International Commission for

Serial No. 3675
-

the Northwest Atlantic Fisheries

(D.c.2)

ICNAF Res.Doc. 75/IX/124

SEVENTH SPECIAL COMMISSION MEETING - SEPTEMBER 1975
 Specified stock size as an objective for the management of single stocks

by
D.J. Garrod

Ministry of Agriculture, Fisheries and Food Fisheries Laboratory, Lowestoft, Suffolk, England

INTRODUCTION

The review of resource management, its objectives and implementation (Garrod Ses. Doc 75/) outlines the developments in Janagement in the ICNAF area which nave prompted a re-evaluation of the maximum sustainable yield as the oojective of nanajement. Contributions by Pope (Res. Doc 73/) and rorwood (Res. Doc 75/) demonstrate theoretical reasons why Schaefer models may not be an appropniate means to ilentify the MSY of a conglonerate of fisienies in one area, or the level of Eisning associated with it. Scientific advice in regard to regulation of fishing mortality thus falls betrieen two stools; stoc: specific estimates of TACs set on an $\operatorname{Finx}_{\text {max }}$ related to the $: S Y$ PER RECRUIT may actiaily enable over-exploitation to zake \because IEce because the stock specific data are nct jet adequate to identify the ievel of E Esscciated with the true $:$:SY, yet overall $:=$-intation of a total resource conplex
 of curtain stocks. Some improvement can be :.:aie by aciopring more widespead use of -.anajement to maintai:l specīied stock sizes Eollowina the concepts acopred for herring, and this contribution describes brieziy the method and its advantases.

A review is therefore pertinent but it … zar. oniy take accourt of technical problens. It cannot Enticipate problems in the impementation 0 a resuiation though the jor-ission may introduce sore afiustre:t to the scientific advice as a matter of policy.

1. MEGULATION OF STOCK SIZE AS AM ALTERTAZE:E OBJECTIVE

The theoretical deterministic formulario.. postulated initially an egiijbrium Eishery having constant jield, fishing mortaitivy and stock. That ideai hes never irtended as beins realistic because fishéries Ere never ir. short-term equizitrium. Fhen it became necessary to regulate the amount of zishine in the 2900 sinught tumed briefly to rine notion or a constant pajsical yicle (KSY) from a vanieble fisiting mortality and stock and thence, through the reed to adjust catc: guctas and the attraction of a stable incustry, to the rotion of a variable catc!: (:3: pav

 objective for nanazement in all situations; it is difficult to estimate and it coes not ensure that the stock cannot become cver-axploited because the leve: $0=\because$ it witin a fishery incuced reduction in recruiznert occurs is not define ${ }^{\circ} \mathrm{C}$. Gilil the scientiric uncertanties are resolved the $\exists^{\prime} \sim$: maintain a stock size that will ensure continuity of the resource. That is, a variable catch and fishing mortality to maintain a constant stock. This is the primery purpose but it does not preclude other objectives if they lie within (above) that constraint, be it the MSY, MSY per recruit or a level of stock that will enhance industrial efficiency or cushion administrative difficulties.

Scientifically a regime based on minimum stock levels must:
i. identify the level of stock associated with the ilSY, ie with a stock size already at a defined minimum that can generate recruitment at long-term average levels;
ii. identify stocks which have been depleted below the minimum level, ie stocks which will not return to the specified minimum at the existing level of fishing mortality throufh the normal variation in recruitinent;
iii. specify management strategies trat will maintain stocis in the first category or allow those in the second to recover.
2. ESTIMATION OF FISHING MORTALITY TO MAINTAIN SPECIFIED STOCK LEVEL

If a stock constraint is established for the age groups ($j \ldots r$) then the expected biomass of these age groups in year $(x+1)$ depends on the survival of fish from age groups ($j-1, j \ldots r-1$) in year (x). Expressing the average weight of fish at age a as W (a) and, if the stock constraint involves mature fish only, expressing the proportion mature at age a as M (a), then the biomass of the (spawning) stock ($T(x+1)$) at the beginning of year $x+1$ is given as:

```
\(\begin{aligned} \text { (-1 } & \exp (-s(a) f(x)+m)\end{aligned}\)
\(T(x+1)=\sum_{i}^{r-1} N(a+1) . i(a+1) . N(a, x) / \exp (S(a) F(x)+\because)\)1
```

where $:(a, x)$ is the number $o \equiv$ fish of age a at the beginning of year x, S (a) is the partial recruitment factor $a t$ age a and $F(x)$ and u the usual mortality coefficie=The pantial recruitment factor way vary over the age range but in considering the potential stock as a unit this may be simplified by assuming that all age groups concerned are subject to an average partial recruitment factor $\overline{\mathrm{S}}$. Strictly the averafe partial recruitment factor would be weighted by the nunber of fish in each group but an approximate value for $\overline{\mathrm{S}}$ would be given by:

```
        r-1
\overline{S}=\mp@subsup{\sum}{a=j-j}{r-1}S(a)/(r-j+1)
```

Thus from :

$$
\left.\exp (\bar{S} . F(x)+M)=\sum_{a=j-1}^{r-1} W(a+1) M(a+1) N(a, x)\right) / T(x+1) \ldots \ldots \ldots \ldots .
$$

and this can be solved for the value of $F(x)$, which would just satisfy the stock constraint, as follows:

$$
F(x)=-\left(M+\ln \left\{T(x+1) / \Sigma \sum_{a=j-1}^{r-1} W(a+1) \cdot M(a+1) N(a, x)\right\}\right) / \bar{S} \ldots \ldots \ldots .
$$

Expression 3 gives an approximate estimate of the fishing mortality to be applied to a stock to ensure that a specified stock survives in the following year and hence the catch that could be taken in the current year. Such an approach remains subject to problems of data lág currently being encountered but, depending on the age range of the stock specified, it has the following advantages.
2. It addresses the real biological constraint on resource manazement and can be defined in terms of miniman spaming stock, or, if necessary, some minimum that would meet catch rate (economic) objectives.
2. It overcomes what is cumently a major technical difficiity in defining $F_{\text {:USY }}$ or $F_{M A X}$ in a fisnery wi:ere selection patterns may change.
ミ. Given an objective E set independent of the selection paitern the yield fron partially recruite $\mathrm{E}_{\mathrm{E}}^{\mathrm{a}}$ groups can be manipuiated in reiation to a manajement siratajy (see belor).
4. The specified stock can be established on the age groups for which the stock estinates are the rost reliable and so release present advice on TACs (for many stocks) from crucial dependence on the strength of tost recent yearclasses. That is, the yiedd from these youngest age groups will be irrelevant to stock constraint for ti.e following year. They will remain important to stock size in future years but, it follows from 3 that the required level of fishing mortality can be projected forward on known recruitment estirates and the TAC set to take into account anticipated stock trends in a meaning末ul way.
Table 1 illustrates application of the technique to data for she cod stock in Div 3:NO. This is not a reassessnent of that stock but based on data presented to STACPIS coupled with the constraint that the spawning stock should not fall below 15 per cent of the estimates for the unexploited stock. Given the assumptions it insicates the need for a reduction in catches in 1976 tinrougn 1973 . 20 maintain the stock constraint. The catch figures represent the upper limit of what could be caught but alternative stratesies to accept lower catches in the i-r.ediate future could be evaluated in the same way.

It has to be noted that the approach outlined is obviously only applicable to stocks where analytical data are available; it requires a stock constraint, and tia use of the constraint will give most advantage wiove it applies to age groups almos:
 stock which matures at a very early age then the numerical benefit of the method way be small though the advantages in management strate ${ }^{3}$ y will remain if the argurents put forward earlier are accepted.
3. THE STOCK CONSTRAINT

The estimation described above is applicable to any stock of specified age groups but, considering that the need to adopt this approach has arisen because of uncertainsy regardins stock and recruitment relationships in order to meet the biological concera of resource management, it should be applied to the potential spawning stock. The possible form of the stock and recruitment relationship nas been discussed very extensively in recent years and it suffices to say here that the optimum stock level has not yet been convincingly demonstrated in any set of data for marine fish resounces so far presented. Given the need for a limit this leaves only two options:
i. to examine the spawning stocks of exploited resources to identify the profortionate reduction in spawning stock from the linexploited stock condition wich is believed not to fave had a deleterious effect on recruitnent;
ii．to identify in ristoric data a spanning stock size known to have generミचei ai．．er． 2 ate level of zesruitrent．
\therefore it：．rejarc to the First option there are stocks wich have jeen depleted to ぶ弓 of tne uneriploited levei ce so that a 15% constraint couic de afreed bearing in ㅍinc tiat aensity depencient increase in jrowth rate of tiee exploited stock would in？： ᄃfat the reai reduction in szaming stock would be less．：owever it is doubtful whetier an approximation oz this forn could claim widespreac support and it is open to chaiiense for many resources where the density depencent component of mortality nejulating yearclass size is veiv small．The most acceptable approach must be to adopt a demonstrably adequate spawning stock level or，if a constraint based on econoric criteria is intended，then a stock level which can be seen to be adequate For the funpose defined．
4．SÜZMRY
This contribution proposes an alternative management objective based on a stajk corstrair．t．This is seen as an essential developnent ir the scientific advice in ine
 recruitmer． $\boldsymbol{\tau}^{\prime}$ issue．It has a wider implication to the i－plenentation of managemer．：

PGEEREICES

GARROD，D．J．，1975．Resource ranagement，its objectives and implementation． ICNAF，Res．Doc．
HORWOCD，J．，1975．Interactive fisheries．A two species Schaefer model．ICNAF． Res．Doc．
POPE，J．G．，1975a．The application of mixed fishery theory to the cod and redfish scocks of sub－area 2 and Division 3 K ．ICNAF Res．Doc．b．The effect of biological interactions on ine theory of mixed fisheries．ICiAR ，Res．Doc． POPE，J．G．，A ARRIS，O．C．， $1=75$ ．South African pilchard and anchovy stock complex． An example of the effects of biological interactions between species on managenent stratesy．$=$ EN：Yorking Paper．

[^0]Table 1. Illustrative Calculation of Possible Catches based on Stock Constraint

(B) PROJEOPION

[^0]:

