# International Commission for 

the Northwest Atlantic Fisheries

Serial No. 3597
(D.c.9)

ICNAF Res.Doc. 75/104

ANNUAL MEEPING - JUNE 1975<br>An analysis of the silver hake fishery on the Scotian Shelf.<br>by<br>W. G. Doubleday<br>and<br>R. G. Halliday<br>Fisheries and Marine Service<br>Environment Canada<br>Biological Station<br>St. Andrews, N. B.<br>Canada

## 1. INTRODUCTION

The USSR is the only major exploiter of silver hake on the Scotian Shelf (ICNAF Div. 4VWX). Nominal catches increased from 2 metric tons (mt) in 1961 to $123,000 \mathrm{mt}$ in 1963, but declined to $2,500 \mathrm{mt}$ by 1967 (Table 1). A second major increase in catches began in 1969 with a peak catch of $169,000 \mathrm{mt}$ in 1970. Catches remained above 100,000 in 1971 and 1972 and increased to 299,000 mt in 1973. Catches in 1974 of $90,000 \mathrm{mt}$ were limited by catch quota. A catch quota of $120,000 \mathrm{mt}$ is in effect for 1975. Most of the catches have been taken in ICNAF Div. 4W.

Several assessments of the status of silver hake on the Scotian Shelf have been presented to the Assessments Subcommittee of ICNAF (Halliday, MS 1973, unpublished 1974; Doubleday, unpublished 1975). The 1973 and 1974 assessments were based on Soviet data on the age composition of the commercial catch. It was noted in 1974 that events in the fishery, particularly the large 1973 catches, could not be adequately explained using available data. Anderson and Nichy (MS, 1975), using a new ageing technique for SA5 silver hake, demonstrated that there are substantial differences in interpretation of age from otoliths between USSR and USA scientists, USA scientists obtaining age readings one to two years younger. It was concluded by the authors that similar ageing problems for SA4 silver hake caused the difficulties in explaining fishery events on the Scotian Shelf. Thus, Doubleday (unpublished, 1975) reassessed the SA4 stock using Div. 5 Y silver hake age length keys obtained using the new USA technique (provided by Dr. E. Anderson, unpublished data). This analysis suggested that the
fishery was largely dependent on age 1 and age 2 fish and that the 1976 fishery will be heavily dependent on the strength of the 1974 year class on which no reliable information is available.

This document describes growth of SA4 silver hake from length-frequency data (i.e. independently from previous ageing techniques), the age composition of commericial and research vessel survey catches, and size and age at sexual maturity. From these analyses, the validity of Doubleday's previous analysis of the fishery is assessed, and inferences are made on which future management policy can be based.

## 2. DISTRIBUTION AND STOCK STRUCTURE

Canadian research vessel survey catches in July, 1970-72, indicate that silver hake are widely distributed on the Scotian Shelf except in the cold water area to the north of Banquereau and in the head of the Bay of Fundy (Fig. 1). Highest catch rates were in the deep holes and along the continental slope in depths greater than 100 fath in the central shelf area (the Scotian Gulf) and to the north of Sable Island Bank. A small concentration was also located in the Fundian Channel between Browns and Georges Banks. These areas of the shelf are frequently inundated with incursions of warm "Slope Water".

Major spawning concentrations occur on the west bar of Sable Island Bank. It is likely that silver hake caught in Div. $4 V$ are taken from the eastern fringe of the Sable Island Bank stock. As the Div. $4 \mathrm{~W}-4 \mathrm{X}$ dividing line runs through the centre of the Scotian Gulf which is a major area of concentration of the Sable Island stock, it is likely that much of the landings recorded from Div. 4X are also from the Sable Island Stock. Concentrations of silver hake do occur and are fished in the Browns Bank area. This may be a small separate stock or part of the Georges Bank or Gulf of Maine stocks.

## 3. AGEING

Due to controversy over the ageing of silver hake by otoliths (Anderson and Nichy, 1975), methods of estimating mean length at age and numbers at age using only length frequency samples were examined. The fitting of parabolas by least squares to the logarithms of numbers of fish at length, a method proposed by Buchanon-Wollaston and Hogeson (1929) was found to yield good estimates of mean length at age and fair estimates of numbers at age for ages one and two and, in some cases for age three. A nominal date of spawning of June 30 was adopted, and the age of fish increased one year on January 1st.

Length frequency samples from USSR catches of silver hake in 4 W were aged using a Hewlett-Packard 9821A programmable calculator and plotter. The first step consisted of entering numbers at length and plotting the natural logarithms of numbers at length vs. length (Fig. 2). A parabola was then fitted to the lengths corresponding to the youngest age group. Whenever possible, one length group or more to the right of the first mode was included in the fitting procedure. When the first parabola was fitted, the remaining length frequencies were corrected to remove the estimated numbers of fish in the first age class. The fitting procedure was repeated for the second age group, and when possible, for the third. In some cases, adequate separation of the modes for successive age classes was not observed and the sample was recorded as unresolved.

In order to compare this method of ageing with ageing by otoliths, the method was applied to Oct., Nov., and Dec. length frequencies from Table 1 of Anderson and Nichy. Fig. 3 shows the fitted parabolas for October and November. The December sample was unresolved. Table 2 compares the estimated mean length at age for ages one, two, and three with that of Anderson and Nichy. The methods are in agreement for ages one and two but not for age three.

The analysis of Canadian research vessel length frequencies for 4 W silver hake indicated that recording of silver hake lengths by 1 cm groups instead of two cm groups is preferable. The finer measurement doubles the number of points used in the curve fitting process.

For further discussion of the use of fitted parabolas in the ageing of fish, see Doubleday (MS 1975).

## 4. GROWTH

Table 3 contains estimated mean lengths at age for USSR silver hake catches from ICNAF division 4W from 1969 to 1974. Earlier years were not included due to fluctuations in the number of samples taken from year to year: Samples whose age components were not resolved are indicated by asterisks.

Fig. 4 illustrates the monthly growth of 4 W silver hake. It appears that growth is most rapid from March to June and September to December with a slower rate from July to September and January to March. The wavy curve was drawn freehand to follow the seasonal trends. Attempts to fit a Von Bertalanaffy growth curve to these data were unsuccessful so that the following empirical procedure was adopted. From 19 months onward, the growth rate appeared to be roughly constant and the line

$$
L=17.85+0.428 A \quad R^{2}=0.78
$$

was fitted by least squares, where $A$ is the age in months and $L$ is the length in cm. Fish in a length group were assigned the mid-length of the interval (i. e. 16.00-17.99 became 17). Growth from 9 to 21 months was estimated by fitting a quadratic curve.

$$
L=-8.8703+3.2768 A-0.07 .4773 A^{2} \quad R^{2}=0.92
$$

One year old fish are approximately 13 cm long in March and reach 26 cm by December. By the following December, they are 31 cm long.

## 5. CANADIAN RESEARCH VESSEL CATCHES

Canada has conducted groundfish inventory cruises by research vessel covering the entire Scotian Shelf in the late June to early August period each year from 1970 (Halliday and Kohler, MS 1971). Silver hake has a low avallability to the gear used and uncorrected estimates of population biomass are substantially below recent catch levels (Table 4). Surveys suggest that abundance declined in 1971 from the 1970 level, increased in 1972 and again in 1973 to above the 1970 level, then decreased slightly in 1974.

Survey estimates of population length-frequencies contain a wider range of sizes than those of commercial catches and are distinctly bimodal with modes at approximately 20 cm and 28 cm (Table 5). The above growth analysis from commercial catch length-frequencies confirm that these modes represent one year old and two year old fish respectively. Analysis of survey length-frequencies shows that most of the catch is of age 2 fish (Table 6).

Sex ratios in survey catches in Div. 4W are fairly consistent for age 2 fish, approximately half as many males as females being caught (Table 7). At age 1, however, the ratio of males to females has declined from 1.6 in 1971 to 0.5 in 1974.

## 6. SIZE AND AGE AT SEXUAL MATURITY

Observations on sexual maturity of silver hake were made on research vessel cruises and the basic data for 1971 to 1974 are given in Table 8A and B. On average over the four years, almost all males greater than 25 cm in length were mature, the $50 \%$ maturity point lying between 23 cm and 24 cm . Almost all females greater than 30 cm were mature, the $50 \%$ maturity point lying between 26 cm and 27 cm . There was some variation among years.

Research vessel estimated population length-frequencies from Div. 4W were taken as representative of the size composition of the actual population. Age groups 1 and 2 were separated out for males and females separately. The maturity keys in Table 8 were then applied to the length-frequencies of these age groups to obtain the proportion mature at age (Table 9). The actual ages of individual fish on which maturity observations were made are not known. Thus, the convention was used that, at length groups where both age 1 and 2 fish occur, immature fish were assigned to age 1 with the residual, if any, being assigned to age 2. This makes the reasonable assumption that younger fish of the same size are less likely to be mature.

In the years 1971-74, a very small proportion of age 1 males were recorded as mature and almost all age 2 males were mature (Table 7A). Given that there will have been a small proportion of errors in assigning maturity stages and a small error in age designation, it is concluded that essentially all age 1 males are immature and all age 2 males mature.

For females in those years, a small proportion of age 1 fish are also recorded as mature (Table 9B). For the reasons cited above, it is concluded that essentially all age 1 females are immature. Substantially higher proportions of age 2 females are recorded as immature in contrast to the observations for males. As few as $6 \%$ are recorded as immature in 1971, and as many as $48 \%$ in 1972, averaging $25 \%$ for the four years. An explanation of this variation is not obvious at this time. The 1972 data in particular have been examined in detail for potential sources of error but this did not provide a plausible explanation of the high proportion of immatures in that year. Thus, it is tentatively concluded that, on average, $75 \%$ of females mature at age 2 but that this may vary from $50 \%$ to almost $100 \%$.

## 7. WEIGHT-LENGTH KEYS

Table 10 contains parameter estimates for length-weight keys for silver hake caught in 4W on Canadian research vessel cruises in July, 1969 to 1974. The relation:

$$
\log W t=\log A+B \log L
$$

where Wt is measured in grams and length $L$ in cm . For the purpose of yield calculations, parameter estimates for all six years were averaged to give the combined key
$\log W t=-2.403534+3.177198$ logL.

## 8. AGE COMPOSITION OF COMMERCIAL CATCHES

Ageing analysis of USSR Div. 4W commercial length-frequencies provides estimates of the proportion at age in the catch in the months samples. As noted in Section 1, most of the commercial catch is taken by the USSR in Div. 4W. Thus, USSR Div. 4 W age compositions are taken as representative of the entire fishery. For months for which sampling data were available, the mean weights provided with USSR samples were divided into total Div. 4 W catches for that month giving estimates of numbers removed which were then prorated over ages.

Catches for which there were no sampling data were prorated on an annual basis on the annual proportions at age obtained by summing over months for which sampling data were available. Silver hake catches prior to 1965 were not broken down by month in ICNAF Statistical Bulletins. Thus, estimates of numbers removed at age could be calculated only from 1965 to 1974.

Age 1 and age 2 fish could be separated out in most catches, but it was necessary to lump fish age 3 and older together as these age groups could not be separated sufficiently often to provide adequate estimates of their contribution to catches.

Age 2 fish predominate in the catches of all years (except 1966) and from 1970 onwards, age 1 fish made a significant contribution in terms of numbers (Table 11). Comparison of age composition using length-frequency analysis with that obtained using Anderson's Div. 5Y age-length keys (Table 12) and also with that obtained using USSR ageing (Table 13 - reproduced from Rikhter, unpublished 1975) indicate a broad agreement on age composition using lengthfrequency analysis and USA age-length keys, but these are very substantially different from USSR age compositions. This confirms the hypothesis that USSR ageing is erroneous for the Scotian Shelf silver hake stock and is supporting evidence for the general accuracy of USA ageing in SA5.

## 9. YIELD PER RECRUIT

The growth equations of section 4 and the weight-length key of section 7 were used to derive a yield per recruit isopleth diagram (Fig. 5). Monthly growth and mortality were calculated and yield was accumulated to 72 months of age. Yield per recruit calculations were based on knife edge selection at a given age and are calculated per nine month old fish. A value of $M=0.4$,
similar to Anderson (MS 1975) was assumed. Identical calculations with $M=0.5$ and $M=0.6$ were carried out with lower yields per recruit but with qualitatively similar results.

Yield per recruit increases rapidly over a wide range of fishing mortalities as the age of selection increases from twelve to eighteen months. Recalling that silver hake nominally reach twelve months of age in June, this observation implies that one year old fish should not be caught at all. The current mean age of selection is approximately 15 months in the USSR 4 W silver hake fishery.

Yield per recruit rises steeply as the rate of fishing mortality, $F$ rises to 0.5 and more slowly as $F$ increases to 0.7 , for $F$ greater than 0.7 little increase in yield is observed.

With knife-edge selection at 15 months, 0.7 is the value of $F$ which maximizes yield per recruit.

## 10. VIRTUAL POPULATION ANALYSIS

 AND CATCH PROJECTIONSThe numbers removed from the stock at age are probably most accurately estimated for ages 1 and 2 by length-frequency analysis, but inability to separate ages 3 and older preclude the use of virtual population analysis on these data. Although there are undesirably large differences in numbers at age between these and estimates obtained using Div. 5 Y age-length keys, there are broad similarities between the two data sets. The latter are used for virtual population analysis as they appear to be sufficiently accurate to allow meaningful examination of the relative importance of recruitment assumptions to projected catch levels for 1976.

Using $M=0.40$, the data in Table 12 were analysed assuming an $F$ in 1974 of 0.50 for ages $2-6$ and of 0.12 for age 1 . Fat age 6 in earlier years was chosen to correspond to F levels for younger age groups in the same year. Results of the calculations are displayed in Tables 14 and 15.

Means of the F's calculated for ages 2-5 in each year fluctuate in close relationship to fluctuations in annual effort (days fished) on the Scotian Shelf by USSR $>1800$ gross ton otter trawlers. The ciata series are as follows:

|  | $\underline{1968}$ | $\underline{1969}$ | $\underline{1970}$ | $\underline{1971}$ | $\underline{1972}$ | $\underline{1973}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{F}_{2-5}$ | 0.07 | 0.48 | 1.05 | 0.96 | 0.74 | 1.51 |
| Effort | 1677 | 2871 | 5405 | 6823 | 4813 | 9333 |

These data have a correlation coefficient of $R=0.96\left(R^{2}=0.92\right)$, and an intercept on the $Y$-axis of approximately -0.10 (Fig. 6). This suggests that the VPA results adequately explain recent fishery events and that an $M=0.40$ is likely an overestimate of the actual natural mortality rate.

Estimates of numbers at age 1 indicate that recruitment improved in 1969 with entry of the 1968 year class to the fishery and it appears that the 1967 y.c. was a modest improvement over that of 1966 (Table 14). The 1969 y.c. and 1970 y.c. Were of comparable size to that of 1968, but the 1971 y.c. was almost twice as large and the 1972 y.c. also good. The estimated size of the $1973 \mathrm{y} . \mathrm{C}$. is a direct function of the $F$ chosen in 1974 of 0.12 . The ratio of $F^{\prime}$ 's at age 1 : age 2 in the previous six years varies from 0.15 to 0.28 , averaging 0.23. Using the average ratio of 0.23 , i.e that $F_{\text {age }} 1=0.115$ gives an estimate for the 1973 y.c. of $975 \times 10^{6}$ fish. Thus, it is likely that the 1973 y.c. is poorer than the preceeding five.

The 1974 population estimates in Table 14 are taken as the starting point for projection of potential yield in 1976 (Table 16). The calculated 1974 catch weight is $7.8 \%$ above the actual reported catch indicating that the mean welghts used are slightly high. Thus, calculated catches for 1975 and 1976 have been corrected downwards. The 1974 year class is assumed to contain $1.0 \times$ $10^{\circ}$ fish at age 1. Assumptions on the strength of the 1975 year class are insignificant.

An $F=0.70$ on age $2+$ fish is required in 1975 to approximately attain the quota of $120,000 \mathrm{mt}$. At the present age at recruitment of about 15 months, this value of $F$ maximises yield per recruit. $F_{\text {max }}=0.70$ is applied in 1976 giving a calculated yield of approximately $100,000 \mathrm{mt}$.

This calculation is critically dependent on the $F$ values assumed for 1974 and the assumed size of the 1974 year class. The assumed $F=0.50$ for 1974 is only one third the level of $F$ calculated for 1973 and fmplies a reduction in effort to around the 1969 level of approximately 3000 days fished. No infomation on 1974 effort is available at this time. It seems likely, however, that the authors have erred on the conservative side. The size of the 1973 year class is particularly sensitive to assumptions on $F$.

The assumed size of the 1974 year class appears modest in comparison with the good year classes of 1968 to 1972. However, if the comparison is extended to include 1962 to 1972, this estimate is certainly above the overall average. It must be pointed out that the 1971 and 1972 year classes which formed the basis of the record 1973 catch were exceptionally strong and not an indication of what is to be expected in general. If the 1974 year class is $50 \%$ larger than has been assumed, the projected 1976 catch is increased
by 20,000 tons.

## 11. TEMPERATURE AND ABUNDANCE

The relationship between bottom temperature on Sable Island Bank in July and year class success was examined. Bottom temperatures for the area of Sable Island Bank less than 50 fathoms deap were obtained by averaging bottom temperature measurements for that area taken on Canadian research vessel cruises. The number of observations averaged varied from ten to fifty nine with about fifteen for most years. Catch per hour fished of one and two year old silver hake in 4W by USSR greater than 1800 gross ton otter trawlers was calculated using estimated numbers at age from section eight. Table 17 contains the computed values. Unfortunately, the effort for 1974 is not yet known. Catch per effort of two year old fish appeared to be a more reliable measure of year
class size than the corresponding quantity for one year olds. Fig. 7 shows the relation between temperature at spawning and catch per hour fished of two year olds. Evidently, temperatures near six degrees are favorable while temperatures near four degrees are unfavorable. A two variable equation with catch per unit effort of parents and temperature in July would predict the catch per unit effort of the two year old filial populations well for all year classes except 1971. However, in view of the small number of data points, the fitting of a response surface does not appear justified.

On the basis of observed temperatures for 1972-1974, the 1972 year class is expected to be moderate, the 1973 year class weak, and the 1974 year class strong.

## 12. DISCUSSION

Estimation of the age composition of USSR silver hake catches in 4 W by analysis of length frequency samples revealed a consistent pattern of monthly growth in agreement with the results of Anderson and Nichy (MS, 1975) and at variance with USSR estimates of catch at age.

Biological samples from Canadian research vessel catches indicate that a negligible proportion of one year old silver hake are sexually mature. While almost all two year old males are mature, the proportion of immature two year old females averages $25 \%$ and can be considerabley higher.

Yield per recruit calculations show that, for a range of natural mortality rates, yield is increased by not catching one year old fish. When $M=0.4$ and the mean age of selection is at the current level of fifteen months, the optimal value for $F$ is 0.7 . Very little yield is lost by increasing the mean age of selection beyond the optimal level.

Estimated age compositions of the USSR commercial catch of silver hake in 4 W derived by analysis of length frequency samples are in agreement with age compositions derived using U.S. age-length keys for SA5. The largest proportion of the catch, in numbers, is made up of two year old fish. A further large fraction consists of one year old fish. Thus, a high fishing mortality is exerted on a year class before it reaches maturity.

The current mean age of selection of fifteen months has two serious implications on the future of the fishery. In terms of weight contributed to the total catch, two and three year old fish overshadow all other ages. Thus, a sequence of two mediocre year classes can cripple the fishery. Secondly, the breeding stock consists mainly of two and three year old fish so that the spawning stock biomass is extremely vulnerable to fluctuations in recruitment. There is some evidence that the 1973 year class is poor. Increasing the mean age of selection would help to stabilize the catch and the spawning stock size by allowing greater survival to age four.

There is some indication that year class success and temperature are related. Available evidence suggests that the 1973 year class is poor to moderate while the 1974 year class is moderate to good. The availability of one year old fish is variable from year to year so that the catch per hour fished of one year olds shows no clear relationship with temperature (Fig. 8).

Catch projections based on the assumption that 1974 effort was at the 1969 level and that the 1974 year class was moderate ( $10^{9} \mathrm{fish}$ ) indicate that a 1976 quota of 100,000 m.t. is appropriate. The assumed year class size for 1974, while lower than those of 1971 and 1972, is high in comparison with year class sizes over the history of the fishery from 1963 to 1974. Only strong evidence that the 1974 year class considerably exceeds $10^{9}$ fish could justify a higher quota since underestimation of year class strength is equivalent to increasing the mean age of selection which, in this case, results in increased yield.

## REFERENCES

Anderson, E. D., MS 1975. Assessment of the ICNAF Division 5 y silver hake stock. ICNAF Res. Doc. 75/62 (Serial No. 3544).
Anderson, E. D. and F. E. Nichy, MS 1975. A comparison between US and USSR silver hake ageing. ICNAF Res. Doc. 75/13 (Serial No. 3457).

Buchanon-Wollaston, H. G. and W. C. Hogeson, 1929. A new method of treating frequency curves in fishery statistics, with some results. J. Cons. Exp. Mer. 4, 207-225

Doubleday, W. G. MS 1975. Enhancing Age Length Keys. ICNAF Res. Doc.
Halliday, R. G., MS 1973. The silver hake fishery on the Scotian Shelf. ICNAF Res. Doc. 73/103 (Serial No. 3065).

Halliday, R. G. and A. C. Kohler, MS 1971. Groundfish survey programmes of the St. Andrews Biological Station, Fisheries Research Board of Canada - objectives and characteristics. ICNAF Res. Doc. 71/35 (Serial No. 2520).
Table 1
Silver hake landings from ICNAF Div. 4VWX
by Division and Country (metric tons round)

|  | ICNAF DIVISION |  |  | COUNTRY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 Vn | 4 Vs | 4W | 4X | Total | Canada | Japan | USSR | USA | Others |
| - | - | - | 187 | 187 | - | - | - | 187 | - |
| - | - | - | 2 | 2 | - | - | - | 18 | - |
| - | - | 8,825 | 6 29 | 8,854 | - | - | 8,825 | 29 | - |
| 168 | - | 116,388 | 6,472 | 123,028 | - | - | 123,023 | 5 | - |
| 32 | 2 | 62,905 | 18,210 | 81,147 | - | - | 81,147 | 5 | - |
| 180 | 2 | 49,461 | -379 | 50,022 | 5 | - | 49,987 | 27 | 34 |
| 40 | - | 3,860 | 6,423 | 10,323 | 5 | V | 10,323 | - | 3 |
| - |  | 1,834 | 643 | 2,483 | - | 67 | 2,476 | 1 | - |
| 2 | $\begin{array}{r}237 \\ \hline\end{array}$ | 3,150 | + 58 | 3,523 | 5 | 767 | 3,441 | 1 | - |
| - | 1,230 | 43,563 | 1,558 | 46,564 |  | 213 V | 46,323 | 1 | $28{ }^{7}$ |
| 11 | 5,116 | 158,938 | 4,991 | 169,045 | - | 129 | 168,916 | - | - |
| 11 | 3,000 | 119,452 | 6,190 | 128,653 | - | 8 | 128,633 | 1 | $11 \%$ |
| - | 75 3.431 | 108,769 | 5,204 | 114,048 | - | 63 | 113,774 | - | 2115 |
| - | 3,431 | 265,105 | 30,085 | $298,621$ |  | $88$ | $298,533$ | - |  |
| -•• |  | ... | ... | $90,342$ | 10 | $67$ | $89,984$ | - | $2815$ |
| Not recorded by Division |  |  |  |  |  |  |  |  |  |
| France (SP) |  |  |  |  |  |  |  |  |  |
| GDR |  |  |  |  |  |  |  |  |  |
| Spain |  |  |  |  |  |  |  |  |  |
| FRG $10 \mathrm{~m} . \mathrm{t}$., Cuba $201 \mathrm{~m} . \mathrm{t}$. |  |  |  |  |  |  |  |  |  |
| FRG |  |  |  |  |  |  |  |  |  |
| Prelimin | stati | tics |  |  |  |  |  |  |  |

[^0]

- 11 -

Table 2. Comparison of mean length at age.

| AGE | OCT. MEAN L. | NOV. MEAN L. | ANDERSON $\mathcal{G}$ NICAY <br> MEAN L. |
| :---: | :---: | :---: | :---: |
| 1 | 25.0 | 27.2 | 25.2 |
| 2 | 30.6 | 32.2 | 30.3 |
| 3 | 38.4 | 38.2 | 34.5 |

Table 3. Mean length (cm) at age by month for USSR silver hake sampling 1969-1974.

| Age Yr. Class | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 . |  |  |  |  |  | 12.7 |  |  |
| 9 |  |  | 12.8 |  |  |  | 14.6 | * |
| 10 |  |  |  | 13.9 |  | 16.5 | * | 17.3 |
| 11 |  |  |  | 16.3 |  | 18.6 | 18.5 | 18.7 |
| 12 |  |  | 20.3 | * |  |  | 18.3 | 19.1 |
| 13 |  |  |  | 19.3 |  | 20.7 | 20.7 | 21.5 |
| 14 |  |  |  | 21.4 |  | 21.3 | 22.6 | 22.6 |
| 15 |  |  |  | 22.5 | 21.6 | 21.3 | 23.1 | 25.2 |
| 16 |  |  | 21.1 | 24.0 |  | 22.7 | 24.7 | 25.5 |
| 17 |  |  | 23.6 | 25.8 |  | 24.0 | 24.6 | * |
| 18 |  |  |  | 25.5 | 26.5 |  |  | 26.0 |
| 19 |  | 27.0 | * |  |  |  |  |  |
| 20 |  |  |  |  |  | 26.7 |  |  |
| 21 |  | 26.9 | 26.2 | 26.8 | 25.7 | 26.0 | 25.6 |  |
| 22 |  |  | 26.9 |  | 27.2 | * | 27.1 |  |
| 23 |  | 29.2 | 27.1 |  | 27.7 | 28.1 | 26.2 |  |
| 24 |  | 29.1 | * |  | * | 28.5 | 29.1 |  |
| 25 |  | 29.8 | 28.7 |  | 27.5 | 28.4 | 30.0 |  |
| 26 |  |  | 28.2 |  | * | 29.2 | 29.8 |  |
| 27 |  |  | 28.7 | 29.8 | 26.7 | 29.3 | 30.7 |  |
| 28 |  | * | 29.3 |  | 29.7 | 29.8 | 31.0 |  |
| 29 |  | 29.0 | 30.2 |  | * | 30.0 | 31.4 |  |
| 30 |  |  | 31.1 | 32.1 |  |  |  |  |
| 31 | 32.6 |  |  |  | * |  |  |  |
| 32 | 33.1 | * | * | 30.1 |  | 31.2 |  |  |
| 33 |  | * | * | 31.3 | * | 31.6 |  |  |
| 34 |  | 31.1 |  | * | * | * |  |  |
| 35 |  | * |  | 33.0 | * |  |  |  |
| 36 |  | * |  | * | * | * |  |  |
| 37 |  | * |  |  | * | * |  |  |
| 38 |  | * |  |  | * | * |  |  |
| 39 |  |  |  |  | , | * |  |  |
| 40 |  |  |  |  | - |  |  |  |
| 41 |  |  |  |  |  |  |  |  |
| 42 |  | 39.5 |  |  |  |  |  |  |

Table 4 . Div. 4VWX Silver hake - Canadian research vessel survey estimates of bicmass (metric tons), population numbers ( $x 10^{-6}$ ), and catch per tow, 1970-74 .

| Year | Bicmass | Kg/tow | Popn. No. |  | No./tow |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1970 | 23,520 | 4.90 | 142.7 | 29.32 |  |
| 1971 | 7,880 | 1.59 | 53.3 | 10.78. |  |
| 1972 | 15,260 | 3.09 | 87.9 | 17.72 |  |
| 1973 | 38,190 | 7.69 | 229.9 | 46.29 |  |
| 1974 | 36,140 | 7.28 | 183.5 | 36.95 |  |

Table 5. Div. 4VWX Silver hake - estimated population length-frequency from Canadian research vessel surveys ( $x 10^{-3}$ ).

| Length cm. | 1970 | 1971 | $\underline{1972}$ | 1973 | 1974 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\leqslant 10$ | 37 | 90 | - | - | $\overline{-}$ |
| 11 | - | - | 46 | 47 | 71 |
| 12 | 68 | 46 | - | 48 | - |
| 13 | 34 | 123 | 139 | 313 | 17 |
| 14 | 239 | 534 | 371 | 672 | 187 |
| 15 | 645 | 1,139 | 1,128 | 1,346 | 384 |
| 16 | 1,297 | 1,649 | 1,467 | 2,149 | 552 |
| 17 | 2,111 | 2,620 | 2,689 | 4,274 | 1,680 |
| 18 | 3,790 | 5,797 | 3,066 | 8,355 | 3,864 |
| 19 | 4,554 | 4,318 | 3,921 | 12,767 | 6,146 |
| 20 | 6,490 | 2,520 | 3,986 | 13,554 | 8,854 |
| 21 | 7,991 | 1,917 | 3,099 | 12,740 | 6,622 |
| 22 | 5,352 | 698 | 4,650 | 9,886 | 5,174 |
| 23 | 2,938 | 512 | 3,462 | 4,432 | 2,478 |
| 24 | 1,342 | 241 | 1,527 | 2,377 | 1,824 |
| 25 | 3,317 | 728 | 3,762 | 3,015 | 3,203 |
| 26 | 9,987 | 1,237 | 7,423 | 9,940 | 10,048 |
| 27 | 18,389 | 3,946 | 11,402 | 22,291 | 20,435 |
| 28 | 24,417 | 6,255 | 11,135 | 36,325 | 25,129 |
| 29 | 19,768 | 5,635 | 6,245 | 30,186 | 20,849 |
| 30 | 10,210 | 3,883 | 4,474 | 19,849 | 18,736 |
| 31 | 6,765 | 2,603 | 2,118 | 10,221 | 11,930 |
| 32 | 3,375 | 1,999 | 2,705 | 4,486 | 7,307 |
| 33 | 2,197 | 1,489 | 1,768 | 3,506 | 7,197 |
| 34 | 1,711 | 805 | 1,524 | 2,283 | 4,320 |
| 35 | 885 | 337 | 1,391 | 2,615 | 2,735 |
| 36 | 838 | 306 | 1,153 | 2,271 | 2,442 |
| 37 | 953 | 349 | 557 | 1,986 | 2,200 |
| 38 | 203 | 77 | 360 | 1,201 | 1,265 |
| 39 | 550 | 114 | 218 | 975 | 600 |
| 40 | 376 | 99 | 170 | 529 | 561 |
| 41 | 252 | 87 | 280 | 801 | 624 |
| 42 | 100 | 71 | 188 | 547 | 781 |
| 43 | 394 | 203 | 114 | 730 | 440 |
| 44 | 174 | 248 | 65 | 209 | 670 |
| 45 | 120 | 145 | 87 | 426 | 366 |
| 46 | 138 | - | - | 322 | 413 |
| 47 | 240 | 157 | 142 | 479 | 877 |
| 48 | 140 | 104 | 50 | 270 | 355 |
| 49 | 136 | 55 | 101 | 34 | 410 |
| $\geqslant 50$ | 158 | 158 | 848 | 1,419 | 1,797 |
|  | 142,681 | 53,294 | 87,831 | 229,876 | 183,543 |

Table 6. Div. 4VWX silver hake - estimated numbers at age ( $\times 10^{-6}$ ) from Canadian research vessel population estimates.

Year
1970
1971
1972
1973
1974


Total
38.3100 .8
3.6
142.7
$21.3 \quad 26.1$
5.9
53.3
$31.9 \quad 46.9$
9.0
87.8
$70.8 \quad 148.5$
10.6
229.9
$36.4^{\text {. }} 120.0$
27.1
183.5

Table J. Div. 4W silver hake - sex ratios (males:females) at ages 1 and 2 in Canadian research vessel surveys.

Year
1971
1972
Age 1
Age 2
1.62
0.48

1973
1.52
0.43

1974
0.93
0.29
0.50
0.68

| Table 8a. <br> A. MALES |  | Div. 4VWX silver vessel cruises. |  |  | at sexual ma observations |  | bserved on Canadian research h and percentage mature at length. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length | 1971 |  | 1972 |  | 1973 |  | 1974 |  | Combined |  |  |
| (cm) | 1 mm | Mat | 1 mm | Mat | Imm | Mat | Imm | Mat | Imm | $\operatorname{Mat}$ | Mature |
| 15 | 12 |  | 8 |  | 7 |  | 2 |  |  |  |  |
| 16 | 11 |  | 11 |  | 5 |  | 5 |  | 39 |  | - |
| 17 | 22 |  | 18 | 1 | 12 |  | 14 |  | 66 |  | 1 |
| 18 | 48 |  | 26 | 1 | 17 |  | 14 |  | 66 113 | 1 | 1 |
| 19 | 35 |  | 26 | - | 18 |  | 28 | 1 | 113 | 1 | 1 |
| 20 | 24 |  | 31 | - | 21 | 1 | 38 | 1 | 107 | 1 | 1 |
| 21 | 14 |  | 18 | 3 | 8 |  | 21 | 3 | 106 | 4 | 4 |
| 22 | 5 |  | 8 | 5 | 14 | - | 15 | 4 | 61 | 3 | 5 18 |
| 23 | 2 | 2 | 10 | 2 | 9 | - |  | 3 | 42 | 9 | 18 |
| 24 |  | 4 | 16 | 2 | 4 | 3 | 6 | 3 12 | 27 | 7 | 21 |
| 25 | - | 9 | 4 | 11 | 2 | 3 19 | 6 | 12 | 16 | 21 | 57 |
| 26 | - | 14 | 1 | 22 | - | 52 | 2 | 24 | 8 | 63 | 89 |
| 27 | 2 | 26 | 1 | 28 | - | 52 49 | 4 | 43 | 2 | 131 200 | 98 |
| 28 | - | 34 |  | 24 | - | 71 | 4 | 89 | 7 | 200 | 97 100 |
| 29 | 1 | 25 |  | 11 | 1 | 39 | - | 89 | 2 | 218 | 100 |
| 30 |  | 14 |  | 16 | 1 | 24 | - | 86 | 2 | 161 | 99 |
| 31 |  | 6 |  | 13 | 1 | 19 | - | 82 | 1 | 136 | 99 |
| 32 |  | . 4 |  | 8 | 2 | 14 | 1 | 57 | 2 | 95 | 98 |
| 33 |  | 3 |  | 6 |  | 14 |  | 25 |  | 51 38 | 100 |
| 34 |  | - |  | 2 |  | 18 |  | 13 |  | 38 | 100 |
| 35 |  | - |  | 2 |  | 8 |  | 3 |  | 13 | 100 |
| 36 |  | - |  | 2 |  | 3 |  | 2 |  | 5 | 100 |
| 37 |  | 1 |  | 2 |  | 1 |  | 2 |  | 5 | 100 |
| 38 |  | 1 |  | 1 |  |  |  | 1 |  | 3 | 100 |
| 38 39 |  |  |  | 1 |  |  |  | - |  | 1 | 100 |
| 40 |  |  |  | 1 |  |  |  | - |  | 1 | 100 |
| 40 |  |  |  |  |  |  |  | 1 |  | 1 | 100 |

Table 9a. Div. 4W silver hake - length-frequencies of ages 1 and 2 fish by sex (nos. x $10^{-3}$ ) from Canadian research vessel surveys and percentage mature at age.
A. MALES

| Leng th$(\mathrm{cm})$ | 1971 |  | 1972 |  | 1973 |  | 1974 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age 1 | Age 2 |
| 10 |  |  | 4 |  |  |  |  |  |
| 11 |  |  | 10 |  |  |  |  |  |
| 12 | 1 |  | 29 |  |  |  |  |  |
| 13 | 5 |  | 70 |  |  |  |  |  |
| 14 | 20 |  | 155 |  |  |  | 3 |  |
| 15 | 60 |  | 303 |  | 9 |  | 17 |  |
| 16 | 145 |  | 532 |  | 59 |  | 86 |  |
| 17 | 283 |  | 835 |  | 274 |  | 307 |  |
| 18 | 444 |  | 1170 |  | 884 |  | 769 |  |
| 19 | 561 |  | 1466 |  | 1974 |  | 1374 |  |
| 20 | 570 |  | 1643 |  | 3042 |  | 1750 |  |
| 21 | 466 |  | 1645 |  | 3239 |  | 1588 |  |
| 22 | 307 |  | 1472 |  | 2382 |  | 1026 |  |
| 23 | 163 |  | 1178 | 7 | 1211 | 2 | 473 | 4 |
| 24 | 69 | 5 | 842 | 133 | 425 | 40 | 155 | 78 |
| 25 | 24 | 68 | 538 | 1043 | 103 | 316 | 36 | 653 |
| 26 | 7 | 387 | 308 | 3385 | 17 | 1232 | 6 | 3186 |
| 27 | 1 | 1049 | 157 | 4531 | 2 | 2314 | 1 | 7816 |
| 28 |  | 1352 | 72 | 2502 |  | 2096 |  | 9632 |
| 29 |  | 829 | 29 | 570 |  | 915 |  | 5965 |
| 30 |  | 242 | 11 | 54 |  | 193 |  | 1856 |
| 31 |  | 33 | 3 | 2 |  | 20 |  | 290 |
| 32 |  | 2 | 1 |  |  | 1 |  | 23 |
| 33 |  |  |  |  |  |  |  | 1 |

$\begin{array}{lllllllll}\% & \text { mature } & 5.8 & 97.3 & 12.3 & 100.0 & 2.9 & 99.5 & 8.5\end{array}$

Table 9b. Div. 4W silver hake - length-frequencies of ages 1 and 2 fish by sex (nos. x10 ${ }^{-3}$ ) from Canadian research vessel surveys and percentage mature at age.
B. FEMALES

| Length (cm) | 1971 |  | 1972 |  | 1973 |  | 1974 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age 1 | Age 2 |
| 10 |  |  |  |  |  |  |  |  |
| 11 |  |  | 1 |  |  |  |  |  |
| 12 |  |  | 4 |  |  |  |  |  |
| 13 | 1 |  | 18 |  |  |  |  |  |
| 14 | 4 |  | 58 |  |  |  | 7 |  |
| 15 | 17 |  | 156 |  | 71 |  | 7 |  |
| 16 | 57 |  | 352 |  | 246 |  | 53 |  |
| 17 | 141 |  | 658 |  | 661 |  | 261 |  |
| 18 | 263 |  | 1022 |  | 1383 |  | 885 |  |
| 19 | 372 |  | 1318 |  | 2255 |  | 2070 |  |
| 20 | 400 |  | 1411 |  | 2864 |  | 3333 |  |
| 21 | 325 |  | 1254 |  | 2834 |  | 3697 |  |
| 22 | 201 |  | 925 | 6 | 2184 |  | 2826 |  |
| 23 | 94 |  | 567 | 58 | 1311 |  | 1488 | 16 |
| 24. | 33 | 1 | 288 | 348 | 613 | 2 | 534 | 113 |
| 25 | 9 | 9 | 122 | 1391 | 224 | 37 | 135 | 557 |
| 26 | 2 | 81 | 43 | 3654 | 63 | 403 | 23 | 1921 |
| 27 |  | 422 | 12 | 6323 | 14 | 2193 | 3 | 4703 |
| 28 |  | 1281 | 3 | 7204 | 2 | 5950 |  | 8164 |
| 29 |  | 2258 | 1 | 5405 |  | 8046 |  | 10060 |
| 30 |  | 2313 |  | 2670 |  | 5423 |  | 8791 |
| 31 |  | 1376 |  | 869 |  | 1822 |  | 5448 |
| 32 |  | 476 |  | 186 |  | 305 |  | 2395 |
| 33 |  | 96 |  | 26 |  | 25 |  | 747 |
| 34 |  | 12 |  | 2 |  | 1 |  | 166 |
| 35 |  | 1 |  |  |  |  |  | 26 |
| 36 |  |  |  |  |  |  |  | 3 |
| \% mature | 1.7 | 94.0 | 1.6 | 51.5 | 2.2 | 88.5 | 1.9 | 71.1 |



Table 11. Silver hake commercial catch - nos. at age $\times 10^{-3}$ Div. 4W from length-frequency analysis.

| Year | Age |  |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | $3+$ |  |
| 1965 | 1,671 | 170,422 | 43,888 | 215,981 |
| 66 | 10,220 | 9,795 | 462 | 20,477 |
| 67 | - | 7,576 | 915 | 8,491 |
| 68 | 84 | 18,218 | 2,173 | 20,475 |
| 69 | 21,456 | 242,169 | 22,436 | 286,061 |
| 1970 | 208,319 | 702,322 | 77,926 | 988,567 |
| 71 | 65,461 | 553,957 | 223,647 | 843,064 |
| 72 | 149,692 | 414,279 | 120,802 | 684,773 |
| 73 | 102,212 | 1,449,980 | 136,718 | 1,688,911 |
| 1974 | 80,432 | 405,044 | 57,153 | 542,629 |

Table 12. Silver hake commercial catch - nos. at age $\times 10^{-3}$ Div. 4 W from application of USA Div. $5 Y$ age-length keys.

| Year | Age |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 |  |
| 1968 | 11,288 | 8,737 | 2,432 | 203 | 55 | 77 | 22,792 |
| 69 | 104,245 | 134,717 | 44,714 | 4,939 | 1,680 | 184 | 290,479 |
| 1970 | 320,628 | 522,578 | 156,225 | 14,123 | 4,563 | 2,369 | 1,020,487 |
| 71 | 181,418 | 510,203 | 168,553 | 12,234 | 3,183 | 2,537 | 878,128 |
| 72 | 300,142 | 306,441 | 131,866 | 17,004 | 6,589 | - | 762,042 |
| 73 | 432,907 | 1,078,980 | 316,453 | 33,806 | 12,208 | 2;817 | 1,878,120 |
| 1974 | 87,830 | 331,433 | 115,173 | 11,876 | 4,971 | 1,105 | 552,388 |


| Years |
| :--- |
| 1963 |
| 1964 |
| 1965 |
| 1966 |
| 1967 |
| 1968 |
| 1969 |
| 1970 |
| 1971 |
| 1972 |
| 1973 |
| 1974 |

Table 14. Div. 4W silver hake - stock in numbers at age $\times 10^{-6}$

|  | A G E |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 |
| 1968 | 768.2 | 144.0 | 38.3 | 10.6 | 0.7 | 0.4 |
| 1969 | $1,630.6$ | 506.2 | 89.5 | 23.7 | 7.0 | 0.4 |
| 1970 | $1,832.4$ | $1,008.6$ | 231.2 | 24.7 | 11.9 | 3.3 |
| 1971 | $1,687.7$ | 969.6 | 263.9 | 33.8 | 5.5 | 4.3 |
| 1972 | $3,017.8$ | 984.4 | 247.7 | 45.6 | 12.9 | - |
| 1973 | $2,019.8$ | $1,779.7$ | 414.5 | 62.2 | 17.0 | 3.5 |
| 1974 | 975.0 | $1,005.3$ | 349.3 | 36.0 | 15.1 | 2.0 |

Table 15. Div. 4W silver hake - F

| Year | A G E |  |  |  |  |  | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | Ages 2 |
| 1968 | 0.02 | 0.08 | 0.08 | 0.02 | 0.10 | 0.10 | 0.07 |
| 1969 | 0.08 | 0.38 | 0.89 | 0.29 | 0.34 | 0.30 | 0.48 |
| 1970 | 0.24 | 0.94 | 1.52 | 1.11 | 0.61 | 1.00 | 1.05 |
| 1971 | 0.14 | 0.96 | 1.36 | 0.56 | 0.56 | 0.56 | 0.96 |
| 1972 | 0.13 | 0.47 | 0.98 | 0.59 | 0.92 | - | 0.74 |
| 1973 | 0.30 | 1.23 | 2.04 | 1.02 | 1.75 | 1.75 | 1.51 |
| 1974 | 0.12 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | - |

[^1]

Table 17.

Temperature and Catch per Unit Effort for 40 silver hake.

| Year | Temp. | Catch per hour fished 1 yr olds $\times 10^{-3}$ | Catch per hour fished 2 yr olds x10 ${ }^{-3}$ |
| :---: | :---: | :---: | :---: |
| 1965 | 7.56 | 0.04 | 4.40 |
| 66 | 3.76 | 0.38 | 0.37 |
| 67 | 5.39 | 0.00 | 5.17 |
| 68 |  | 0.00 | 0.89 |
| 69 | 4.82 | 0.64 | 7.23 |
| 70 | 5.10 | 2.69 | 9.06 |
| 71 | 5.92 | 0.71 | 5.97 |
| 72 | 4.72 | 2.37 | 6.55 |
| 73 | 4.33 | 0.98 | 13.92 |
| 74 | 5.88 |  |  |


Fig. $2 . \quad$ Silver hake : distribution and abundance from Canadian
research vessel surveys in $1970-72$.


Fig. 2. Parabolas fitted to USSR length frequency sample for August, 1972.


Fig. 3. Parabolas fitted to data from table 1 of Anderson and Nichy (1975).


C 3


Fig. 5. Yield per recruit isoplech diagram. The lower solid line gives the $F$ with greatest yield for a given age at recruitment and the upper line the age at recruitment with greatest yield for a given $F$.


Fig. 6. Regression of V.P estimates of $F$ on days fished by USSR >1800 gross ton otter trawlers.


Fig. 7. Catch per unit effort of two year old silver hake in relation to July bottom temperature on Sable Island Bank in the year of spawning.


Fig. 8. Catch per unit effort of one year old silver hake in relation to July bottom temperature on Sable Island Bank in the year of spawning.


[^0]:    
    

[^1]:    $\forall$ Excludes age 5 F which is a starting value.

