the Northwest Atlantic Fisheries
$\frac{\text { Serial No. } 3602}{(\text { D.c. 3) }}$
ICNAF Res.Doc. 75/109

ANNUAL MEETING - JUNE 1975

Report_on_Larval_Herring_Digtribution in the Gulf of Maine and_on_George日_Bank__27_Segtomber_-_18_October_1974
 by
 Stefan, K. Grimm, Waldemar Magzo and Marianna Pastuazak Sea Pisheries Ingtitute 81-345 Gdynia, Poland

INTRODUCAION

R/V Weczno conducted surveys of larval herring /Clupea harengus/ diatribution in the Gulf of Maine, Southern Scotian Shelf and on Georges Bank.

The survey was the scheduled ICNAF Larval Herring Survey, on annual, cooperative ICNAF atudy since 1971.

The cruise tracks /Fig. 1/ show the ICNAP atations occupied.
The number of herring larvae within Georges Bank and Nertucket Shoal was aignificantly lower in 1974 than in 1973 although both fisheries data and length frequencies of herring larvae indioate the delay of spawning period.

This situation could happened as a result of hydrological anomalies occuring in this area in this period.

METHODS

Larval herring were sampled with a single pair of 61 cm Bongo nets with mesh-size 505 mm and 333 mm . Tows were single oblique and to a maximum depth of 100 m or from near bottom when the station depth was shallower at a towing speed of 3,5 knote.

Rate of net deployment was $50 \mathrm{~m} / \mathrm{min}$ while houlback rate was $10 \mathrm{~m} / \mathrm{min}$, continuous to the surface. All plankton samples
were preaerved in 5% formalin and sorted in Plankton Sorting and Taxonomic Center in Szczecin - Poland at every station temperatures, salinity, oxygen and phosphorous content were meaaured at standard depth levels using standard methods /reversing termometers, salinometer, Winkler method and Murphy-Riley method/.

Additional samples with 20 cm Bongo nets were taken at selected atations /Fig. $1 /$ for studies 0 l larvae feeding. Ten - minute Neuston tows uaing a net with a $1 \times 2 \mathrm{~m}$ mouth and .505 mm were also made at atations shown on the map. Resulta from these additional samples will not be discussed in this report.

HYDROLOGICAL COADITIOAS

Distribution of hydrological elements and the anomaly of surface and bottom water temperature are shown on figures $2-9$.

The area to the south of Georges Bankwe covered by warm Gulf Stream waters with maximum surface temperature $22,7^{\circ} \mathrm{C}$ and salinity ${ }^{\circ} 35,7 \%$. From the North they are bordered with the frontal zone characterized by great horizontal gradients.

Over eastern and southern part of Georges Bank the tongue of colder water with temperatures 13-14 ${ }^{\circ} \mathrm{C}$ and salinity 32,7\% flowing from Gulf of Mainevas observed.

Central part of Georges Bankuis covered by waters with temperature $14-16^{\circ} \mathrm{C}$ and very uniform salinity $32,6-32,7 \%$. In the Gulf of Maine the water temperature raised from 10,9-12, $0^{\circ} \mathrm{C}$ in the cotatal zone to $16,3^{\circ} \mathrm{C}$ in the south western part. The salinity increased from $32,0 \%$ in the westerm part to $33,8 \%$ in the eastern part.

The highest surface phosphorous contens were found in the coastal zone of north-eastern part of thelf of Maine /0,9 ug at/1/ and in the central part of Georges Bank /0,7 ug at/1/.

The phosphorous contens decrease to the trace amount to the southwestarn part of Bank.

The tongue of cooler water with temperature $11-13^{\circ} \mathrm{C}$ and selinity $33-34 \%$ was extended over the southern Georges Bank Slope between 40 and 100 m isobathse

In the southern part of Gulf of Maine the lowest temperature $6-7^{\circ} \mathrm{C}$ was found between 70 and 150 isobaths. The penetration of the $9^{\circ} \mathrm{C}$ and 35% water from the open Ocean to Gulf of Maine through the channel between Georges Bank and Browns Aonk
in the layer $80-150 \mathrm{~mm}$ was observed.
Parther entering the Gulf of Maine this water masses reached the bottom and extended over eastern part of the Gulf. Westward temperature of the bottom water dereased to $6^{\circ} \mathrm{C}$ and salinity to 33%.

The bottom layer of the central Georges Bank was occupied by $13-16,9^{\circ} \mathrm{C}$ water with pretty uniform salinity $/ 32,5-32,8 \% /$. Along the southern Slope of the Georges Bank an inflow of $10,7-12^{\circ} \mathrm{O}$ and $33-34 \%$ water from the northeastern periphery was observed in the bottom layer.

The highest phosphorus content in the near-bottom waters $11,5 \mathrm{ug} \mathrm{at} / 1 /$ was found in the southern portion of the Gulf of Maine while the lowest / 0,3 ug at/1/ on the Nantucket Shoals.

Phosphorus content near the bottom of central Georges Bank varied between $0,6-0,8$ ug at/l.

Comparing the results of the surface and bottom water temperature with the long period records one can see that the surface of the most of the surveyed area was covered by waters with poaitive anomalies and the highest differences /up to $5,6^{\circ} \mathrm{C}$ / were at the border with the Gulf Stream waters.

Other big area with the higher temperature and anomalies reaching $+2,8^{\circ} \mathrm{C}$ was the southwestern portion of the Gulf of Maine and northeaetern part of Georgea Bank.

Waters with negative anomalies were covering the area of nothern /-1, $0^{\circ} \mathrm{C} /$ and western part /-1, $9^{\circ} /$ of the Gulf of Maine.

It should be noted that northern winds prevailed at this time what could have been one of the reason of these anomalies.

It was also clearly evident that the near bottom waters poaitively deviated from the mean data. Maximum value of positive anomaly $/+6,5^{\circ} \mathrm{C} /$ occured on Browns Bank.

The area with higher near bottom temperature /up to $+4,1^{\circ} \mathrm{C} /$ extended as a narrow strip along the northern edge of Georges Bank.

Negative anomalies occured on small patches on the northern part of the Gulf of Maine $/-0,4^{\circ} \mathrm{C} /$ and south of Nantucket Shoals /- 0, $8^{\circ} \mathrm{C} /$ only.

LARVAL HERRING DISTRIBUTIOA
The diatribution of herring larvae taken by r / v Wieczno during theall 1974 aurvey, in numbers per $10 \mathrm{~m}^{2}$ are given in Figure 10 showing larvae divided into three size groups thir and total number.

All larvae are from the .505 mm net. A total number of 18565 larval herring were captured during the survey. Nearly the same number of larvae / 18 607/ were taken in 1973 but their distribution differs markedly between both years.

Therewna about five times less larvae taken on Nantucket Shoals and two times leas on the Georges Bank in 1974 as in 1973.

Acoording to compariaon shown in Table 1 the production of herring larvae off Mova Scotia appears to increase in following years since 1972 and in 1974 exceeddsix times the number of larvae produced in 1973.

The number of herring larvae from coastal Gulf of Maine shows also a slight increase in 1974.

Comparing the estimate abundance of larvae separately for areas angroups /Table 1, Pig. 12/Thength frequency distribution /Fig. 11/ one could come to the condusion that on Nantucket Shoals and Georges Bank there was a delay of spawning as a result of of the above mentioned hydrological anomalies.

It should be also noted that 1974 survey started about 5-7 days earlierfparticular areas as in previous years.

Both, number and mean length of larvae in tid Mantucket Shoala and Georgea Bank are lower than in previous years. There is nearly a lack of larvae over 10 mm length,
while the newly hatched larvae are concentrated over a small area with very low evidence of dispersion.

Comparison of abundance of herring larvae
during the r/v Mieczno surveys, 1972 - 1974 .

Area	Investigation	Humber of laryae x, 10^{-9}				
	od	$\leq 10 \mathrm{~mm}$	10-15_mm	15-20mm	20 mm	total
Nantucket Shoals	2.X.-7.X. 1972	244	183	23	-	450
/St. 1-30/		440	9,7	0,43	0	450
	27.IX.-1. X. 1974	110,4	4,3	0	0	114,7
Georges Bank	11.X.-22.X. 1972	158	245	85	-	489
/St. $\begin{array}{r}50-64 \\ 70-85 \\ 88-991\end{array}$	7.X.-17.X. 1973	2300	530	95	5	2930
	3.X.-10.X. 1974	1379,4	1,9	0,9	0	1382,4
Nova Scotia	23.X.-25.X. 1972	9,2	54	75	-	138
$\text { /St. } \begin{aligned} & 102-109 \\ & 112-124 / \end{aligned}$	17.X.-20.X. 1973	6,8	120	110	14	250
	11.X.-15.X. 1974	195,6	1178,2	159,5	16,2	1549,6

Fig. 11 Length frequency distribution 1972-1974

- 17 -

