International Commission for

the Northwest Atlantic Fisheries

Serial No. 3386
Sumin. Doc. 74/47
(Revised)
ANNUAL MEETTNG - JUNE 1974
An example of the by-catch problem on directed fisheries for 1975
by

V.C. Anthony \& J.A. Brennan
National Marine Fisheries Service
Northeast Fisheries Center
Woods Hole, Massachusetts 02543

The effect of by-catch on management of mixed species fisheries were examined in Res. Doc. 73/99/ It was stressed that the individual catch of a species in fisheries directed toward other species in addition to directed fishing can produce a fishing mortality in excess of that desired. Thus, the catch from a directed fishery must be less than the TAC if that species is caught incidental to other fisheries. The estimation of quantities that should be taken in directed fisheries to prevent exceeding the TAC's was the subject of Res. Doc. 73/99 and is briefly updated here with 1972 by-catch statistics. The 1972 nominal catches for finfish only were analyzed in the same manner as previousiy developed by the Assessments Subcomittee (Redbook, 1973). Table 1 indicates those directed fisheries summed over countries that produce the greatest incidental catches of other species. The silver hake directed fishery, for example, produces only 67,762 tons of silver hake from a total catch of 150,162 tons for this fishery. A directed fishery for herring, on the other hand, produces 116,834 tons of herring out of a total catch of 131,945 tons. A total of 232,913 tons (as shown by the column total) of herring'were taken, however, mainly as a result of by-catches of herring from the directed fisheries on mackerel, silver hake and red hake.

Table 2 gives the by-catch ratios calculated as ratios of by-catch to main species sought within each directed fishery. The totals by species sought fisheries indicate the
relative amount of by-catch generated by each directed fishery. The data in Table 2 were used in a linear programming technique for examining the effect of directed fishing on the total catches taken for each species under certain constraints of TAC levels and minimum catches taken by the US fisheries. The results of two examples are shown in Tables 3 and 4. Proposed 1975 TAC levels were chosen as constraints in Table 3 to provent the TAC level from being exceeded under the by-catch situation as shown in Tables 1 and 2. Of course, the 1972 by-catches may not pertain to 1975 and the results would be altered by any change in the by-catches that have taken place since 1972. Constraints were chosen for unregulated species (e.g. other pelagics) by calculating the proportion of their catch to the catch of a similar regulated species (e.g. mackerel) and applying this to the TAC for the latter. TAC constraints that add to 974,000 tons thus produce a total catch of 875,000 tons of fish from a directed catch of 547,000 tons (Table 3). This is the macimum total catch that can be taken without exceeding the TAC constraints and the macimum directed catch that can be taken under the 1972 pattern of incidental catches.

Table 4 adds the additional constraints of providing the coastal state with at least a partial potential for pursuing directed fisheries.

The total catch is thereby reduced by 20,000 tons although the directed catch in only reduced by 4,000 tons. Both procedures indicate no directed fishery for haddock, red hake or other groundfish and a very low directed catch of 3,000 tons for other fish.

This procedure indicates the problem of species regulation when significant by catch occurs in directed fisheries.

In some cases, even with no directed catch, the total catch on the species may exceed the allowable total catch by a substantial level; for red hake, for example.

The incidental catches must be reduced or the catches of directed fisheries must be less than the total catch deaired.
-3-
Table 1 Catch of major species by directed finfish fishexdeauin. 18.22 da Subarea 5 and Statistical Area 6

Table 2. Ratios of by-catch to main species sought within major finfish fisheries for Subarea 5 and Statistical Area 6 based on 1972 fishing patterns aummed over countries and considering each species as independently distributed over fisheries.

Table 3. Linear programing simulation of 1975 catches maximizing total catch (1000 tons)

Species Bought	Total allowable 1 catch constraint	Directed catch	Total catch
Cod	45.0	22.5	35.0
Haddock	6.0	0	6.0
Redfish	25.0	23.0	25.0
Silver hake	175.0	114.0	130.0
Red hake	65.0	0	50.0
Pollock	27.0	6.5	27.0
Yellowtail	21.0	20.0	21.0
Other flounder	25.0	0	25.0
Other groundfish	55.5	92.0	175.5
Hering	175.0	246.0	292.0
Mackerel \&	292.0	0	62.5
other pelagics	62.5		
Other fish			
Total			

${ }^{1)}$ Catch less than or equal to

Table 4 . Linear programming simulation of 1975 catches maximizing total catch considering nation allocation and preserving portion to the US directed fishery (catches in 1000 tons).

Species sought	Total catch allowable 1 constraint	Directed catch	Total catch
Cod	45	22	
Haddock	6	0	35
Redfiah	25	23	6
Sliver hake	175	100	25
Red hake	65	0	116
Pollock	27	24	45
Yellowtail	21	7	27
Other flounder	25	21	21
Other groundfish	55.5	0	25
Herring	175	92	25
Mackerel \& other	292	251	175
pelagics	3	292	
Other fish	62.5		62.5
Total	974		854.5

${ }^{1}$) Catch less than or equal to

	Additional constraints (directed catch greater than or equal to) for coastal state fisheries.
Species	Directed
sought	catch
Cod	8
Haddock	0
Redfish	19
Silver hake	3
Other flounder	25
Other groundfish	9
Herring	21
Other pelagics	9
Other flsh	3

