International Commission for

the Northwest Atlantic Fisheries

<u>Serial No. 3161</u> (D.c.3)

ICNAF Res. Doc. 74/15

ANNUAL MEETING - JUNE 1974

Notes on ICNAF Joint Larval Herring Surveys in Georges Bank-Gulf of Maine areas in 1971 and 1972¹

bу

D. Schnack Institut für Meereskunde, Kiel, Fed. Rep. Germany

Results of the Larval Herring Surveys in 1971 and 72 had been summerized as far as possible at the respective times in Res. Doc. 72/123 and 73/115 respectively. In both cases a more thorough look at the complete data appeared desirable. Having analysed the data from both years more intensively, the hope seems to be justified that the Larval Herring Survey program could provide more information than so far derived from it. However, completeness of the 1971 data is not yet reached and this is probably not feasable to the same level as for 1972. Also for the 1972 data more specific interpretation has to coupe with several uncertainties in the result due to probably both sampling and processing of samples. At this state it seems not possible to gaine a more final picture from the data by a comprehensive paper as suggested in Res. Doc. 73/115. However, it might be useful to give some summerizing table and figures indicating possibilities and difficulties and giving a basis for comparisons with results of further surveys.

Comments to tables and figures:

Fig 1: The general distribution of herring larvae in the Georges Bank-Gulf of Maine areas largely corresponds between the years 1971 and 1972. (Distribution charts based on stations with at least 1 larva per m^2)

Fig 2-4: The distribution of larvae is given for different size categories, summerizing the results over the whole sampling period in 1971 and 1972 respectively.

¹Presented to the Special Commission Meeting, FAO, Rome, January 1974, as Res.Doc. 74/15

Areas where spawning took place are indicated by the distribution of larvae less than 10 mm in length. Only slight changes are $_{\pi^{\prime}}$ given between both years: on Georges Bank for instance the spawning area was somewhat larger in 1971 than 1972.

Differences in the distribution of single size categories indicate no drift in easterly but only in westerly directions on Georges Bank. For the Nantucket Schoals area, drift in both directions appears possible from 1971 data, but in 1972 a westerly drift obviously predominated.

The three main populations of larvae (on Georges Bank including Nantucket Schoals area, coastal Gulf of Maine, south west off/Nova Scotia) appear to remain separated, especially with respect to the occurence of large larvae (>25 mm).

Fig 5.6: For length frequency distribution absolute numbers of larvae on Georges Bank and in Nantucket Schoals area are given, separately for each sampling period. The polymodal structure of the length distribution indicate largely separated hatching periods in more or less regular timeintervals. Modal lengths differ by about 4-6 mm. According to a mean growth rate of 5 mm per month as reported by Boyar et al. (1973) , this length difference corresponds to a difference in age of about 1 month. Larvae of the oldest hatching group encountered during the first cruise had than hatched in beginning of August.

Fig 7.9: The increase in length of the largest larvae during the sampling period was about 6 mm/month on Georges Bank and about 7 mm/month in Nantucket Schoals area. These values fit into the range of monthly increase of larval length reported by Boyar et al. (4, 1 - 7, 4 mm).

Fig 8.10: It was tried to combine respective modes of the length distributions from successive cruises according to the expected growth. The correct coordination is not always definitely detectable, especially not in the case of Georges Bank. It appears desirable to get more reliable length frequency distributions. Measuring a subsample of 100 larvae is obviously not sufficient in view of the complex frequency distributions.

Fig 5-10 indicate, that it might be possible to separate hatching groups and follow their growth and mortality during the sampling periods. Results from further surveys may showswhether this is feasable.

- 2 -

Fig 11-18 and Table 1,2: Abundance estimates of larvae are given separately for areas time periods and size groups. The values for 1971 were recalculated after some corrections had been made. For Georges Bank the new calculation lead to fairly different abundance estimates compared to the first ones as given in Res. Doc. 72/123 and 73/115. However, the general picture has not changed: The abundance of larvae was significantly higher in Georges Bank than in Nantucket Schoals area in 1971 but vice versa in 1972. (Note the differences in scale, when comparing Figures!) In the combined areas larval production was in the same order of magnitude in both years.

In the coastal Gulf of Maine area (Fig 16-19) the abundance of small larvae (<10 mm) did not differ much between 1971 and 72.

However, the values for 1972 seems to be largely underestimated, regarding the comparably high numbers of larger larvae. It may be suggested that more larvae were produced in 1972 than 1971 in that area.

A comparison between the coastal Gulf of Maine and the off shore area is difficult (incomplete time coverage of hatching period in the off shore area, underestimated abundance of small larvae in the coastal area). It may be suggested, however, that in Georges Bank including Nantucket S¢hoals area larval production was in the range of 1/2 to 1 order of magnitude higher than in the coastal Gulf of Maine area.

REFERENCES

Boyar, H.C., R.R. Marak, F.E. Perkins, and R.A. Clifford. 1973. Seasonal distribution and growth of larval herring in the Georges Bank-Gulf of Maine area from 1962 to 1970. J. Cons., 35(1): 36-51.

B4

	(p	sed on 505 net)		105.000	6-01	-
			Ţ		2	
Area	Period	vessel	<10	10- 15	>15	total
Nantucket Sthoals (Stat. 1- 35)	2 Oct - 7 Oct 12 Oct - 17 Oct 31 Oct - 3 Nov 28 Nov - 4 Dec	Wieczeno Argos Ant. Dohrn Albatross IV	244 81 0 230 3.6	183 166 174 126	188 38 36	450 442 166
Georges Bank (Stat. 47- 99)	22 Sep - 30 Sep 10 Oct - 22 Oct 18 Oct - 24 Oct 5 Nov - 9 Nov 6 Dec - 13 Dec	Argos Wieczno Argos A. Dohrn Albatross IV	131 131 50 24	42 245 112 61 5.0	85 115 44 44	176 488 1561 154 52
Nove Scotie (Stat. 100 - 107, 112 - 124)	28 Sep - 30 Sep 23 Oct - 25 Oct 26 Oct - 24 Oct 10 Nov - 12 Nov Nov - 15 Dec 13 Dec - 15 Dec	Argos Wieczno Argos A. Dohrn E.E. Prince Albatross IV	, N, L, O 0 0 0 0 0	0400000 4000	75,1* 75,1* 60°1* 4	0.1" 138 6.5" 71 58 68(75)"
Gulf of Maine (a: along shore b: Voff shore sta- tions 34, 36-38, 41,42,44-46)	2 Sep - 6 Sep 21 Sep - 6 Sep 8 Oct - 10 Oct 17 Oct - 18 Oct 18 Oct - 22 Oct 3 Nov - 5 Nov 6 Nov - 12 Nov	Lucille B Albatross IV Wieczno Argos Duchess II A. Dohrn Duchess Albatross IV	81 00 81 00 81 00 0.57 b	26.0.1 2.2 74 2.2 26 0.1	18 18 18 18 18 18 18 18 18 10 10 18 18 18 18 18 18 18 18 18 18 18 18 18	29 29 116 5-8 9-1 199 6-1 7-1
V additionel						_

Estimates of abundance of larval herring (1972)

B 5

*) largly underestimated as near shore stations not sampled **) estimate from narrow station grid sampled by Canada

- 4 -

Estimate of abundance of larval herring 1971

Į

(based on 505/(333) nets)

				larvae . 10	-	
Area	Feriod	Vessel	<10	10 -15	>15	total
Nantucket Shoals	18 Sep-24 Sep 1 Oct- 3 Oct 21 Oct-25 Oct 10 Nov-12 Nov 12 Dec-17 Dec	Cryos Delaware Viandra W. Herwig Albatross IV	- 0.6(0.6) 49 3.6(0.5)	- 0.6(1.9) 20 (16)	- - 11.2(11. 3) - 48 (55)	- - 12.4(14.1) 504 71 (72)
Georges Bank	11 Sep-18 Sep 23 Sep-30 Sep 9 Oct-20 Oct 3 Nov- 8 Nov 4 Dec-12 Dec	Cryos Delaware Viandra W. Herwig Albatross IV	183* 260 275 (222) 163 0.6(-)	7.1 * 29 200 (187) 1.8(2.5)	e.6 14 129 (164) ? 183· (157)	192* 303 667 (57.) 515 186 (160)
Nova Scotia	11 Sep-15 Sep 24 Sep-28 Sep 10 Oct-15 Oct 31 Oct-3 Nov 3 Dec- 8 Dec	Cryos Delaware Viandra W. Herwig Albatross IV	38* 74 0.1(-) 15.7 - (0.2)	7.1 * 70 0.3(0.3) 31 (31)	2.3 * 15 0.5(0.3) 34 (38)	47 [*] 159 0.8(0.6) 40.5 65 (69)
Gulf of Maine (along shore cruises)	9 Sep-16 Sep 22 Sep- 1 Oct 13 Oct-25 Oct 27 Oct- 8 Nov	Roqual " "	9.5 15 130	11 11 22 15	2.5 11 11	23 39 162 34

*)mean from 505 and 333 net

- 5 -

B 6

_ 7 _

B 8

