & & 5.4 & & \\
\hline 1971 & 1219.2 & & 0.4 & & \\
\hline & & 12212.2 & & 25.0 & 488.5 \\
\hline \multicolumn{6}{|l|}{1 N.B. landings + 0.2* Greenland landings one year earlier.} \\
\hline \multicolumn{6}{|l|}{Calculated by dividing total landings by estimated total smolt production for 1954 to 1963 and for 1964 to 1971.} \\
\hline
\end{tabular}


Table 19. Regression analysis of potential egg deposition per smolt production on New Brunswick commercial landings per smolt production 2 years earlier and on Greeniand earlier.


Regression Analysis
\begin{tabular}{crcc} 
Variable & Regr. Coeff. & Std. Dev. & t-ratio \\
Const. & 1442.56 & & \\
\(X_{1}\) & 1.63 & 1.56 & 1.04 \\
\(X_{2}\) & -0.59 & 0.18 & \(-3.32 \star *\)
\end{tabular}
\[
R^{2}=0.730
\]
** Significant at iq level.


Fig. 1 Commercial salmon Landings on the Canadian East Coast since 1910. Figure from ilay 6 Lear (1971) *.


G 6


Fig. 3. Correlation between numbers of fry and numbers of grilse.


Fig. 4. Correlation between numbers of fry and numbers of
```

